七年级上数学:绝对值与相反数(提优练习有答案)

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

2.3.2绝对值与相反数:相反数(7大题型提分练)七年级数学上册同步精品课堂「含答案」

2.3.2绝对值与相反数:相反数(7大题型提分练)七年级数学上册同步精品课堂「含答案」

2.3.2 绝对值与相反数:相反数求一个数的相反数1.的相反数是( )A B .C D .2.|3|--的相反数是( )A .3-B .3C .13D .13-3.a b c +-的相反数是( )A .a b c--+B .a b c-+C .a b c-++D .a b c---4.填空:(13)--是 的相反数;()20-+是 的相反数.5.已知a 是5-的相反数,b 比最小的正整数大4,c 是相反数等于它本身的数,则32a b c ++的值是 .题型二 相反数的有关辨析6.下列说法中,正确的是( )A .()3--与3-互为相反数B .相反数等于它本身的数有无数个C .有理数a 一定比a -大D .a -的相反数就是a7.下面说法正确的有( )①符号相反的数互为相反数;②()3.8--的相反数是3.8;③一个数和它的相反数不可能相等;④正数与负数互为相反数.A .0个B .1个C .2个D .3个8.下列说法正确的有( )(1)有理数的绝对值一定比0大;(2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等;(4)互为相反数的两个数的绝对值相等.A .1个B .2个C .3个D .4个9.下列判断正确的是( )A .若|a|=|b|,则a=b B .若|a|=|b|,则a= -b C .若a=b ,则|a|=|b|D .若a=-b ,则|a|= -|b|10.下列说法:①若a 、b 互为相反数,则a +b =0;②若a +b =0,则a 、b 互为相反数;③若a 、b 互为相反数,则1a b =-;④若1ab=-,则a 、b 互为相反数.其中正确的结论是( ).A .②③④B .①②③C .①②④D .①②题型三 绝对值与相反数11.若15a -=-,则a 的值为( )A .5±B .15±C .15D .15-12.若26x -=-,则x =.13.若43y y +=-,则y 的值是.题型四 数轴与相反数14.在数轴上表示下列各数:5-,2,0,112-,4.5,0.5,3-,(1)--,并将它们的相反数用“<”符号连接起来.15.在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-16.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上分别用A ,B 两点表示a -,b -;(2)若数b 与b -表示的点相距20个单位长度,则b 与b -表示的数分别是什么?(3)在(2)的条件下,若数a 表示的点与数b 的相反数表示的点相距5个单位长度,则a 与a -表示的数是多少?17.如图,图中数轴的单位长度为1,请回答下列问题:(1)如果点A ,B 表示的数是互为相反数,那么点C 表示的数是_______,在此基础上,在数轴上与点C 的距离是3个单位长度的点表示的数是__________(2)如果点D ,B 表示的数是互为相反数,那么点E 表示的数是_______(3)在第(1)问的基础上解答:若点P 从点A 出发,以每秒1个单位长度的速度向点B 的方向匀速运动;同时,点Q 从点B 出发,以每秒2个单位长度的速度向点A 的方向匀速运动.则两个点相遇时点P 所表示的数是多少?题型五 多重符号的化简18.下列化简,正确的是( )A .()1010éù---=-ëûB .()33--=-C .()55-+=D .()88éù--+=-ëû19.若2x -=,则()x ---éùëû的值为 .20.化简下列各数:①()8--= ;②()0.75-+= ;③35éùæö---=ç÷êúèøëû ;④()3.8-+-=éùëû .21.(1)(5)++= ;(2)()12--= ;(3)()3.2éù--+ëû= ;(4)()3.2éù---ëû= ;(5)()27éù-+-=ëû;(6)23ìüéùæö-+-+=íýç÷êúèøëûîþ.题型六 相反数的判定22.下列各组数中,互为相反数的是( )A .()3.2--与 3.2-B .2.3与2.31C .()4.9-+-éùëû与4.9D .()1-+与()1+-23.下列各组数中,互为相反数的是( )A .()7-+与()7+-B .()7--与7C .115--与65æö--ç÷èøD .1100æö--ç÷èø与0.01+-24.下列各对数:“①()4--与()4++;②-53æö-÷çøè与-35æö+÷çøè;③-112æö+÷çøè与+112æö-÷çøè;④()1éù-+-ëû与()1éù-++ëû”中,互为相反数的有( )A .1对B .2对C .3对D .4对题型七 相反数的性质25.已知有理数a 表示数5,b 与c 互为相反数,则233a b c --的值为 .26.如果代数式35x +与2x 的值互为相反数,则x 的值为 .27.若5a -与1-互为相反数,那么=a .28.两个有理数互为相反数,则它们的积( )A .符号为正B .符号为负C .一定不小于0D .一定不大于029.若a 与b 互为相反数,则22520202023224a b ab+=( )A .2020-B .2-C .1D .230.a 为有理数.定义符号“※”:当a >﹣2时,※a=﹣a ;当a <﹣2时,※a=a ;当a=﹣2时,※a=0.根据这种定义.则※[﹣4+※(2﹣3)]的值为( )A .3B .﹣3C .5D .﹣531.用“Þ”与“Ü”表示一种法则:()a b b Þ=-,()a b a Ü=-,如(23)3Þ=-,则()()()()202320242022202120481024512256ÞÜÞÜÞÜÞ=éùéùëûëû .32.求方程32(02)x a a +-=<<的所有解的和.1.C【分析】本题考查了相反数.直接根据相反数的定义作答即可.【详解】解:.故选:C 2.B【分析】根据“只有符号不同的两个数叫做互为相反数”以及去绝对值解答.【详解】解:3||3-= ,33\--=-的相反数是3.故选: B .【点睛】本题考查了相反数以及绝对值,掌握相反数的定义是关键.3.A【分析】本题考查了相反数的定义及去括号法则,解题的关键是熟记定义.根据相反数的定义,即可得到答案.【详解】解:a b c +-的相反数是:()a b c a b c -+-=--+;故选择:A .4.13-20【分析】本题考查相反数的定义,解题的关键是掌握求相反数的方法.【详解】解:(13)--是13-的相反数;()20-+是20的相反数.故答案为:13-,20.5.25【分析】根据()55a =--=,最小的正整数是1,相反数等于它本身的数是0,进行求解即可.【详解】解:∵a 是5-的相反数,∴5a =,∵最小的正整数是1,且b 比最小的正整数大4,∴145b =+=,∵相反数等于它本身的数是0,∴0c =,∴323525025a b c ++=´+´+=.故答案为:25.【点睛】本题主要考查了相反数的定义,代数式求值,解题的关键是熟记相关结论,准确计算.6.D【分析】本题主要考查相反数,根据相反数的意义逐项分析即可得出答案.【详解】解:A. ()33,33--=-=,所以,()3--与3-相等,故选项A 说法错误,不符合题意;B. 相反数等于它本身的数有1个,是0,故选项B 说法错误,不符合题意;C.当0a =时,a a =-,故选项C 说法错误,不符合题意;D. a -的相反数就是a ,说法正确,故选项D 符合题意.故选:D .7.A【分析】根据“只有符号相反的数互为相反数”可对5个选项进行一一分析进而得出答案即可.【详解】解:①只有符号相反的数互为相反数,故此选项错误;②()3.8 3.8--=,3.8的相反数是 3.8-;故此选项错误;③0的相反数等于0,故此选项错误;④正数与负数不一定互为相反数,故此选项错误;故正确的有0个,故选:A .【点睛】本题考查的是相反数的概念,掌握“只有符号相反的数互为相反数”是解题关键.8.A【详解】分析: 根据0的绝对值为0,互为相反数的绝对值相等,即可解答.详解: (1)有理数的绝对值一定比0大,错误,例如,0的绝对值为0;(2)有理数的相反数一定比0小,错误,例如,0的相反数为0;(3)如果两个数的绝对值相等,那么这两个数相等或和相反数,故错误;(4)互为相反数的两个数的绝对值相等,正确.正确的有1个.故选A.点睛: 本题考查了绝对值,相反数,解决本题的关键是熟记绝对值的性质,相反数的性质.9.C【分析】根据相反数、绝对值的意义判断即可.【详解】解:A. 若|a|=|b|,则a=±b,不符合题意;B. 若|a|=|b|,则a=±b,不符合题意;C. 若a=b,则|a|=|b|,正确符合题意;D. 若a=-b,则|a|= |-b|,不符合题意;故选:C.【点睛】本题考查了相反数、绝对值的意义,用到的知识点:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,它们互为相反数.10.C【详解】试题分析:根据相反数的定义逐一分析即可得出答案.解:∵互为相反数的两个数的和为0,又∵a、b互为相反数,∴a+b=0,反之也成立,故①、②正确;∵0的相反数是0,∴若a=b=0时,ab无意义,故③错误;∵ab=−1,∴a=−b,∴a、b互为相反数,故④正确;正确的有①②④.故选C.11.B【分析】本题主要考查绝对值,先把原式化为15a=,从而可求出15a=±.【详解】解:∵15a-=-,∴15a =,∴15a =±,故选:B .12.3或3-【分析】本题考查了绝对值的意义,正确熟练掌握知识点是解题的关键.直接取绝对值即可.【详解】解:26x -=-26x =3x =∴3x =或3-.故答案为:3或3-.13.0.5-##12-【分析】本题考查了绝对值、解一元一次方程,熟练掌握绝对值的定义是解此题的关键;根据绝对值的定义化为两个一元一次方程,解方程即可解答.【详解】Q 43y y +=-,\43y y +=-或()43y y +=--,解得:y 不存在或0.5y =-故答案为:0.5-14.数轴见解析,14.53210.50152-<-<-<-<-<<<【分析】本题主要考查了在数轴上表示有理数,利用数轴比较有理数的大小,将题目中的数据标在数轴上,根据数轴左边的数总是小于右边的数将各数用大于号连接起来,正确表示出各数是解题的关键.【详解】解:在数轴上表示如下:各数的相反数分别为:5,112,0,0.5-,1-,2-,3-, 4.5-,它们的相反数用“<”符号连接为:14.53210.50152-<-<-<-<-<<<.15.数轴见解析,1443 1.50325-<-<-<<-<【分析】本题主要考查了用数轴上点表示有理数,相反数的定义,根据数轴比较有理数的大小,解题的关键是熟练掌握数轴上点的特点.先根据相反数的定义,求出各个数的相反数,然后将各个数表示在数轴上,再比较大小即可.【详解】解:3的相反数是3-,1.5-的相反数是1.5,132-的相反数是132,45-的相反数是45-,0的相反数是0,4-的相反数是4,在数轴上表示如下:比较原数的大小为:1443 1.50325-<-<-<<-<.16.(1)见解析(2)b 表示的数是10-,b -表示的数是10(3)a 表示的数是5,a -表示的数是5-【分析】(1)根据题意作图即可;(2)互为相反数的两个数到原点的距离相等,据此求出b 表示的点到原点的距离为20210¸=,结合数轴即可作答;(3)结合(1)的图形,可得a b <-,先求出a 表示的点到原点的距离为1055-=,问题随之得解.【详解】(1)如图,(2)数b 与其相反数相距20个单位长度,则b 表示的点到原点的距离为20210¸=,∴结合数轴,b 表示的数是10-,即b -表示的数是10;(3)如图,即有a b <-,∵b -表示的点到原点的距离为10,而数a 表示的点与数b 的相反数表示的点相距5个单位长度,∴a 表示的点到原点的距离为1055-=,∴a 表示的数是5,a -表示的数是5-.【点睛】本题考查的是相反数的定义等知识,熟知以上知识是解答此题的关键.17.(1)-1;-4或2;(2)72-;(3)-1【分析】(1)由AB 的长度结合点A ,B 表示的数是互为相反数,即可得出点A ,B 表示的数,由2AC =且点C 在点A 的右边可得出点C 表示的数,再利用数轴上两点间的距离公式可求出在数轴上与点C 的距离是3个单位长度的点表示的数;(2)由BD 的长度结合点D ,B 表示的数是互为相反数,即可得出点D 表示的数,由1DE =且点E 在点D 的右边可得出点E 表示的数;(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,由点P ,Q 相遇可得出关于t 的一元一次方程,解之即可得出t 的值,再将其代入(23)t -+中即可得出两个点相遇时点P 所表示的数.【详解】解:(1)=6AB Q ,且点A ,B 表示的数是互为相反数,\点A 表示的数为3-,点B 表示的数为3,\点C 表示的数为321-+=-.134--=-Q ,132-+=,\在数轴上与点C 的距离是3个单位长度的点表示的数是4-或2.故答案为:1-;4-或2.(2)9BD =Q ,且点D ,B 表示的数是互为相反数,\点D 表示的数为92-,\点E 表示的数为97122-+=-.故答案为:72-.(3)当运动时间为t 秒时,点P 表示的数为3t -,点Q 表示的数为23t -+,323t t -=-+Q ,2t \=,31t \-=-.答:两个点相遇时点P 所表示的数是1-.【点睛】本题考查了一元一次方程的应用、数轴以及相反数,解题的关键是:(1)由线段AB 的长度结合点A ,B 表示的数互为相反数,找出点A 表示的数;(2)由线段BD 的长度结合点D ,B 表示的数互为相反数,找出点D 表示的数;(3)找准等量关系,正确列出一元一次方程.18.A【分析】本题考查了相反数,掌握一个数的前面加上负号就是这个数的相反数成为解题的关键.根据相反数的定义逐层去括号,然后判断即可解答.【详解】解;A 、()[]101010éù---=-=-ëû,故A 选项正确,符合题意;B 、()33--=,故B 选项错误,不符合题意;C 、()55-+=,故C 选项错误,不符合题意;D 、()[]888éù--+=--=ëû,故D 选项错误,不符合题意.故选:A .19.2【分析】本题考查了多重符号的化简,求代数式的值,根据多重符号的化简方法把()x ---éùëû后可得结果.【详解】解:∵2x -=,∴()2x x éù---=-=ëû.故答案为:2.20.①8;②0.75-;③35-;④3.8【分析】利用化简多重符号的方法即可求解.【详解】解:①()88--=;②()0.750.75-+=-;③3355éùæö---=-ç÷êúèøëû;④()3.8 3.8-+-=éùëû.【点睛】本题考查了相反数的意义,熟练掌握化简多重符号的方法是解题的关键.21. 5 12 3.2 3.2- 27 23【分析】本题主要考查了正负号的化简,熟练掌握相反数的定义,是解决问题的关键.根据正数的相反数是负数,负数的相反数是正数,逐步化简正负号,即得(方法不唯一).【详解】解:(1)()55++=;(2)()121212--=+=;(3)()()3.2 3.2 3.2éù--+=++=ëû;(4)()()3.2 3.2 3.2éù---=+-=-ëû;(5)()()27272727éù-+-=--=+=ëû;(6)22223333ìüéùéùæöæöæö-+-+=--+=++=íýç÷ç÷ç÷êúêúèøèøèøëûëûîþ.故答案为:(1)5;(2)12;(3)3.2;(4) 3.2-;(5)27;(6)23.22.A【分析】先对各项进行化简,再根据相反数的定义进行逐一判断即可.【详解】解:A 、∵()3.2--=3.2,3.2与-3.2是相反数,∴()3.2--与 3.2-互为相反数.故A 选项正确;B 、2.3与2.31不是相反数,故B 选项错误;C 、因为()4.9-+-éùëû=4.9,4.9与4.9不相反数,故C 选项错误;D 、因为()1-+=-1,()1+- =-1,所以()1-+与()1+-不是相反数,故D 选项不正确;故选A.【点睛】本题主要考查了相反数的定义和符号的化简,掌握相反数的定义是解题的关键.23.C【分析】先化简多重符号和绝对值,再根据相反数的定义进行求解即可.【详解】解:A 、()77-+=-与()77+-=-不互为相反数,不符合题意;B 、()77--=与7不互为相反数,不符合题意;C 、111155--=-与6655æö--=ç÷èø互为相反数,符合题意;D 、110.01100100æö--==ç÷èø与0.010.01+-=不互为相反数,不符合题意;故选C .【点睛】本题主要考查了相反数的定义,化简多重符号和绝对值,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.24.B【分析】分别化简多重符号,进而根据相反数的定义,即可求解.【详解】解①()44--=与()44++=,相等,不合题意;②-5533æö-=÷çøè与-3553æö+=-÷çøè,互为相反数,符合题意,;③-111122æö+=-÷çøè与+111122æö-=-÷çøè,相等,不合题意;④()11éù-+-=ëû与()11éù-++=-ëû,互为相反数,符合题意,∴互为相反数的有②④,共2对故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.25.10【分析】本题考查了相反数的定义,求代数式的值,先根据b 与c 互为相反数求出0b c +=,然后代入233a b c --计算即可.【详解】解:∵b 与c 互为相反数,∴0b c +=,∴233a b c--()23a b c =-+253010=´-´=.故答案为:10.26.1-【分析】本题考查相反数与一元一次方程.根据相反数的定义“如果两个数互为相反数,那么它们的和为0”进行计算即可.【详解】解:∵35x +与2x 的值互为相反数,∴3520x x ++=,解得=1x -.故答案为:1-.27.4或6【分析】本题考查绝对值和相反数的定义,互为相反数的两个数和为0,根据相反数的定义得到510a --=,解绝对值方程即可.【详解】解:∵5a -与1-互为相反数,∴510a --=即51a -=解得:4a =或6a =,故答案为:4或6.28.D【分析】任何数都有相反数,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数0,据此作答.【详解】解:只有符号不同的两个数互为相反数,0的相反数是0,所以,一个有理数和它的相反数的积一定是负数或0,即一定不大于0.故选:D .【点睛】本题考查了相反数的意义,注意要把0考虑进去.29.B【分析】本题考查相反数,代数式求值,根据a 与b 互为相反数,可以得到a b =-,然后代入整理后的式子计算即可.【详解】解:∵a 与b 互为相反数,∴0a b +=.∴a b =-,∴()2222222202225202520230234048202420242024b b a b b ab b b -==++=---,故选B .30.B【分析】直接利用已知当a >-2时,※a=-a ;当a <-2时,※a=a ;当a=-2时,※a=0,分别化简得出答案.【详解】解:※[-4+※(2-3)]=※(-4+※-1)=※(-4+1)=-3.故选B.【点睛】此题主要考查了相反数,正确理解题意是解题关键.31.2024-【分析】本题考查了有理数的混合运算,根据题中的新定义化简原式,计算即可得到结果.【详解】解:()a b b Þ=-Q ,()a b a Ü=-,()()()()202320242022202120481024512256éùéù\ÞÜÞÜÞÜÞëûëû,()()2023202420222021éù=-ÞÜÞëû,()20232024éù=--Þëû,()20232024=Þ,2024=-.32.12-【分析】本题考查的是绝对值的性质及一元一次方程的解法,先根据绝对值的性质求出3x +的值,再求出x 的值,再求和即可解答.【详解】解:32(02)x a a +-=<<Q ,32x a \+-=±,32x a +=±,\()32x a +=±±,()23x a =±±-,1x a \=-或5x a =--或1x a =--或5x a =-,32(02)x a a \+-=<<所有解的和为:()()()151512a a a a -+--+--+-=-.故答案为:12-.。

七上数学有理数 第3节 绝对值与相反数(2)练习 含答案

七上数学有理数 第3节 绝对值与相反数(2)练习 含答案

第3节绝对值与相反数(2) 一、填空题1.-12的相反数是_______.2.化简(1)-(+2)=_______;(2)+(-15)=_______;(3)-[-(-3)]=_______.3.若a与2互为相反数,则2a 等于_______.4.已知a与b互为相反数,b与c互为相反数,且c=-10,则a=_______.5.在数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点间的距离是11,则两点所表示的数分别是_______,_______.二、选择题6.下列各数中,相反数等于5的数是( )A.-5 B.5 C.-15D.157.-(-2)的相反数是( )A.2 B.12C.-12D.-28.下列叙述不正确的是( )A.正数的相反数是负数,负数的相反数是正数B.-个正数和一个负数互为相反数C.互为相反数的两个数有可能相等D.数轴上与原点距离相等的两个点所表示的数一定互为相反数9.如果a+b=0,那么有理数a、b的取值一定是( )A.都是0 B.至少有一个是0 C.a为正数,b为负数D.互为相反数10.下列各对数中,互为相反数的有( )①(-1)与+1;②+(+1)与-1;③-(-2)与+(-2);④-(-12)与+(+12);⑤+[-(+1)]与-[+(-1)];⑥-(+2)与-(-2);A.6对B.5对C.4对D.3对三、解答题11.写出下列各数的相反数,并在数轴上表示下列各数及它们的相反数.+2,-3,0,-(-1),-312,-(+4)12.化简下列各数的符号:(1)+(-2) (2)-(-52) (3)-[-(+3)] (4)-[-(-2)](5)-{+[-(+5)]) (6)-{-[+(-9)]}13.已知A、B两点在数轴上分别表示互为相反数的两个数a,b(a<b),并且A、B两点之间的距离是6,求出a、b两数.14.一个数a在数轴上表示的点是A,当点A在数轴上向右平移了5个单位后是点B,点A与点B表示的数恰好互为相反数,那么数a是几?15.在数轴上点A表示5,点B、C表示互为相反数的两个数,且C与A间的距离为2,求点B、C对应的数是什么?参考答案1.1 22.(1)-2 (2)-15(3)-33.04.-105.+5.5;-5.5 6.A7.D8.B9.D10.B11.-2,3,0,-1,312,412.(1)-2 (2)52(3)3 (4)-2 (5)5 (6)-913.a=-3,b=3.14.a是负数,数a是-2.5.15.点B、C对应的数为-3、3或-7、7。

相反数和绝对值重难点题型专训(12大题型+15道拓展培优)原卷版—24-25学年七年级数学上册重难点

相反数和绝对值重难点题型专训(12大题型+15道拓展培优)原卷版—24-25学年七年级数学上册重难点

相反数和绝对值重难点题型专训(12大题型+15道拓展培优)题型一相反数的辨别与定义题型二判断是否互为相反数题型三利用相反数的意义化简多重符号题型四相反数与数轴的综合题型五绝对值的意义题型六求一个数的绝对值题型七化简绝对值题型八绝对值非负性解题题型九绝对值方程题型十绝对值的其他应用题型十一有理数的大小比较题型十二有理数大小比较的实际应用知识点1:相反数的概念只有符号不同的两个数叫做互为相反数。

①一般地,a与-a互为相反数,a表示任意一个数,可以是正数、负数,也可以是0;②正数的相反数是负数,负数的相反数是正数,0的相反数是本身;③相反数是成对出现的(0除外)。

知识点2:相反数的意义互为相反数的两个数在数轴上对应的点应分别位于原点两侧,且到原点的距离相等。

求任意一个数的相反数,只要在这个数的前面添上“-”号即可(当然最后结果如果出现多重符号需要化简)。

知识点3:多重符号的化简1、一个正数前面不管有多少个“+”号,都可以全部去掉;2、一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;3、一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

口诀“奇负偶正”,其中“奇偶”是指正数前面的“-”号的个数,“负、正”是指化简的最后结果的符号。

注意:此判断方法是在没有其它运算的情况下适用,如出现其它运算,要视具体情况而论。

知识点4:绝对值1、绝对值的概念:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作a 。

2、绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

3、绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即:(1)如果0a >,那么a a =;(2)如果0a =,那么0a =;(3)如果0a <,那么a a =-.可整理为:(0)0(0)(0)a a a a a a >ìï==íï-<î,或(0)(0)a a a a a ³ì=í-<î,或(0)(0)a a a a a >ì=í-£î。

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。

2023-2024学年七年级数学上册同步学与练(人教版)第04讲绝对值(含答案与解析)

2023-2024学年七年级数学上册同步学与练(人教版)第04讲绝对值(含答案与解析)

i.-2的绝对值是()5-4c-f D.且2【即学即练2】2.数轴上有力、B、C、。

四个点,其中绝对值等于2的点是(),4B C-J_I A二18・•]]L A-4-3-2-1012•345A.点力B.点BC.点。

D.点D【即学即练3】3.已矢口u—-2,b=l,则同+|-句的值为()A.3B.1C.0D.-1知识点02绝对值的性质1.绝对值的非负性:由定义可知,绝对值表示到原点的距离,所以不能为O所以绝对值是一个,所以绝对值具有。

即若|。

|0o几个非负数的和等于o,这几个非负数一定分别等于0o即:若\a\+\b\+...+I m|=0,则一定有o题型考点:根据绝对值的非负性求值。

【即学即练1】4.已知|x-2|+加T|=0,则x-y的相反数为()A.-1B.1C.3D.-3【即学即练2】5.若向+例=0,则口与力的大小关系是()A.a=b=0B.口与力互为倒数C.Q与b异号D.口与力不相等知识点03绝对值与数轴1.绝对值与数轴:在数轴上,一个数离原点越近,绝对值就,一个数离原点越远,绝对值,题型考点:根据绝对值与数轴进行求解判断。

6.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越・【即学即练2】7.如图,四个有理数m n,p,q在数轴上对应的点分别为N,P,0若乃+0=0,则秫,n,p,q四个有理数中,绝对值最小的一个是()M OA.p知识点04绝对值与相反数1.绝对值与相反数:①数轴上互为相反数的两个数在原点的两侧,且到原点的距离相等,所以互为相反数的两个数他们的绝对值_________o即若。

与5互为相反数,贝」|q|\b\o②绝对值等于某个正数的数一定有,它们o即若|x|=q(q>0),则③绝对值相等的两个数要么,要么o即若|。

|=|们,则有或o题型考点:根据相反数的绝对值进行求解。

【即学即练1】8.若|x|=5,贝0x—.【即学即练2】9.已知□=-5,同=|句,则人的值为()A.±5B.-5C.+5D.0【即学即练3】10.绝对值等于5的数是,它们互为.知识点05求式子的绝对值1.求式子的绝对值:先判断式子与的大小关系,再对式子进行求绝对值。

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析完整版

初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。

2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

2)一般地①正数大于0,0大于负数,正数大于负数。

②两个负数,绝对值大的反而小。

小试牛刀:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱=a,则a。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x<y<0,那么︱x︱︱y︱。

7.︱x-1︱=3,则x =。

8.若︱x+3︱+︱y-4︱=0,则x+y=。

9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。

10.︱x︱<л,则整数x=。

11.已知︱x︱-︱y︱=2,且y=-4,则x=。

12.已知︱x︱=2,︱y︱=3,则x+y=。

13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。

14. 式子︱x+1︱的最小值是,这时,x值为。

15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4绝对值与相反数
1.在数轴上表示一2 020的点与原点的距离是______,所以|-2 020|=____.2.数a的绝对值等于9.那么在数轴上表示数。

的点与原点的距离是,这样的点在数轴上共有个.
3.(2019江苏泰州中考)一1的相反数是 ( )
A.±l B.一l C.0 D.1
4.一个数的绝对值等于它的相反数,这个数不会是( )
A.负整数 B.负分数 C.0 D.正整数
5.在数轴上,若点A和点B表示互为相反数的两个数,并且这两点间的距离是11,则这两点所表示的数分别是——'——’
6.小李在做题时画了一条数轴,在数轴上原有一点A,其表示的数是一3,由于粗心,把数轴的原点标错了位置,使点A正好落在表示一3的相反数的点的位置上。

要把数轴画正确,原点要向哪个方向移动几个单位长度?
7.下列说法错误的是 ( )
A.一个正数的绝对值一定是正数 B.任何数的绝对值都是正数
C.一个负数的绝对值一定是正数 D.任何数的绝对值都不是负数
8.如图2—4—1,M,N,P,R分别是数轴上四个整数所对应的点.其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N 之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点可能是点(填M、N、P、R中的一个或几个).
9.已知|m-3|+|n-2|=0.求m,n的相反数.
10.检测4个足球.其中超过标准质量的克数记为正数。

不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( )
11.有理数m,n在数轴上对应点的位置如图2-4—2所示,则m,-m,n,-n,0的大小关系是 ( )
A.n<一n<0<一m<m B.n<一m<0<-n<m
C.n<-m<O<m<-n D.n<O<-m<m<-n
12.(2020独家原创试题)比较大小
13.比较:的大小.
14.(2020江苏苏州虎丘月考,2,★☆☆)5的相反数是 ( )
15.(2020江苏盐城东台月考,9,★☆☆)- ∏的绝对值是______ 16.(2020江苏徐州l泉山月考,15,★★☆) 中较大的是.17.(2020江苏淮安月考,19,★☆☆)写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.
18.(2019江苏连云港中考,l,★☆☆)-2的绝对值是 ( )
19.(2019江苏常州中考,1,★☆☆)一3的相反数是( )
20.(2018山西中考,1,★☆☆)下面有理数比较大小,正确
的是 ( )
A.0<一2 B.一5<3 C.一2<-3 D.1<一4
21.(2018浙江金华中考,1,★☆☆)在四个数中.最小的数是_______
22.(2019湖南邵阳中考,1 1,★☆☆) 的相反数是______
23.用字母a表示一个有理数,则| a |一定是非负数,也就是它的值为正数或0,所以|a|的最小值为0,而一| a|一定是非正数,即它的值为负数或0,所以一|al有最大值0.根据这个结论完成下列问题:
(1)|a |+1有最值; (2)5一|a|有最值;
(3)当a的值为时,| a一1 |+2有最值;
(4)若|a一1|+|b一2|=0,则 a= b = .
24.如图2—4—3,数轴的单位长度为1,且数轴上相邻两点之问的距离均为1(可表示为AB=BC=CD=DE=EF=FG=GH=1).
(1)如果点B曰与点F,表示的数互为相反数,那么点D表示的数是什么?
(2)如果点D与点H表示的数互为相反数,那么点C表示的数是什么?。

相关文档
最新文档