北师大版八年级数学上册26实数说课稿
北师大版八年级数学上册第二章《2.6实数》说课稿

北师大版八年级数学上册第二章《2.6实数》说课稿一、教材分析1、教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。
知识技能:(1)了解无理数和实数的概念以及实数的分类。
(2)知道实数与数轴上的点具有一一对应关系。
数学思考:(1) 经历对实数进行分类的过程,发展学生的分类意识。
(2) 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。
解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。
情感态度:(1) 通过了解数系扩充体会数系扩充对人类发展的作用。
(2) 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
二、学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。
课本对学生掌握实数要求不高。
只要求学生了解无理数和实数的意义。
但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。
(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。
八年级数学上册2.6实数教案 新版北师大版

八年级数学上册2.6实数教案新版北师大版一. 教材分析《八年级数学上册2.6实数》这一节主要让学生了解实数的概念,掌握实数的性质,以及实数与数轴的关系。
教材通过引入实数的概念,让学生认识到实数是整数和分数的统称,包括有理数和无理数。
同时,教材介绍了实数的性质,如实数的大小比较、实数的加减乘除运算等。
最后,教材引导学生理解实数与数轴的关系,掌握数轴上的点与实数的一一对应关系。
二. 学情分析学生在学习这一节之前,已经掌握了有理数的概念和性质,对数轴也有了一定的了解。
但是,学生可能对无理数的概念和性质比较陌生,理解起来可能存在一定的困难。
因此,在教学过程中,需要加强对无理数的解释和引导,帮助学生建立起实数的整体概念。
三. 教学目标1.让学生理解实数的概念,掌握实数的性质。
2.让学生掌握实数与数轴的关系,能够利用数轴表示实数。
3.培养学生运用实数解决问题的能力。
四. 教学重难点1.实数的概念和性质。
2.实数与数轴的关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生思考和探索实数的性质;通过案例分析,让学生了解实数在实际中的应用;通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备与实数相关的案例材料。
2.准备数轴的教具。
3.准备实数的性质和运算的练习题。
七. 教学过程1.导入(5分钟)利用问题驱动法,引导学生思考实数的定义和性质。
例如:“实数是什么?实数有哪些性质?”让学生回顾已有知识,为新课的学习做好铺垫。
2.呈现(10分钟)介绍实数的概念,包括有理数和无理数。
通过案例教学法,呈现一些与实数相关的实际问题,让学生了解实数的应用。
如:“小明买了一本书,价格是3.14元,这本书的价格可以用实数表示吗?为什么?”3.操练(10分钟)让学生进行实数的性质和运算的练习。
例如:“判断以下两个实数的大小:2和3/4。
”通过练习,让学生掌握实数的性质和运算方法。
北师大版八年级上册数学《实数》课件教学说课

总比左边的数大.
A
0
1
2
2
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上
的每一点都表示一个实数.即实数和数轴上的点是一一对应的.
探究新知
素养考点 1
求数轴上的点表示的实数值
例 如图所示,数轴上A,B两点表示的数分别为-1和 3 ,
点B关于点A的对称点为C,求点C所表示的实数.
探究新知
思考 我们将有理数和无理数统称为实数,仿照有理数的分类,
据此你能给实数分类吗?
按定义分
实
整数
有理数:
有限小数或无限循环小数
女孩子
数
妈
妈
无理数:
无限不循环小数
男孩子
分数
含开方开不尽的数
含有π的数
有规律但不循环的小数
探究新知
试一试
把下列各数分别填入相应的集合内:
1
5
20
3
,
,
,
,
2, 4
A
-1
B
0
3
解:因为数轴上A,B两点表示的数分别为-1和 3 ,
所以点B到点A的距离为1+ 3 ,则点C到点A的距离为1+ 3 ,
设点C表示的实数为x,则点A到点C的距离为-1-x,
所以-1-x=1+
所以x=-2- 3.
3,
巩固练习
变式训练
1.如果以2为边长画一个正方形,以原点为圆心,正方形的对角
1. 了解实数的意义,并能将实数按要求进行
准确的分类.
探究新知
知识点 1
实数的概念和分类
(1)请把下列有理数写成小数的形式,你有什么发现?任何
八年级数学上册2.6实数教学设计 (新版北师大版)

八年级数学上册2.6实数教学设计(新版北师大版)一. 教材分析本节课的主题是实数,是北师大版八年级数学上册第2.6节的内容。
实数是数学中的基础概念,包括有理数和无理数。
学生在学习实数之前已经掌握了有理数的相关知识,本节课主要是让学生了解无理数的概念,以及实数的分类。
教材内容由浅入深,从实数的定义到实数的分类,再到实数的运算,有助于学生系统地掌握实数的相关知识。
二. 学情分析八年级的学生已经掌握了有理数的相关知识,对数学概念有一定的理解能力。
但是,对于无理数的概念和性质,学生可能比较难理解,需要通过实例和生活中的实际问题来进行解释。
此外,学生可能对实数的分类和运算有一定的困惑,需要通过大量的练习来进行巩固。
三. 教学目标1.了解无理数的概念,知道无理数和有理数的区别。
2.掌握实数的分类,能够正确判断一个数是实数还是非实数。
3.掌握实数的运算规则,能够进行实数的加减乘除运算。
四. 教学重难点1.无理数的概念和性质。
2.实数的分类。
3.实数的运算规则。
五. 教学方法采用讲授法、案例分析法、练习法、小组合作法等教学方法。
通过讲解实数的定义和性质,让学生了解无理数和有理数的区别;通过案例分析,让学生理解实数的分类;通过大量练习,让学生掌握实数的运算规则。
六. 教学准备1.教材、PPT、黑板、粉笔等教学用具。
2.相关的案例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实际问题来引入本节课的主题——实数。
例如:“小明家距离学校2.5公里,他每分钟走50米,问小明需要多少分钟才能到学校?”让学生思考,引出实数的概念。
2.呈现(10分钟)讲解实数的定义和性质,让学生了解实数包括有理数和无理数。
通过PPT展示实数的分类,让学生掌握实数的分类。
3.操练(10分钟)让学生进行实数的运算练习,例如:2+3√2、5-√3等。
让学生在练习中掌握实数的运算规则。
4.巩固(10分钟)通过小组合作,让学生讨论实数的运算规则,以及实数的分类。
北师大版八年级上册《实数》说课稿

北师大版八年级上册《实数》说课稿《北师大版八年级上册《实数》说课稿》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!实数(2)本节课我准备从以下几方面说起:教材分析、教法与学法、教学过程和评价与反思。
一、教材分析1、教材地位与作用本节课是北师大版初中数学八年级上册第二章第六节的内容,是初中数学的重要内容之一。
一方面,这是在学习了实数的概念和分类的基础上,对实数的进一步深入和拓展;另一方面,又为学习实数的化简奠定了基础,是进一步研究实数运算的重要性内容,因此本节课在教材中具有承上启下的作用。
通过本节课的学习让学生掌握初中阶段必备的基础知识和基本技能,培养学生动口、动手、动脑合作交流的能力,加强学生猜想、类比、归纳、转化等数学方法,培养学生探究能力和创新精神。
2、教学目标:知识目标:①了解有理数的运算法则在实数范围内仍然适用;②会用二次根式的乘除法法则进行有关实数的简单运算;能力目标:能结合具体的情景,发现并提出问题,逐步具有观察、猜想、推理的能力。
情感态度与价值观:通过创设问题情景,激发学生自主探究和积极参与意识,通过合作交流,培养学生团结协作和乐于助人的品质。
3、重点和难点:①探索二次根式乘除法法则并会应用;②熟练应用法则进行有关实数的简单运算;突破重难点的方法:通过创设具有启发性的,学生感兴趣的,有助于自主探究和合作交流的情景,并在合作过程中加以引导,使学生朝着有利于知识建构的方向发展。
二、教法与学法分析1、学情分析:对初中学生来说,他们的抽象思维和归纳能力已初步形成,希望老师创设他们自主学习的环境,给他们发表自己见解和表现自己才华的机会。
本节课我设置了很多活动,如:我会填,我会学,想一想,议一议,互相讨论和交流,你能行等。
2、教法:新课标要求教师应激发学生的积极性,向学生提供充分从事教学活动的机会,帮助他们自主探究和合作交流,为达到这一目标,结合教材和学生实际采用观察法与发现法,引导法,启发法,反馈练习等方法教学。
北师大版八年级上册 2.6 实数 教案

.倒数: 的倒数. 的倒数,2- 的倒数
.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
( >0)- 的绝对值是:
即:∣ ∣=( =0)2- 的绝对值是:
( <0) 的绝对值是:
例2①当 <2时, =;②若|x|= ,则x=
有理数:
无理数:
课
程
讲
授
问题一、实数的分类
1、概念:_有理数_和__无理数___统称为实数
2、实数分类:
(1)按定义分(2)按正、负分
通过上面的填写过程发现,无理数也有正负之分,0既不能填入整数集合,也不能填入负数集合,因此,从正、负方面来考虑,实数可以分为正实数、0、负实数,从定义方面来分,实数分为有理数和。
例4在数轴上离原点距离是 的点表示的数是.
拓展:例5、已知实数 在数轴上的位置如下,
化简
注意:先讨论范围,再去绝对值答案,最后化简。
课堂练习
见导学练
小结
本节课你有哪些收获?
作业布置
《优化设计》
课后
反思
难点
正确求一个实数的相反数,绝对值和非零实数的倒数.
教学环节说明备注来自教学内
容
复
习
回
顾
1、整数和分数统称为有理数;无限不循环小数叫做无理数。
2、把下列各数分别填入相应的集合内: , , , ,- , , ,- ,- ,0 ,0.101001001,0.3737737773…(相邻两个3之间的7的个数逐次加1)
2016-2017学年上学期
八年级数学备课组教案
教师
授课时间
八年级数学上册 2.6 实数教案 (新版)北师大版

第二章实数2.6 实数(一)教学目标1.了解无理数及实数的意义,并用类比的方法引入实数的相关概念等;2.了解实数的相反数和绝对值的意义,并会求一个实数的相反数和绝对值;3.灵活运用开方的有关知识解决问题;体现从有理数运算到实数运算的自然过渡。
教学重点1. 无理数和实数的概念;2. 对无理数相反数和绝对值的求法。
教学难点1.区分偶次方根和奇次方根;2.对无理数的意义的理解。
教学方法1. n次方根求a的n次方根的运算,叫做把a开n次方,a叫做被开方数,n叫做根指数。
2. 奇次方根和偶次方根将一个数开奇次方时,求得的方根叫做奇次方根;将一个非负数开偶次方时,求得的方根叫做偶次方根。
3. 开方:求一个数的方根的运算,叫做开方。
开n次方与n次乘方互为逆运算。
4. 有理数整数和分数统称为有理数,有理数都可以表示成有限小数或无限循环小数。
5. 无理数无限不循环小数叫做无理数(即开不尽方的数)无理数不能表示成分数的形式。
任何一个无理数,都可以用给定精确度的有理数来近似地给予表示。
6. 实数有理数和无理数统称为实数。
每一个实数都可以用数轴上的一个点表示,反之,数轴上的每点又都可以表示一个实数。
(一一对应)7. 实数的相反数如果a表示一个实数,-a叫a的相反数,0的相反数是0。
8. 实数的绝对值【典型例题】例1. 下列各数,哪些是有理数?哪些是无理数?哪些是正实数?10、课堂练习:§2.6 实数(二) 教学目标(一)知识目标:1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .(二)能力训练目标:1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识. (三)情感与价值观目标:时代在进步,科学在发展,只靠在学校积累的知识已远远不能适应时代的要求,因此在校学习期间应培养学生的能力,具备某种能力之后就能应付日新月异的新问题.其中类比的学习方法就是一种学习的能力,本节课旨在让学生通过在有理数范围内的法则,类比地学习在实数范围内的有关计算,重要的是培养这种类比学习的能力,使得学生在以后的学习和工作中能轻松完成任务. 教学重点1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算.教学难点1.类比的学习方法.2.发现规律的过程. 教学过程 一.新课导入上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究. 二.新课讲解1.有理数的运算法则在实数范围内仍然适用.大家先回忆一下我们在有理数范围内学过哪些法则和运算律. (加、减、乘、除运算法则,加法交换律,结合律,分配律.)下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题.例:计算: (1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 解:(1)原式=1+1=2;(2)原式=0;(3)原式=22·(5)2=4×5=20;(4)原式=(2)2+2·2·21+(21)2=2+2+2921=.2.做一做(书上48页)请同学们先计算,然后分组讨论找出规律. 通过上面计算的结果,大家认真总结找出规律. 如果把具体的数字换成字母应怎样表示呢? 总结:b a b a ⋅=⋅(a ≥0,b ≥0);b aba = (a ≥0,b >0) 化简: (1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 解:(1);24326326==⨯=⨯(2);5494814327=-=-=-⨯ .3191546546)5(;24312312326)4(;32413231132)3()13)(3(222=======⨯-=+-=+⋅⋅-=-3.例题讲解[例题]化简:(书上49页例题) 三.课堂练习(一)随堂练习 (二)补充练习 1.化简:(1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+. 解:(1) 101020100400250580250580=-=-=⨯-⨯=⨯-⨯;(2)(1+5)(5-2)= 5-2+(5)2-25=5-2+5-25=3-5; (3) 64216482228222)82(2=+=+=⨯+⨯=⋅+⋅=+;(4)749372137213721==⨯=⨯=⨯;(5) 343123)31(3132)3()313(222=+-=+⋅⋅-=-;(6)4541040510104104051010410405104+=⨯+⨯=+=+=4+10=14.2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积. 解:S =45521⨯⨯ )cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯= 答:这个三角形的面积为7.5 cm 2. 四.课时小结五.课后作业:习题2.9 六.活动与探究下面的每个式子各等于什么数?2222222003,2002,2001,,4,3,2Λ.由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗?。
北师大版八年级数学上册:2.6《实数》教案2

北师大版八年级数学上册:2.6《实数》教案2一. 教材分析北师大版八年级数学上册第2.6节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识。
本节课的内容主要包括实数的定义、实数与数轴的关系、实数的分类等。
通过本节课的学习,使学生能够更好地理解实数的内涵,提高他们分析问题和解决问题的能力。
二. 学情分析学生在七年级时已经学习了有理数和无理数,对数的运算、大小比较等有一定的基础。
但实数的概念较为抽象,实数与数轴的关系也需要学生具备较高的空间想象能力。
因此,在教学过程中,要注重引导学生从具体实例中抽象出实数的概念,利用数轴帮助学生直观地理解实数与数轴的关系。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的性质。
3.提高学生的空间想象能力,培养学生的逻辑思维能力。
四. 教学重难点1.实数的定义及实数与数轴的关系。
2.实数的分类及实数的性质。
五. 教学方法1.采用实例导入法,引导学生从具体实例中抽象出实数的概念。
2.利用数轴辅助教学,帮助学生直观地理解实数与数轴的关系。
3.采用小组讨论法,让学生在合作交流中掌握实数的分类和性质。
4.运用练习法,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备与实数相关的实例,如身高、体重等。
2.制作数轴教具,用于辅助教学。
3.准备实数分类和性质的练习题。
七. 教学过程1.导入(5分钟)利用实例导入,如学生的身高、体重等,引导学生从具体实例中抽象出实数的概念。
2.呈现(10分钟)介绍实数的定义,讲解实数与数轴的关系,让学生通过数轴直观地理解实数的概念。
3.操练(10分钟)让学生在小组内讨论实数的分类,引导学生掌握实数的性质。
4.巩固(10分钟)让学生在课堂上完成一些实数相关的练习题,巩固所学知识。
5.拓展(10分钟)讲解实数在实际生活中的应用,如测量、计算等,提高学生的应用能力。
6.小结(5分钟)对本节课的内容进行总结,强调实数的概念、实数与数轴的关系以及实数的分类和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学上册第二章《2.6实数》说课稿
北师大版八年级数学上册第二章《2.6实数》说课稿
一、教材分析
1、教材的地位和作用
本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。
知识技能:(1)了解无理数和实数的概念以及实数的分类。
(2)知道实数与数轴上的点具有一一对应关系。
数学思考:(1) 经历对实数进行分类的过程,发展学生的分类意识。
(2) 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。
解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。
情感态度:(1) 通过了解数系扩充体会数系扩充对人类发展的作用。
(2) 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
3、教学重点、难点
重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
难点:用数轴上的点来表示无理数。
二、学情分析
在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。
课本对学生掌握实数要求不高。
只要求学生了解无理数和实数的意义。
但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。
本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。
三、教法学法分析:
教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法、类比法和多媒体辅助教学。
(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑、动手,使学生在开放、民主、和谐的教学氛围中获取知识,提高能力,促进思维的发展。
(2) 借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的。
(3)教具:三角板、圆规、多媒体。
学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习、享受学习。
因此,在本节课的教学中引导学生“仔细看、动脑想、多交流、勤练习”的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们“会观察”、“会类比”、“会分析”、“会归纳”的能力。
四、教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:
北师大版八年级数学上册第二章《2.6实数》说课稿
一、创设问题情景,引出实数的概念
内容:问题:(1)什么是有理数?有理数怎样分类?
(2)什么是无理数?带根号的数都是无理数吗?
意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.
学生回答:无理数是无限不循环小数.
带根号的数不一定是无理数.
3、把下列各数分别填入相应的集合内。
有理数集合、无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)
意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念. 教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number)。
教师点明:实数可分为有理数与无理数。
最后多媒体展示
具体分类,并对有理数和无理数从小数的角度进行说明。
二、议一议,
1、在实数概念基础上对实数进行不同分类。
无理数与有理数一样,也有正负之分,如是正的,是负的。
教师提出以下问题,让学生思考:
(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?
正数集合:
负数集合:
(2)0属于正数吗?0属于负数吗?
(3)实数除了可以分为有理数与无理数外,实数还可怎样分?
意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.
让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。
2、了解实数范围内相反数、倒数、绝对值的意义:
在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。
在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
例如,和是互为相反数,和互为倒数。
,,,。
三、想一想
让学生思考以下问题
1、a是一个实数,它的相反数为,绝对值为;
2、如果,那么它的倒数为。
意图:从复习入手,类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的
让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,
若它的倒数为(教师指明:0没有倒数)
增加练习:(多媒体展示)第一组1. 的绝对值是
2、 a是一个实数,它的绝对值是
第二组:1、的相反数是,绝对值是
2、绝对值等于的数是,
3、的绝对值是
4、正实数的绝对值是,0的绝对值是,负实数的绝对值是
例题:求下列各数的相反数、倒数、绝对值
(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正。
明晰:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用。
(媒体展示两个举例)
四、议一议。
探索用数轴上的点来表示无理数
1、每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示、和这样的无理数的点吗?
2、多媒体展示的做法和和的做法
如图OA=OB,数轴上A点对应的数是多少?
让学生充分思考交流后,引导学生达成以下共识:
探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.
(1)A点对应的数等于,它介于1与2之间。
(2)每一个有理数都可以用数轴上的点表示
(3)每一个无理数都可以用数轴上的点来表示
(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大。
五、随堂练习(多媒体展示)
第一组:判断题:
①实数不是有理数就是无理数、②无理数都是无限不循环小数. ③无
理数都是无限小数④带根号的数都是无理数. ⑤无理数一定都带根号. ⑥两个无理数之积不一定是无理数. ⑦两个无理数之和一定是无理数. ⑧数轴上的任何一点都可以表示实数.
第二组:
1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。
2、求下列各数的相反数、倒数和绝对值:
(1)(2)(3)
3、在数轴上作出对应的点。
意图:通过以上练习,检测学生对实数相关知识的掌握情况.
六、小结
1、实数的概念
2、实数可以怎样分类
3、实数a的相反数为,绝对值,若,它的倒数为。
4、数轴上的点和实数一一对应。
七、作业
课本习题2. 8 1、2、3题
结束语:多媒体展示:
人生的价值,并不是用时间,而是用深度去衡量的。
――列夫托尔斯泰
八、板书设计:
实数
1、实数的概念 4、实数与数轴上的点的关系
2、实数的分类 5、例题
3、实数a的相反数为, 6、学生练习
绝对值,若,它的倒数为
九、教学反思:。