概率论第二章练习答案概要

概率论第二章练习答案概要
概率论第二章练习答案概要

《概率论》第二章 练习答案

一、填空题:

1.设随机变量X 的密度函数为f(x)=??

?0

2x 其它1???o 则用Y 表示对X 的3次独立重复

的观察中事件(X≤

2

1

)出现的次数,则P (Y =2)= 。 ?==≤4120

21)21(xdx X P

64

9

)43()41()2(1223===C Y p

2. 设连续型随机变量的概率密度函数为:

ax+b 0

f (x) =

0 其他 且EX =

3

1

,则a = _____-2___________, b = _____2___________。 ???????=+=+→

??解之31)(0

1

1)(0

1

dx b ax x dx b ax 3. 已知随机变量X 在[ 10,22 ] 上服从均匀分布,则EX= 16 , DX= 12

4. 设=+==)(,则,为随机变量,1041132ξξξξE E E 22104=+ξE

=+)104(ξD []

3216162

2=-=)(ξξξ

E E D

5. 已知X 的密度为=)(x ?

b ax +

其他,10<

1

<

x )=P(X>3

1

) , 则a = , b =

???

+=+?==+∞

-101

33

1

3

1311

dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得:

4

723=-=b a ,

6.若f(x)为连续型随机变量X 的分布密度,则

?

+∞

-=dx x f )(__1____。

7. 设连续型随机变量ξ的分布函数??

???≥<≤<=2,110,

4/0,

0)(2

x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。

8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?=

()?????≥)

(0100100

2其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。 2100

x

x≥100 ∴ ?(x)=

0 其它

P (ξ≥150)=1-F(150)=1-??=-+=+=150

10015010023

2

132********x dx x

[P(ξ≥150)]3=(32)3=27

8

9. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________,

P =_________________。

EX = np = 1.6

DX = npq = 1.28 ,解之得:n = 8 ,p = 0.2

10. 设随机变量x 服从参数为(2,p )的二项分布,Y 服从参数为(4,p )的二项分布,若P (X ≥1)=9

5

,则P (Y ≥1)=_65/81______。 解:

11. 随机变量X ~N (2,

σ2)

,且P (2<X <4)=0.3,则P (X <0)=__0.2___ %

2.8081

65

811614014==-=-=q p C o )

0(1)1(=-=≥Y P Y p 31,3294)0(94

)1(95)1(2

=

=?=∴===??=

≥p q q X p X p X p

2

.08.01)2

(1)2(2

008

.05.03.0)2

(,3.0)0()2

(3

.02

22

42442000

0000

=-=Φ-=-Φ=-Φ=<=+=Φ=Φ-Φ=-Φ--Φ=<-<=<<σ

σσ

σ

σσ

σ

)()(再代入从而即:)()()()()(X P X P X P X P

12. 设随机变量X 服从参数为1的指数分布,则数学期望)(2X e X E -+= ___4/3________ 3

4

31110

222=+

=?+=+=+?+∞

----dx e e Ee EX e

X E x x X X

)( 13. 已知离散型随机变量X 服从参数为2的泊松分布,则随机变量Z= 3X -2的期望

E (Z)=3EX-2=3x2-2=4 。

14.设随机变量X 服从参数为λ的泊松分布,且P ( X= 1) = P ( X=2 ) 则E (X) = __2_______. D (X) = __2___________.

02!

2!

122

=-?=

--λλλλ

λλ

e e

∴)0(2舍==λλ

15. 若随机变量ξ服从参数λ=0.05的指数分布,则其概率密度函数为:

=)(x φ?

?

?<≥-,

00,

005.005.0x x e x

;E ξ= 20 ;D ξ= 400 。

16. 设某动物从出生活到10岁以上的概率为0.7,活到15岁以上的概率为0.2,则现龄为10岁的这种动物活到15岁以上的概率为286.07

2

7.02.0)10()15()10/15(===>>=

>>ξξξξP P P

17. 某一电话站为300个用户服务,在一小时内每一用户使用电话的概率为0.01,则在一小时内有4个用户使用电话的概率为 P 3(4)=0.168031

解:算:

利用泊松定理作近似计,99.0*01.0*4300)4()

01.0,300(~2964???

?

??==X P b X 一小时内使用电话的用户数服从301.0300=?==np λ的泊松分布

18 通常在n 比较大,p 很小时,用 泊松分布 近似代替二项分布的公式,其期望为 np =λ ,方差为 np =λ

19.618.0)3(,045.0)5(),,(~2

=≤=-

=__4____。(将X 标准化后查标准正态分布表)

二、单项选择:

1.设随机变量X 的密度函数为:

3, 0

其他

则使P(x>a)=P(x

42

1 B .42

C .

2

1 D .1-

42

1 解:根据密度函数的非负可积性得到:

??

=∞+=>dx x a

dx x f a a x P 341

)()( ????===∞-=<43

1332

1:4,4,,4)()(a dx x dx x o a dx x o a dx x f a a x P a 解之得联立

2.设F 1(X )与F 2(X )分别为随机变量X 1与X 2的分布函数,为使F (X )=aF 1(x)

-bF 2(x)是某一随机变量的分布函数,在下列给它的各组值中应取( A ) A .a=

53, b =-52 B .a=

32, b=32

C .a=-21, b=2

3

D .a=21, b=-2

3

F(+∞)=a F 1 (+∞)-BF 2 (+∞)=11=-?b a

适合5

2

,53-==∴b a

3. 已知随机变量的分布函数为F (x )= A + B arctgx ,则:( B ) A 、A=

21 B=π B 、A=21 B=π1 C 、 A=π B=21 D 、A=π

1 B=21 解:要熟悉arctgx 的图像

联立求解即可。

;2

0),()(;2

1),()(π

π

?-=∴-∞+=-∞?+=∴+∞+=+∞B A Barctg A F B A Barctg A F

4. 设离散型随机变量X 仅取两个可能值X 1和X 2,而且X 1< X 2,X 取值X 1的概率为

0.6X )=0.24,则X A. B.

C. D.

① 1.4=EX=0.6X 1+0.4X 2

② DX=EX 2-(EX)2

22

2214.1)4.0*6.0*(24.0-+=x x

联系①、②解得X 1=1,X 2=2

5.现有10张奖券,其中8张为2元,2张为5元,今某人从中随机地无放回取3张,则此人得奖金额的数学期望为 ( ) A .6元 B .12元 C .7.8元 D .9元 设ξ表示得奖金额,则其分布律为:

ξ 6 (3张2元的) 9 (2张2元,1张5元的) 12(1张2元,2张5元的)

P 31038c c 3101228c c c 310

2

218c c

c

故期望值为: 7.8

6. 随机变量X 的概率分布是: X 1 2 3 4 P

61 a 41

b 则:( D ) A 、a=61, b=41 B 、a=121, b=122 C 、a=121, b=125 D 、a=41, b=3

1

D b a 故选)(?=+-

=+12

741611 7. 下列可作为密度函数的是:( B )

A 、=)(x ? 0

11

2x + 0

≤>x x

B 、=)(x ? 0

)

(a x e -- 其它a x >

C 、=)(x ?

s i n x

其它

],0[π∈x

D 、=)(x ? 0

3

x 其它11<<-x

依据密度函数的性质:???

??=≥?∞+∞

-10dx x x )()(??进行判断得出:B 为正确答案

8. 设X 的概率密度为)(x ?,其分布函数F (x ),则( D )成立。 A 、)()(x F x P =+∞= B 、1)(0≤≤x ? C 、P )()(x x ?=+∞= D 、P )()(x F x ≥+∞<

9. 如果)(~x x ?,而=)(x ? 02x x - 其它

211

0≤<≤≤x x ,则P (x 5.1≤)=

( C ) A 、?

-5

.10)2(dx x B 、?-5.10

)2(dx x x C 、0.875 D 、?∞

--5

.1)2(dx x

875.08

7

25.11

1

==

-+??

dx x xdx )( 10. 若随机变量X 的可能取值充满区间______,那么Sinx 可以作为一个随机变量的概率密度函数。 ( B ) A .[0,π] B .[0.5π, π] C .[0, 1.5π] D .[π, 1.5π]

依据密度函数的性质:?????=≥?∞+∞

-10dx x x )()(??进行判断得出:B 为正确答案

11. 某厂生产的产品次品率为5%,每天从生产的产品中抽5个检验,记X 为出现次品的个数,则E(X)为____。 ( D ) A .0.75

B .0.2375

C .0.487

D .0.25

此题X 服从二项分布b(5,0.05),EX=np=5*0.05=0.25

12. 设X 服从二项分布,若(n +1)P 不是整数,则K 取何值时,P (X =K )最大?

( D )

A .K =(n +1)P

B .K =(n +1)P -i

C .K =nP

D .K =[(n +1)P ]

解:根据二项分布的正态近似知,当X 接近于EX=np 时取到最大值,由于(n +1)P 不是整数,因此需要寻找最接近np 的整数。 13.设X 服从泊松分布,若λ不是整数,则K 取何值时,P (X =K )最大?

( B )

A .λ

B .[λ]

C .λ-1

D .λ+1 解:根据二项分布的泊松近似,以及泊松分布的正态近似知:

当EX=λ时取到最大值,因为λ不是整数,而K 必须为整数,因此需要对λ取整 14. )1,0(~N X ,Y=2X -1,则Y~( C )

A 、N (0,1)

B 、N (1,4)

C 、N (-1,4)

D 、N (-1,3)

11212441

2-=-=-===-=EX X E EY DX X D DY )(,)( 15. 已知随机变量X 服从参数为2的指数分布,则其标准差为: ( C )

A .2

B .1/4

C .1/2

D .

2

2 随机变量的参数为2,即方差为1/4,标准差则为1/2

16.当满足下列( )条件时,二项分布以正态分布为极限分布更准确。( D ) A .n λ→∞→np , (二项分布的泊松近似) B .0,→∞→p n

C .λ→→np p ,0

D .∞→n

17. 设X ~(10,25)N ,已知8413.0)1(0≈Φ,97725.0)2(0≈Φ,则}{5p X <和}

{20p X >的概率分别为 [ C ]

A. 0.0228 , 0.1587

B. 0.3413 , 0.4772

C. 0.1587 , 0.0228

D. 0.8413 , 0.97725

0228.02

1510

201201201587.08413.011115

10

5500000

=Φ-=-Φ-=≤-=>=-=Φ-=-Φ=-Φ=<)()()()()()()()(X P X P X P

三、计算题:

1. 设随机变量X 的密度函数是连续型函数,其密度函数为:

AX 0<X ≤1 B -X 1<X ≤2

0 其它

试求:(1)常数A 、B 。(2)分布函数F (x )(3)P (21<2

3

≤X ) 解:(1)由X 为连续型随机变量,

)1()(1:),1()(1f X B x im

f x f x im =-→=→+

+ 即

A B =-?1①

同时:

?=∞-∞

+1)(dx x f 52=+?B A ②

①、②式联系解得:A=1,B=2

(2)?∞-=

,)()(dt t f x

x F

;0)(0=≤x F x 时,则当

当?==≤<22

1

0)(,1x tdt x x F x o ;

当??--=-+=-+=

≤<12

121)212(21)2(101)(,2122x x x t t dt t x xdx x F x ; 当x>2时,F(x)=1.

????????

?--=∴112122

10

)(22

x x x x F 221100>≤<≤<≤x x x x (3)4

3

)21(211)23(21232)21()23()2321(22=?--?-?=-=≤

2. 设已知X~)(x ?= 0

2x

其它

10<

② F (x )

解:① 4

1

255

.00

=

=≤?

xdx X P )

( ②

??

?

??≥<≤<=∴===??∞

-111

00

0222

x x x x x F x tdt dt t x F x

x ,,,)()()(?

?????≤≤-=∴?-='=-=-≤

=≤+=≤=??

?≤≤=其他)(

其他)

(0)419

192

)(3

1

)31(

)()()3

1

()31()13()()(~(0)

10(1)(~y y y y y F y y F y X p y X p y Y p y F Y x x X Y X Y Y X Y X φφφφ

3. 设随机变量X 的密度函数为:

ax 0

f(x)= cx + b 2≤x≤4

0 其他 已知 EX =2, P (1

4

3

,求a 、b 、c 的值 解:(1)①??=++=++1262)(2

4

02b c a dx b cx axdx

②263

56

38)(240222=++=++=

??b c a dx bx cx dx ax EX ③??=++=++=<<4

3

2523)(2312)31(b c a dx b cx axdx X p

4

1,1,41-====c b a 联系解得

4.假定在国际市场上每年对我国某种出口商品的需求量是随机变量X (单位:t ),已

知X 服从[2000,4000]上的均匀分布,设每出售这种商品1t ,可为国家挣得外汇3万元,但假如销售不出而囤积于仓库,则每吨需浪费保养费1万元,问应组织多少货源,才能使国家的收益最大?

解:Y :每年该商品的出口量 R :收益

X 的密度函数:-??

???≤≤=其他,04000

2000,20001)(x x f ,

??

?

∈<≥--=]4000,2000[,)

(33)(y x y

x y x x y x y x R

?∞-∞

+=

dx x f x R ER )()(

??+-=

dx y y dx y x y 200013400020001)4(2000 )1047000(1000

1

62?-+-=

y y ])3500(825000[1000

12--=y ∴y=3500时,利益最大

5. 设某种商品每周的需求量X 服从区间 [10,30]上均匀分布,而经销商店进货量为 [10,30] 中的某一整数,商店每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元,若供不应求,则可从外部调剂供应,此时一单位商品仅获利300元,为使商店所获利润期望值不少于9280元,试确定最小进货量? 解:设进货量为a, 则利润为: ??

?≤≤≤≤----=a

x x a x a x a x a Ma 1030

100

)(500300)(500

??++-=

dx a x a dx x a EMa )200300(201

30)100600(20110α

52503505.72++-=a a

9280≥E M a 若 即:-7.5α2+350α+5250≥9280

解得:20

3

2

≤α≤26 ∴取最小α=21

上式:其他

30

100

20

1)(≤≤???

??=-x x f x

6. 某高级镜片制造厂试制成功新镜头,准备出口试销,厂方的检测设备与国外的检测设备仍有一定的差距,为此,厂方面临一个决策问题:① 直接进口,② 租用设备,③ 与外商合资。不同的经营方式所需的固定成本和每件的可变成本如表: 自制 进口 租赁 合资 固定成本(万元) 120 40 64 200 每件可变成本(元) 60 100 80 40

已知产品出口价为200元/件,如果畅销可销3.5万件,中等可销2.5万件,滞销只售0.8万件,按以往经验,畅销的可能性为0.2,中等的为0.7,滞销的为0.1,请为该厂作出最优决策。

解:设 =B 销量 ,自制=1A ,进口=2A ,租赁=3A ,合资=4A

总成本=固定成本+销售量*可变成本 万件53.2)(=B E

8

.204)4053.2200(20053.2)(6.239)8053.264(20053.2)(213)10053.240(20053.2)(2

.234)6053.2120(20053.2)(4321=?+-?==?+-?==?+-?==?+-?=A E A E A E A E

∴ 3A 为最优方案,即租用设备。

7. 某书店希望订购最新出版的好书,根据以往的经验,新书销售量规律如下:

假定每本新书的订购价为4元,销售价为6元,剩书的处理价为2元,试确定该书店订购

新书的数量。

解:分析:当订货量大于需求量时,则多出的每本处理后亏损2元;当订货量小于需求量的时候,则卖出去一本就可以获利2元。 针对不同的需求量和订货量的收益表如下:

60

1.04003.02004.00

2.020041401.0300

3.0300

4.01002.01003160

1.02003.02004.0200

2.0021001.0100

3.0100

4.01002.01001=?+?+?+?-==?+?+?+?-==?+?+?+?==?+?+?+?=Ey Ey Ey Ey

故订100本较合理。

8. 若连续型随机变量X 的概率是

???<<++=)

(010)(2其他)

(x c bx ax x ?

已知EX =0.5,DX =0.15,求系数a, b, c 。

解: ?

+∞

-=1)(dx x φ

?

+∞

-=5.0)(dx x x φ

?

+∞

-=+=4.0)(2

2)(ξξφE D dx x x

解方程组得:12=a 12-=b 3=c

9. 五件商品中有两件次品,从中任取三件。设ξ为取到的次品数,求ξ的分布律、数学期望和方差。 解:ξ的分布律为

E ξ= 1.2 ;D ξ= 0.36

10. 某次抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成

绩72分,96分的以上的占考生总数的2.3%,试求考生的外语成绩在60至84分之间的概率。

解: X~N (72,σ 2) %3.2023.0)24

(

1)72

96(1)96(00==Φ-=-Φ-=≥σ

σ

X P s

即:12224

,977.0)24

(

=?=?

=Φσσ

σ

o

)12,72(~2N X ∴

682.0)1()1()12

72

60()127284(

)8460(00=-Φ-Φ=-Φ--Φ=≤≤o o X P 11. 假设一电路有3个不同种电气元件,其工作状态相互独立,且无故障工作时间都

服从参数为λ> 0的指数分布,当三包元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间的概率分布。

解:设Xi 表示第i 个电气之元件无故障工作的时间,i=1,2,3,则X 1X 2X 3独立且同分布,

分布函数为:??

?<≥-=-0

1)(x x e x F x

λ 设G (t )是T 的分布函数。 当t<0时,G (t )=0

{}{}

{}{}{}{}

??

?<≥-=∴-=-=-----=>-=>>>-=>>>-=>-=≤=≥----)

0(,0)

0(,1)(1)(1)]1(1[1)](1[1)]([11,,11)(0333333321321t t e t G e e e t F t X P t X P t X P t X P t X t X t X P t T P t T P t G t t t t t λλλλ时,当

的指数分布服从参数为λ3T ∴

12. 设从一批材料中任取一件测出这种材料的强度X~N (200,182

),求:① 取出的该材料的强度不低于180的概率;② 若某项工程要求所用的材料强度要以99%的概率保证不低于150,问这批材料是否合乎要求?解: ① 8665.0)180(=≥X P ②

9973.0)150(=≥X P 大于0.99,故这批材料合要求。

13. 生产某种产品的废品率为0.1,抽取20件产品,初步检查已发现有2件废品,则这20件产品中,废品不少于3件的概率为多大?

解: =“20件产品中废品数目”,)1.0,20(~b l

“初步检查已发现有2件废品”=“ ≥2” “废品数不少于3件”=“ ≥3”

p=0.1 q=0.9 n=20.

%

1.531

.09.020

1

9.01.020019.01.020

2

119200182=---=C C C k

k k

k k C

k k C

k p p p --===

≥≥=≥≥∑

20209.01.020

2

209.01.0203

20

)

2()3()23(

14. 某公司作信件广告,依以往经验每送出100封可收到一家定货。兹就80个城市中的每一城市发出200封信。求(1)无一家定货的城市数;(2)有三家定货的城市数。

解:设发出200封信后有ξ家定货,则ξ∽B (200,0.01) ξ近似服从参数为np =λ=2的泊松分布

P (ξ=0)=1353.0!022

20≈=--e e ,P (ξ=3)=1804.03

4!32223≈=--e e (1) 无一家定货的城市数为80?0.1353=10.82 (2) 有三家定货的城市数为80?0.1804=14.43

15. 某企业准备通过考试招收300名职工,其中招正式工280人、临时工20人,

报考人数为1657人,考试满分是400分。考后得知,考试平均成绩为166分,在360分以上的高分考生有31人。求:

(1)为录取到300人,录取分数线应设定到多少? (2)某考生的分数为256分,他能否被录取为正式工?

(设成绩服从正态分布,835.0)97.0(0≈Φ,819.0)91.0(0≈Φ, 981.0)08.2(0≈Φ) 解:(1)

9

.25091.03

.93166819.03

.93166

181.03.93166116573003.93166~3.9308.2194

981.01941657

31

16636013601360166~0

02

2=?=-?=-Φ?=-Φ-?=>=?=?=Φ?=-Φ-=≤-=>a a a a a X P N X X P X P N X )()()()

,()()()()()

,(σσ

σσσ

因此,分数线应定在250.9分。(2)

1657

280

165.0835.013.93166256125612560

<=-=-Φ-=≤-=>)()()(X P X P 故该考生能被录为正式工。

概率论与数理统计第四版第二章习题答案

概率论与数理统计 第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 于是其分布律为 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ??

概率论第二章练习答案

《概率论》第二章练习答案 一、填空题: ”2x c S 1 1.设随机变量X的密度函数为f(x)= 则用丫表示对X的3次独立重复的 0 其匕 '- 观察中事件(X< -)出现的次数,则P (丫= 2)= ___________________ 。 2 2.设连续型随机变量的概率密度函数为: ax+b 0

4. 设为随机变量,E =3, E 2=11,则 E (4 10) = 4E TO =22 5. 已知X的密度为(x)二ax?"b Y 01 0 . x :: 1 1 1 (x ) =P(X?),则 3 3 6. 7. 1 1 (X〈一)= P ( X〉一)一 1 (ax b)dxjQx b) 联立解得: dx 若f(x)为连续型随机变量X的分布密度,则J[f(x)dx= ________ 1 ——'J 设连续型随机变量汕分布函数F(x)=x2/:, 丨1, x :: 0 0 岂 x ::: 1,则 P ( E =0.8 ) = _0_; P(0.2 :::: 6) = 0.99 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度:(x)二 x _100 x2,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不0(其他) 需要更换的概率为_____ 厂100 8/27 _________ x> 100

第二章_概率论解析答案习题解答

第二章 随机变量及其分布 I 教学基本要求 1、了解随机变量的概念以及它与事件的联系; 2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质; 3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用; 4、会求简单随机变量函数的分布. II 习题解答 A 组 1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为 1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω= 以X 表示两个产品中的合格品数. (1) 写出X 与样本点之间的对应关系; (2) 若此产品的合格品率为p ,求(1)p X =? 解:(1) 10ω→、21ω→、31ω→、42ω→; (2) 1 2(1)(1)2(1)p X C p p p p ==-=-. 2、下列函数是否是某个随机变量的分布函数? (1) 021()2021 x F x x x <-??? =-≤

求常数A 及(13)p X <≤? 解:由()1F +∞=和lim (1)x x A e A -→+∞ -=得 1A =; (13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-. 4、设随机变量X 的分布函数为 2 00()0111 x F x Ax x x ≤??=<≤??>? 求常数A 及(0.50.8)p X <≤? 解:由(10)(1)F F +=得 1A =; (0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=. 5、设随机变量X 的分布列为 ()a p X k N == (1,2,,)k N =L 求常数a ? 解:由 1 1i i p +∞ ==∑得 1 1N k a N ==∑ 1a ?=. 6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、 5,且 0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、321090 5100 (3)C C p X C ==、 4110905100(4)C C p X C ==、50 1090 5100 (5)C C p X C == 于是X 的分布列为

概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案) 一、单项选择题 1. 已知连续型随机变量X 的分布函数为 3.若函数f(x)是某随机变量X 的概率密度函数,则一定成立的是(C ) A. f(x)的定义域是[0, 1] B. f(x)的值域为[0,1] 4.设X - N(l,l),密度函数为f(x),则有(C ) 5.设随机变量X ~ N (/M6), Y ?N 仏25),记 P1 = P (X “ + 5), 则正确的是 (A)对任意“,均有Pi = p 2 (B)对任意“,均有Pi v p? (c)对任意〃,均有Pl > Pi (D )只对“的个别值有P1 = P2 6.设随机变量x ?N(10^s 2) 9 则随着s 的增加 P{|X- 10|< s} ( C ) F(x) = o, kx+b 、 x<0 0 < x< x> 则常数&和〃分别为 (A) k = —b = 0 龙, (B) k = 0,b 丄 (C) k = —,b = 0 (D) k = 0,b= 1 n In In 2.下列函数哪个是某随机变量的分布函数 (A ) z 7 fl -cosx ; 2 0, f sinx, A. f(x)』沁,xnO C. f (x)= a (a>0); B. f (x) 1, x < 0 [cosx, — - < X < - 1 2 2 D. f (x) 其他 0, 0 < X < 7T 其他 —-< x < - 2 2 其他 C- f(x)非负 D. f (x)在(-叫+00)内连续 A. P {X O } B. f(x)= f(-x) C. p{xl} D ? F(x) = l-F(-x) A.递增 B.递减 C.不变 D.不能确定

概率论基础复习题及答案

《概率论基础》本科 填空题(含答案) 1. 设随机变量ξ的密度函数为p(x), 则 p(x) ≥0; ?∞ ∞ -dx x p )(= 1 ;Eξ=?∞ ∞ -dx x xp )(。 考查第三章 2. 设A,B,C 为三个事件,则A,B,C 至少有一个发生可表示为:C B A ;A,C 发生而B 不发生可表示 C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 3. 设随机变量)1,0(~N ξ,其概率密度函数为)(0x ?,分布函数为)(0x Φ,则)0(0?等于π 21,)0(0Φ等 于 0.5 。 考查第三章 4. 设随机变量ξ具有分布P{ξ=k}=5 1 ,k=1,2,3,4,5,则Eξ= 3 ,Dξ= 2 。 考查第五章 5. 已知随机变量X ,Y 的相关系数为XY r ,若U=aX+b,V=cY+d, 其中ac>0. 则U ,V 的相关系数等于 XY r 。 考查第五章 6. 设),(~2 σμN X ,用车贝晓夫不等式估计:≥<-)|(|σμk X P 211k - 考查第五章 7. 设随机变量ξ的概率函数为P{ξ=i x }=i p ,...,2,1=i 则 i p ≥ 0 ;∑∞ =1 i i p = 1 ;Eξ= ∑∞ =1 i i i p x 。 考查第一章 8. 设A,B,C 为三个事件,则A,B,C 都发生可表示为:ABC ;A 发生而B,C 不发生可表示为:C B A ;A,B,C 恰有一个发生可表示为:C B A C B A C B A ++。 考查第一章 9. )4,5(~N X ,)()(c X P c X P <=>,则=c 5 。 考查第三章

概率论与数理统计第二章答案

第二章 随机变量及其分布 1、解: 设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010 投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 2、一袋中有5X 表示取出的三只球中的最大号码,写出随机变量X 的分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 435 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P :10 6, 103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 35 22 )0(315313= ==C C X P 3512)1(3 15213 12=?==C C C X P 35 1)2(3 15 113 22= ?= =C C C X P 再列为下表 X : 0, 1, 2 P : 35 1, 3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0

概率论第二章练习答案概要

《概率论》第二章 练习答案 一、填空题: 1.设随机变量X 的密度函数为f(x)=?? ?0 2x 其它1???o 则用Y 表示对X 的3次独立重复 的观察中事件(X≤ 2 1 )出现的次数,则P (Y =2)= 。 ?==≤4120 21)21(xdx X P 64 9 )43()41()2(1223===C Y p 2. 设连续型随机变量的概率密度函数为: ax+b 03 1 ) , 则a = , b = ??? +=+?==+∞ ∞ -101 33 1 3 1311 dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得: 4 723=-=b a ,

6.若f(x)为连续型随机变量X 的分布密度,则 ? +∞ ∞ -=dx x f )(__1____。 7. 设连续型随机变量ξ的分布函数?? ???≥<≤<=2,110, 4/0, 0)(2 x x x x x F ,则 P (ξ=0.8)= 0 ;)62.0(<<ξP = 0.99 。 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?= ()?????≥) (0100100 2其他x x ,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。 2100 x x≥100 ∴ ?(x)= 0 其它 P (ξ≥150)=1-F(150)=1-??=-+=+=150 10015010023 2 132********x dx x [P(ξ≥150)]3=(32)3=27 8 9. 设随机变量X 服从B (n, p )分布,已知EX =1.6,DX =1.28,则参数n =___________, P =_________________。 EX = np = 1.6 DX = npq = 1.28 ,解之得:n = 8 ,p = 0.2 10. 设随机变量x 服从参数为(2,p )的二项分布,Y 服从参数为(4,p )的二项分布,若P (X ≥1)=9 5 ,则P (Y ≥1)=_65/81______。 解: 11. 随机变量X ~N (2, σ2) ,且P (2<X <4)=0.3,则P (X <0)=__0.2___ % 2.8081 65 811614014==-=-=q p C o ) 0(1)1(=-=≥Y P Y p 31,3294)0(94 )1(95)1(2 = =?=∴===??= ≥p q q X p X p X p

概率论与数理统计-期末测试(新)第二章练习题

一、选择题 1、离散型随机变量X 的分布律为(),1,2,k P X k b k λ===L ,则λ为( )。 (A)0λ>的任意实数 (B)1b λ=+ (C)11b λ=+ (D)1 1 b λ=- 2、设随机变量X 的分布律为()! k P X k ak λ== (λ>0,k=1,2,3,…),则a = ( )。 (A)e λ- (B) e λ (C) 1e λ-- (D) 1e λ- 3、离散型随机变量X 的分布律为{},0,1,2,3! k A P X k k k ===L 则常数A 应为( )。 (A) 3 1e (B) 3 1-e (C) 3 -e (D) 3 e 4、离散型随机变量X ,则{||2|0}P X X ≤≥为( )。 (A) 2129 (B)2229 (C)23 (D)1 3 5、随机变量X 服从0-1分布,又知X 取1的概率为它取0的概率的一半,则(1)P X =为( )。 (A) 1 3 (B) 0 (C) 12 (D) 1 6、设随机变量X 的分布律为: 012 0.250.350.4 X P ,而{}()F x P X x =≤,则 =)2( F ( )。 (A) 0.6 (B) 0.35 (C) 0.25 (D) 0 7、已知离散型随机变量的分布律为 101 0.250.50.25 X P -,则以下各分布律正确的是( )。 (A) 22020.510.5X P - (B) 21113 0.250.250.5 X P +- (C) 20 1 0.50.25X P (D) 201 0.50.5 X P

8、随机变量,X Y 都服从二项分布:~(2, ), ~(4, )X B p Y B p ,01p <<,已知 {}5 19 P X ≥= ,则{}1P Y ≥=( )。 (A) 6581 (B) 5681 (C) 80 81 (D) 1 9、随机变量X 的方差()3D X =,则(25)D X -等于( )。 (A) 6 (B) 7 (C) 12 (D) 17 10、随机变量X 的分布律为:1 ()(),1,2,2(1) P X n P X n n n n ===-= =+L , 则()E X =( )。 (A)0 (B)1 (C)0.5 (D)不存在 11、具有下面分布律的随机变量中数学期望不存在的是( )。 (A) 32 ,1,2,...3k k P X k k ??===???? (B) {},0,0,1,2,...!k P X k e k k λλλ-==>= (C) {}1,1,2,...2k P X k k ??=== ??? (D) {}()11,01,0,1.k k P X k p p p k -==-<<= 12、设随机变量X 服从λ=2的泊松分布。则随机变量2Y X =的方差()Var Y =( )。 (A) 8 (B) 4 (C) 2 (D) 16 13、随机变量X 服从泊松分布,参数4=λ,则2 ()X E =( )。 (A) 16 (B) 20 (C) 4 (D) 12 14、如果( ),则X 一定服从普哇松分布。 (A) ()()E X Var X = (B)2()()E X E X = (C)X 取一切非负整数值 (D) X 是有限个相互独立且都服从参数为λ的普哇松分布的随机变量的和。 15、设随机变量X 服从参数为λ的普哇松分布,又1()1x f x x ?=?-? 为偶数 为奇数,()Y f X =, 则(1)P Y ==( )。 (A)212e λ-+ (B) 212 e λ -- (C) 22e λ- (D)以上都不对

概率论第三版第2章答案详解

两人各投中两次的概率为: P(A ^ A 2B 1B 2^0.0784O 所以: 作业题解: 2.1掷一颗匀称的骰子两次,以X 表示前后两次出现的点数之和 ,求X 的概率分布,并验 证其满足(222) 式. 解: Q Q Q Q 根据 v P(X = k) =1,得 k =0 故 a 二 e 「1 2.3 甲、乙两人投篮时,命中率分别为0.7和0.4 ,今甲、乙各投篮两次,求下列事件的 概率: (1)两人投中的次数相同;(2) 甲比乙投中的次数多. 解:分别用A ,B j (i =1,2)表示甲乙第一、二次投中,则 P(A) = P(A 2)=0.7,P(A) = P(A 2)=0.3,P(B 1)= P(B 2)=0.4,P(B 1)= P(D) =0.6, 两人两次都未投中的概率为: P(A A 2 B^! B 2) = 0.3 0.3 0.6 0.6二0.0324, 两人各投中一次的概率为: 并且,P(X P(X P(X P(X = 12) = 1 36 =10) 煤 =8) 嗥; =k)=( =2) =P(X =4) =P(X =6) =P(X 2.2 2 P(X =3) =P(X =11)= ; 36 4 P(X =5) =P(X =9)= p (X =7)」。 36 k =2,3,4,5,6,7,8,9,10,11,12) P{X =k}二ae°,k =1,2…,试确定常数 解: k ae ae = 1 ,即 1=1。 k -0 1 - e

P(AA2BB2)P(AA2B2B1)P(A2AB1B2)P(AA2B2B1)= 4 0.7 0.3 0.4 0.6 = 0.2016两人各投中两次的概率为:P(A^ A2B1B2^0.0784O所以:

概率论第二章习题解答

概率论第二章习题 1 考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。若投保人在一年内因意外死亡的概率为,因其它原因死亡的概率为,求公司赔付金额的分崣上。 解 设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为;; 2.(1)一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律 (2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。 解 (1)在袋中同时取3个球,最大的号码是3,4,5。每次取3个球,其总取法: 3554 1021 C ?= =?,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。因而其概率为 2 2335511 {3}10 C P X C C ==== 若最大号码为4,则号码为有1,2,4;1,3,4; 2,3,4共3种取法, 其概率为23335533 {4}10 C P X C C ==== 若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法 其概率为 25335566 {5}10 C P X C C ==== 一般地 3 5 21 )(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为

(2)将一颗骰子抛掷两次,以X表示两次中得到的小的点数,则样本点为S={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件, X的取值为1,2,3,4,5,6, 最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11 {1} 36 P X==; 最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3), 9 {2} 36 P X==; 最小点数为3的共有7种, 7 {3} 36 P X==; 最小点数为4的共有5种, 5 {4} 36 P X==; 最小点数为5的共有3种, 3 {5} 36 P X==; 最小点数为6的共有1种, 1 {6} 36 P X== 3 设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品的次数, (1)求X的分布律; (2)画出分布律的图形。 解从15只产品中取3次每次任取1只,取到次品的次数为0,1,2。在不放回的情形下, 从15只产品中每次任取一只取3次,其总的取法为:3 15151413 P=??,其概率为 若取到的次品数为0,即3次取到的都是正品,其取法为3 13131211 P=?? 其概率为 13121122 {0} 15141335 p X ?? === ?? 若取到的次品数为1,即有1次取正品,2次取到次品,其取法为 112 3213321312 C C P=???

概率论第二章习题参考解答1

概率论第二章习题参考解答 1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为 ?? ? ??≥<≤<=1 1105 .000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数. 解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得 3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3 因此分布律由下表所示 ξ 0 1 P 1/3 2/3 而分布函数为 ?? ? ??>=<≤<=1 1103 /100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ?? ?≥<=a x a x x F 1 0)(, 它的图形为 a x 1 0 F (x ) 4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)

P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知 P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3) (1),(2)代入(3)得: 2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1 解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为 )3,2,1(27 1)(3=?= =-i i P i ξ 或列表如下: ξ 1 2 3 P 4/7 2/7 1/7 5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律. 解: 基本事件总数为4 20C n =, 有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为i i i C C n -=4155, 则 001 .017 3191 1718192051234)4(031.017195 2121545171819201234)3(2167.017181914 15231212141545171819201234)2(4696.017181913 14151231314155171819201234)1(2817 .0171913 7123412131415171819201234)0(420454 20 1 15354 202 15254 203 1515420415=??=???????====??=??????????====?????=?????????????====????=????????????====??=?????????????===C C P C C C P C C C P C C C P C C P ξξξξξ ξ 1 2 3 4 P 0.2817 0.4696 0.2167 0.031 0.001 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数. 解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有 ),3,2,1(1331310)(1 =? ? ? ???===-i pq i P i i ξ 7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律. 解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已

概率统计(概率论)第二章练习题答案及解析

第二章习题与答案 同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!! 标红表示正确答案标蓝表示解析 1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。 A普查 B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】 C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】 D统计报表 2、人口普查规定标准时间是为了()。 A确定调查对象和调查单位 B避免资料的重复和遗漏。 C使不同时间的资料具有可比性 D便于登记资料 【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】 3、对一批灯泡的使用寿命进行调查,应该采用( )。 A普查 B重点调查 C典型调查D抽样调查 4、分布数列反映( )。 A总体单位标志值在各组的分布状况 B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】 C总体单位标志值的差异情况 D总体单位的差异情况 5、与直方图比较,茎叶图( )。 A没有保留原始数据的信息 B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。课本P38】 C更适合描述分类数据 D不能很好反映数据的分布特征 6、在累计次数分布中,某组的向上累计次数表明( )。 A大于该组上限的次数是多少 B大于该组下限的次数是多少 C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。课本P33】 D小于该组下限的次数是多少 7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。 A. 200 B. 250 C. 500 D. 300 【解析:组中值=下限+组距/2=上限+组距/2】 8、下列图形中最适合描述一组定量数据分布的是( )。 A条形图B直方图 C线图 D饼图

概率论第二章习题参考解答

概率论与数理统计习题参考解答(习题二) 1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为 ?? ? ??≥<≤<=1 1105 .000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数. 解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得 3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3 P 1/3 2/3 而分布函数为 ?? ? ??>=<≤<=1 1103 /100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ?? ?≥<=a x a x x F 1 0)( , 它的图形为 4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数.

解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1) P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知 P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3) (1),(2)代入(3)得: 2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1 解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为 )3,2,1(27 1)(3=?= =-i i P i ξ 或列表如下: 5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律. 解: 基本事件总数为4 20C n =, 有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为i i i C C n -=4155, 则 001 .017 3191 1718192051234)4(031.017195 2121545171819201234)3(2167.017181914 15231212141545171819201234)2(4696.017181913 14151231314155171819201234)1(2817 .0171913 7123412131415171819201234)0(4 454 20 1 15354 202 15254 203 1515420415=??=???????====??=??????????====?????=?????????????====????=????????????====??=?????????????===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数. 解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有 ),3,2,1(1331310)(1 =? ? ? ???===-i pq i P i i ξ 7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.

概率论第二章练习答案

For personal use only in study and research; not for commercial use 《概率论》第二章 练习答案 螂 一、填空题: "2x 莁 1 .设随机变量X 的密度函数为f(x)=丿 1 的观察中事件(XW —)出现的次数,则 P (Y = 2)= ___________________ 2 P(X J)「£xdx 二 2 0 2 1 2 3 1 9 袇 P —F (3)2 螃 2.设连续型随机变量的概率密度函数为: -ax+b 0

莇 DX= 12 4.设 为随机变量,E =3, E 2 =11,则E (4: 10) 羀 D (4 10)=16D # =16 E 2 (E )2 32 100 r x -100 、 X ,某一个电子设备内配有 3个这样的电子管,则电子管使用150小时都不 、0(其他) 需要更换的概率为 8/27 二 4E 10 =22 蒇 5.已知X 的密度为(X )二 ax + b 广 0 c x < 1 其他,且 1 1 P ( X 二)=P(X>-) , r (x ) dx=1 1 ax b ) dx 二 /ax b ) 3 联立解得: dx 肇 6?若f (x )为连续型随机变量 X 的分布密度,则 J 「f (x )dx= _1 ~ |*"^0 羆 7.设连续型随机变量旳布函数F (X )=X 2/; 丨1, x :: 0 0 乞 x ::: 1,则 蚄 P ( E =0.8 ) = _; P(0.2 :: :: 6) = 0.99 螄 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度 (X )=

概率论第二章练习答案

《概率论》第二章 练习答案 一、填空题: 1.设随机变量X 的密度函数为f(x)=? ??02x 其它1???o 则用Y 表示对X 的3次独立重复的观察中事 件(X≤ 2 1 )出现的次数,则P (Y =2)= 。 2. 设连续型随机变量的概率密度函数为: ax+b 031 ) , 则 a = , b = ??? +=+?==+∞ ∞ -101 33 1 3 1311 dx b ax dx b ax x P x P dx x )()()〉()〈()(?联立解得: 6.若f(x)为连续型随机变量X 的分布密度,则 ? +∞ ∞ -=dx x f )(__1____。 7. 设连续型随机变量ξ的分布函数?? ???≥<≤<=2,110, 4/0, 0)(2 x x x x x F ,则 P (ξ=)= 0 ;)62.0(<<ξP = 。 8. 某型号电子管,其寿命(以小时记)为一随机变量,概率密度)(x ?=()??? ??≥) (0100100 2其他x x ,某 一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为___8/27_____。

概率论和数理统计第二章课后习题答案解析

概率论与数理统计课后习题答案 第二章 1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最 大号码,写出随机变量X 的分布律. 【解】 35 35 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分 布律; (2) X 的分 布函数并作图; (3) — 133{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 31331512213 3151133 150,1,2. C 22 (0). C 35 C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== 故X 的分布律为

(2) 当x <0时, F (x )=P (X ≤x )=0 当0≤x <1时 ,F (x )=P (X ≤x )=P (X =0)= 2235 当1≤x <2时 ,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时, F (x )=P (X ≤x )=1 故X 的分布函 数 0, 022 ,0135 ()34,12351,2x x F x x x

《概率论与数理统计》第二章习题解答

第二章 随机变量及其分布 1、解: 设公司赔付金额为,则X 得可能值为; 投保一年内因意外死亡:20万,概率为0、0002 投保一年内因其她原因死亡:5万,概率为0、0010 投保一年内没有死亡:0,概率为1-0、0002-0、0010=0、9988 所以得分布律为: 2、一袋中有5,以X 表示取出得三只球中得最大号码,写出随机变量X 得分布律 解:X 可以取值3,4,5,分布律为 10 61)4,3,2,1,5()5(1031)3,2,1,4()4(10 11)2,1,3()3(35 2 4 35 2 335 2 2=?= === ?==== ?= ==C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5 P : 3、设在15只同类型零件中有2只就是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品得只数,(1)求X 得分布律,(2)画出分布律得图形。 解:任取三只,其中新含次品个数X 可能为0,1,2个。 再列为下表 X : 0, 1, 2 P : 4、进行重复独立实验, (1)将实验进行到出现一次成功为止,以X 时称X 服从以p 为参数得几何分布。) (2)将实验进行到出现r 次成功为止,以Y 表示所需得试验次数,求Y 得分布律。(此时称Y 服从以r, p 为参数得巴斯卡分布。) (3)一篮球运动员得投篮命中率为45%,以X 表示她首次投中时累计已投篮得次数,写出X 得分布律,并计算X 取偶数得概率。 解:(1)P (X=k )=q k - 1p k=1,2,…… (2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功} 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=

相关文档
最新文档