概率论与数理统计模拟试题
概率论与数理统计模拟试题&参考答案

练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
概率论与数理统计模拟题训练

X1, X 2 , , X n 为来自总体 X 的样本,求θ 的最大似然估计量。
四、应用题 1.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,
它取 1 元,2 元,3 元,各个值的概率别为 0.3, 0.4, 0.3 ,某天售出 250 只蛋糕,试用中心极限定理求这天
(B) T = X − µ S2 / n
5.在假设检验问题中,检验水平α 的意义是(
(C) T = X − µ S3 / n
)
(D) T = X − µ S4 / n
(A) 原假设 H0 成立,经检验被拒绝的概率;
(B) 原假设 H0 成立,经检验不能被拒绝的概率;
(C) 原假设 H0 不成立,经检验被拒绝的概率; (D) 原假设 H0 不成立,经检验不能被拒绝的概率;
P{X
≥
500}
=1−
P{X
<
500}
=1−
⎧ P⎨
X
−
500
<
500
−
500 ⎫ ⎬
⎩ 150
150 ⎭
=
1−
P
⎧ ⎨
X
−
500
<
⎫ 0⎬
=
1−
Φ(0)
=
0.5
⎩ 150 ⎭
2.
解: X
~
σ2 N (66.5, )
n
,设 H 0 : X = 70 , H1 : X ≠ 70 ,
则
T
=
X S
−
µ
~
t(n
10、10 个乒乓球中有 6 个新球,4 个旧球,从中任取两个,已知所取的两个球中有一个是旧球,则另一个
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
概率论与数理统计模拟考试题目及答案

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。
若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。
8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。
9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。
设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。
三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论与数理统计 模拟试题

. . . .概率论与数理统计 模拟试题一考试类别:闭 考试时量:120 分钟一.填空题(每空2分,共32分):1.设7.0)(,4.0)(=⋃=B A P A P ,若B A ,互不相容,则=)(B P ; 若B A ,独立,则=)(B P .2.若)4,1(~N X ,则~21-=X Y .3.已知6.0)(,8.0)(=-=B A P A P ,则=⋃)(B A P ,=)|(A B P .4.从(0,1)中随机地取两个数b a ,,则b a -大于0的概率为 .5.若],2,0[~πU X 则12-=X Y 的概率密度函数为=)(y f . 6.随机变量),2(~2σN X ,若3.0)40(=<<X P ,则=<)0(X P . 7.设X 的分布列为5.0)1()1(===-=X P X P ,则X 的分布函数为=)(x F .8.设随机变量X 有分布函数⎪⎩⎪⎨⎧≥<≤<=2,120,s i n 0,0)(ππx x x A x x F , 则=A ,=<)6|(|πX P .9.一颗均匀骰子被独立重复地掷出10次,若X 表示3点出现的次数,则X ~ . 10.设),(Y X 的联合分布列为则Z 的分布列为 .11.若)9,2(~N X ,且)()(c X P c X P >=≤,则=c .二.选择题(每题3分,共12分):1.设B A ,为两事件,且1)(0<<A P ,则下列命题中成立的是 ( )A. B A ,独立)|()|(A B P A B P =⇔B. B A ,独立⇔B A ,互不相容C. B A ,独立⇔Ω=⋃B AD. B A ,独立⇔0)(=AB P2.设⎪⎪⎩⎪⎪⎨⎧≥<≤<=1,110,20,0)(x x x x x F , 则 ( )A . )(x F 是一个连续型分布函数 B. )(x F 是一个离散型分布函数C. )(x F 不是一个分布函数D. 5.0)1(==X P3.设随机变量X 的概率密度函数为)(x f ,且)()(x f x f =-,)(x F 是X 的分布函数,则对任意实数a ,有 ( ) A.⎰-=-adxx f a F 0)(1)( B.⎰-=-adx x f a F 0)(21)(C. )()(a F a F =-D. 1)(2)(-=-a F a F4.设随机变量}5{},4{).5,(~),4,(~2122+≥=-≤=u Y P p u X P p u N Y u N X ,则( )A . 对任意实数21,p p u = B. 对任意实数21,p p u < C. 只对u 的个别值才有21p p = D. 对任意实数21,p p u >三.某工厂甲、乙、丙三车间生产同一种产品,产量分别占25%,35%,40%,废品率分别为5%,4%和2%.产品混在一起,求总的废品率及抽检到废品时,这只废品是由甲车间生产的概率. (9分)四.箱中装有5个黑球,3个白球,无放回地每次取一球,直至取到黑球为止.若X 表示取球次数,求X 的分布列,并求)31(≤<X P .( 9分) 五.设随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<<=,010,10,),(2y x cxy y x f , 其它求: 1)常数c ; 2))241,210(<<<<Y X P ;3)43(>X P ); 4))(Y X P >. (16分)六.在一盒子里有12张彩票,其中有2张可中奖.今不放回地从中抽取两次,每次取一张,令Y X ,分别表示第一、第二次取到的中奖彩票的张数,求),(Y X 的联合分布列.七.设12,,,,n X X X ⋅⋅⋅是来自下列两参数指数分布的样本:()()1121211,120;,x e x x f x θθθθθθθ--≥≤⎧⎪=⎨⎪⎩其中()0,+∞,试求出1θ和2θ的最大似然估计. (16分)概率论与数理统计一 2. )1,0(N 3. 0.8 0.255. ⎩⎨⎧-≤≤-,011,1ππy 6. 0.35 8. 1 0.5 9. )61,10(B10. 2/911. 2 选择题 A C B A 解: 设1A ={产品由甲厂生产}, 2A ={产品由乙厂生产}, 3A ={产品由丙厂生产%40)(%,35)32==A P A ;Y p Z p其它%5)|(1=A B P , %4)|(2=A B P , %2)|(3=A B P . 2分 由全概率公式,∑==⨯+⨯+⨯==310345.002.040.004.035.005.025.0)|()()(i i i A B P A P B P ,6分从而由贝叶斯公式, 36.00345.005.025.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P . 9分四. 解: 由题意知X 的可能取值为1,2,3,4,其分布列为,5615)2(,85)1(171518131815=⋅=====C C C C X P C C X P 561)4(,565)3(1515383316152823=⋅===⋅==C C C C X P C C C C X P . 7分 )3()2())3()2(()31(=+===⋃==≤<∴X P X P X X P X P . 1455655615=+=. 9分五.解: 1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f 有6|3122|21110310210210210102c y c dy y c dy x cy dxdy cxy =⋅==⋅==⎰⎰⎰⎰, 6=∴c ; 4分2)⎰⎰⎰⎰==<<<<21412141012026),()241,210(dydxxy dydx y x f Y X P=25663)411(2|31630130214121=-=⋅⎰⎰dx x dx y x ; 8分3)dxdy y x f Y X P X P ⎰⎰+∞+∞∞-=+∞<<∞->=>43),(),43()43(1672|3166111103102434343==⋅==⎰⎰⎰⎰dx x dy y x dydx xy ; 12分 4)⎰⎰⎰⎰⎰⋅===>>1031002|3166),()(dx y x dydx xy dxdy y x f Y X P xxy x52214==⎰dx x . 16分六.解: 每次只取一张彩票,要么取到中奖彩票,要么没取到中奖彩票,所以Y X ,的可能取值均为0或1,那么),(Y X 的联合分布列为,2215)0,0(11119112110=⋅===C C C C Y X P 335)1,0(11112112110=⋅===C C C C Y X P ,,335)0,1(11111011212=⋅===C C C C Y X P .661)1,1(1111111212=⋅===C C C C Y X P 6分七.解:似然函数()()1212121,,,;,;,nn i i L x x x f x θθθθ=⋅⋅⋅=∏()[)()12111,21min ni i x i neI x θθθθ=--+∞∑=(4分)要使()1212,,,;,n L x x x θθ⋅⋅⋅最大,必须min i x 1θ≥且()11ni i x θ=-∑应最小.故1θ的最大似然估计值为1θ=min i x . (8分) 而2θ的最大似然估计值是使2121nL eλθθ-=取最大值的点. 此处()11ni i x λθ==-∑. (12分)故2θ=1n λ. 所以2θ的最大似然估计值为min i x x -最大似然估计量为1ˆθ=min i X , 2ˆθ=min i X X -. (16分)概率论与数理统计 模拟试题二考试类别:闭卷 考试时量:120分钟 试卷类型: A 卷一.填空题(每空2分,共40分)1. 已知6.0)(,8.0)(=-=B A P A P ,则=⋃)(B A P , =)|(A B P.2. 从9,,2,1,0 这十个数字中任选三个不相同的数字,1A ={三个数字中不含0和5},2A ={三个数字中含有0和5},则=)(1A P ,=)(2A P .3. 设X ~)1(P ,Y ~)2(P ,且X 与Y 独立,则==+)2(Y X P .4. 若X ~)1,0(N ,Y ~)8,2(N ,X 与Y 独立,则32-+Y X ~ .5.设X 与Y 独立,2,1==DY DX ,则=-)32(Y X D .6.已知,4.0,36,25,===Y X DY DX ρ则=),(Y X Cov , =+)(Y X D.7. 设X 的分布函数=)(x F ⎪⎩⎪⎨⎧>≤<--≤1,111,5.01,0x x x ,则X 的分布列为 .8. 随机变量),2(~2σN X ,若3.0)40(=<<X P ,则=<)0(X P .9. 设),(Y X 的联合分布列为则=a ,Y 的分布列为 ;若令2)2(-=X Z ,则=EZ .10. 若)9,2(~N X ,且)()(c X P c X P >=≤,则=c . 11. 设随机变量X 的期望,1=EX 方差2=DX ,由车贝晓夫不等式知><-)3|1(|X P .12. 设Y X ,独立同分布,有共同的概率密度函数)(x f ,则=<)(Y X P .13. 设 ,,,1n X X 独立同分布,且11=EX ,则−→−∑=Pn i i X n 11 .14. 设74)0()0(,73)0,0(=≥=≥=≥≥Y P X P Y X P ,则=≥)0),(max(Y X P .15. 设 ,,,1n X X 独立同分布, ]2,0[~1U X ,则=≤∑=∞→)11(lim 1ni i n X n P .二. 单选题(在本题的每一小题的备选答案中,请把你认为正确答案的题号,填入题干的括号内,多选不给分.每题3分,共15分)1. 设随机变量X 的概率密度函数为)(x f ,且)()(x f x f =-,)(x F 是X 的分布函数,则对任意实数a ,有( )①. ⎰-=-adxx f a F 0)(1)( ②. ⎰-=-adx x f a F 0)(21)(③. )()(a F a F =- ④. 1)(2)(-=-a F a F2. 设8.0)|(,7.0)(,8.0)(===B A P B P A P ,则 ( )①. A,B 互不相容 ②. A,B 相互独立③. B ⊂A ④. P(A-B)=0.13. 如果随机变量Y X ,满足)()(Y X D Y X D -=+,则必有 ( )①. X 与Y 独立 ②. X 与Y 不相关 ③. 0)(=Y D ④. 0)(=X D4. 4次独立重复实验中,事件A 至少出现一次的概率为80/81,则 ( ) ①. 21②. 31 ③. 32 ④. 415. 设随机变量X 服从指数分布)3(E ,则=),(DX EX ( )①. (31,31) ②. )3,3( ③. )91,31( ④. )9,3(三. 计算题(共45分)1. 一仓库有10箱同种规格的产品,其中由甲,乙,丙三厂生产的分别为5箱,3箱,2箱,三厂产品的次品率依次为0.1,0.2,0.3,从这10箱产品中任取一箱,再从这箱中任取一件,求取得正品的概率?若确实取得正品,求正品由甲厂生产的概率.(8分)2. 设随机向量),(Y X 的联合密度函数为:⎩⎨⎧≤≤≤≤+=,020,10,),(2y x bxy x y x f其它求①常数b; ②)1(≥+Y X P ; ③)21|1(<>X Y P ; ④讨论Y X ,的独立性. (12分)3. 袋中有5个红球,3个白球,无放回地每次取一球,直到取出红球为止,以X 表示取球的次数,求①X 的分布列,②))31(≤<X P ,③EX . (9分)4. 某教室有50个座位,某班有50位学生,学号分别为1到50.该班同学上课时随机地选择座位,X 表示该班同学中所选座位与其学号相同的数目,求X 的期望EX .(8分)5.设12,,,n X X X 为总体X 的一个样本,X 的密度函数:(1),01()0,x x f x ββ⎧+<<=⎨⎩其他, 0β>, 求参数β的矩估计量和极大似然估计量。
概率论与数理统计复习题和(答案)

概率论现数理统计模拟试题一一、填空(5153=⨯分) 1、某人射中靶的概率为43,如果射击直到中靶为止,则射击次数为k 的概率为。
2、假设总体),(~2σμN X ,且∑==ni i X n X 11,(n X X X ,,,21 为总体样本),则X 是的无偏估计。
3、设随机变量)(~),1,0(~2n Y N X χ,则n YX 服从的分布为。
4、如果X 的分布列为 : X 0 1 2P A 2A 3A则参数A 等于。
5、在作区间估计的时候,方差未知的),(2σμN 的μ的区间估计为。
二、选择(5153=⨯分)1、已知)|()(),|()(B A P A P B A P A P ==,则下列说法正确的有( ) (A )A 与B 相互独立 (B )A 与B 互逆 (C )A 与B 互斥 (D ))()(B P A P =2、对一个随机变量X 来说,其分布函数)(x F ,下列说法正确的有( ) (A ))(x F 取值为),(+∞-∞ (B ))(x F 为连续函数 (C )1F(x) 1≤≤- (D) 1F(x) 0≤≤3、设]5,1[~U X ,当5121<<<x x 时,=<<)(21x X x p ( ) (A)552x - (B )412-x (C ) 512-x (D) 412x x -4、设总体X 的数学期望为μ,方差为2σ,),(21X X 是X 的一个样本, 则在下述的4个估计量中,( )是最优的。
(A) 2115451ˆX X +=μ(B) 2124181ˆX X +=μ(C) 2132121ˆX X +=μ(D) 2143121ˆX X +=μ 5、假设X 和Y 的联合密度函数为: ⎩⎨⎧≥≥λλ=λ-λ-其它,;,000),(2121y x e y x f y x ,则下列说法正确的有( ) (A) 0)(=XY E (B) 相互独立和Y X (C) X 和Y 不相互独立 (D )X 和Y 相关三、计算(70分)1、设总体Y 服从几何分布,分布律: ,2,1,)1(}{1=-==-y p p y Y p y其中p 为未知参数,且10≤≤p 。
概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
概率论与数理统计期末考试模拟试题4及答案

概率论与数理统计模拟题四一、单项选择题(每小题3分,共30分)1、对于任意两事件A 和B ,与AB B =不等价的是()(A)A B⊂(B)B A ⊂(C)AB Φ=(D)AB Φ=2、在图书馆的书架上按任意的次序摆上15本教科书,其中5本是硬皮书,管理员随机地抽取3本,则至少有一本是硬皮书的概率为()(A )4591(B )2091(C )291(D )67913、设A 、B 是随机事件,且0()1,0()1P A P B <<<<,()(1P A B P A B +=,则()。
(A )A 、B 互不相容(B )A 、B 相互对立(C )A 、B 不相互独立(D )A 、B 相互独立4、设随机变量X 的概率密度为()x ϕ,且()()x x ϕϕ-=,()F x 是X 的分布函数,则对任何的实数a ,有()(A )0()1()aF a x dxϕ-=-⎰(B )01()()2a F a x dxϕ-=-⎰(C )()()F a F a -=(D )()2()1F a F a -=-5、设~(1,1)X N 的分布函数为()F x ,概率密度为()f x ,则()(A)(0)(0)0.5P X P X ≤=≥=(B)()(),f x f x x -=-∞<<+∞(C)(1)(1)0.5P X P X ≤=≥=(D)()1(),F x F x x -=--∞<<+∞6、设1()F x 与2()F x 是两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度为()(A)12()()f x f x (B)212()()f x F x (C)12()()f x F x (D)1221()()()()f x F x f x F x +7、设随机变量X 与Y 相互独立,且分别服从正态分布(0,1)N 和(1,1)N ,则()(A)1(0)2P X Y +≤=(B)1(1)2P X Y +≤=(C)1(0)2P X Y -≤=(D)1(1)2P X Y -≤=8、现有10张奖券,其中8张2元,2张5元,今某人从中随机地抽取3张,则此人得奖的金额的数学期望为()(A )6(B )12(C )7.8(D )99、设随机变量12,,, (1)n X X X n >独立同分布,且方差20σ>,令11ni i Y X n ==∑,则()(A )21cov(,)X Y nσ=(B )21cov(,)X Y σ=(C )212()n D X Y n σ++=(D )211()n D X Y nσ+-=10、设2~(1,3)X N ,129,,,X X X 为来自总体X 的一个样本,则()(A)1~(0,1)3X N -(B)1~(0,1)1X N -(C)1~(0,1)9X N -(D)~(0,1)X N 二、填空题(每小题3分,共30分)1、将3只球随机地放入5个盒子中去,则每个盒子至多有1只球的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题A一.单项选择题(每小题3分,共9分)1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。
那么事件表示( )。
( A ) 全部击中;( B ) 至少有一发击中;( C ) 必然击中;( D ) 击中3 发2.设离散型随机变量x 的分布律为则常数 A 应为( )。
( A ) ;( B ) ;(C) ;(D)3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对于任一实数x,有等于( )。
( A ) ; ( B ) ;( C ) ; ( D )二、填空题(每小题3分,共12分)1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________2.设且有,,则=___________。
3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概率为,则4人中至多1人需用台秤的概率为:__________________。
4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。
三、(10分)已知,求证四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。
直到查到次品时为止,用x表示检查次数,求的分布函数:五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为5%, 试求:( 1 ) 该地区居民患高血压病的概率;( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大?六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是:如果与相互独立,写出的联合概率密度,并求下列事件的概率:( 1 ) 到时刻两家的元件都失效(记为A),( 2 ) 到时刻两家的元件都未失效(记为B),( 3 ) 在时刻至少有一家元件还在工作(记为D)。
七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。
八、(10分)设和是相互独立的随机变量,其概率密度分别为又知随机变量 , 试求w的分布律及其分布函数。
九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算得,问新产品的强力标准差是否有显著变化?( 分别取和0.01,已知,)十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:从经验和理论知与之间有关系式?且各独立同分布于。
试用最小二乘法估计 a , b.概率论与数理统计模拟试题A解答一、单项选择题1. (B);2. (B);3.(D)二、填空题1. P(B)P(A|B);2. 0.3174;3. ;4. =0.3024三、解:因,故可取其中u~N ( 0,1 ) ,,且u与y相互独立。
从而与y也相互独立。
又由于于是四、的分布律如下表:五、( i= 1,2,3 ) 分别表示居民为肥胖者,不胖不瘦者,瘦者B :“居民患高血压病”则,,,,由全概率公式由贝叶斯公式,六、(x , h)联合概率密度( 1 ) P(A) =( 2 )( 3 )七、证一:设事件A在一次试验中发生的概率为p ,又设随机变量则,故证二:八、因为所以w的分布律为w的分布函数为九、要检验的假设为:;在时,故在时,拒绝认为新产品的强力的标准差较原来的有显著增大。
当时,故在下接受,认为新产品的强力的标准差与原来的显著差异。
注::改为:也可十、模拟试题C(A.B.D)一.填空题(每小题3分,共15分)1.设A,B,C是随机事件,则A,B,C三个事件恰好出现一个的概率为______。
2.设X,Y是两个相互独立同服从正态分布的随机变量,则E(|X-Y|)=______。
3.是总体X服从正态分布N,而是来自总体X的简单随机样本,则随机变量服从______,参数为______。
4.设随机变量X的密度函数,Y表示对X的5次独立观察终事件出现的次数,则DY=______。
5.设总体X的密度函数为是来自X的简单随机样本,则X的最大似然估计量=______。
二.选择题(每小题3分,共15分)1.设,则下列结论成立的是()(A)事件A和B互不相容;(B)事件A和B互相对立;(C)事件A和B互不独立;(D)事件A和B互相独立。
2.将一枚硬币重复郑n次,以X和Y分别表示正面向上和反面向上的次数,则X与Y的相关系数等于()。
(A)-1 (B)0 (C)1/2 (D)13.设分别为随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组值中应取()。
3.设是来自正态总体的简单随机样本,是样本均值,记则服从自由度为n-1的t分布随机变量为()。
5.设二维随机变量(X,Y)服从二维正态分布,则随机变量不相关的充分必要条件为()。
三、(本题满分10分)假设有两箱同种零件,第一箱内装50件,其中10件一等品,第二箱内装30件,其中18件一等品。
现从两箱中随意挑出一箱,然后从该箱中先后随机取两个零件(取出的零件均不放回),试求:(1)先取出的零件是一等品的概率;(2)在先取出的零件是一等品的下,第二次取出的零件仍然是一等品的概率。
四、(本题满分10分)假设在单位时间内分子运动速度X的分布密度为,求该单位时间内分子运动的动能的分布密度,平均动能和方差。
五、(本题满分10分)设随机变量X与Y独立,同服从[0,1]上的均匀分布。
试求:六、(本题满分10分)某箱装有100件产品,其中一、二和三等品分别为80件、10件、10件,现从中随机抽取,记,试求:(1)随机变量的联合分布;(2)随机变量的相关系数。
(本题满分15分)设总体X的密度函数为七、是来自X的简单随机样本,试求:八、(本题满分15分)某化工厂为了提高某种化学药品的得率,提出了两种工艺方案,为了研究哪一种方案好,分别对两种工艺各进行了10次试验,计算得假设得率均服从正态分布,问方案乙是否能比方案甲显著提高得率?概率论与数理统计模拟试题C解答模拟试题D(A.B.C)一、填空题(每小题3分,共15分)1.甲、乙二人独立地向同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲命中的概率是______。
2.设X和Y为两个随机变量,且,则。
3.设随机变量X与Y独立,,且,则。
4.设是来自正态总体N(0,1)的简单随机样本,令为使服从分布,则a=______,b=______.5.设由来自正态总体的一个容量为9的简单随机样本计算得样本均值为5,则未知数的置信度为0.95的置信区间为______。
二.选择题(每小题3分,共15分)1.当事件A与事件B同时发生时,事件C必发生,则()。
2.设随机变量X服从指数分布,则随机变量Y=min(X,2)的分布函数()。
(A)是连续函数;(B)至少有两个间断点;(C)是阶梯函数;(D)恰好有一个间断点。
3.设随机变量X和Y独立同分布,记U=X-Y,V=X +Y ,则随机变量U与V也()。
(A)不独立;(B)独立;(C)相关系数不为零;(D)相关系数为零。
4.设总体X服从正态分布,是来自X的简单随机样本,为使是的无偏估计量,则A的值为()。
5.对正态总体的数学期望进行假设检验,如果在显著水平下,接受假设,则在显著水平下,下列结论中正确的是()。
(A)必接受;(B)可能接受,也可能有拒绝;(C)必拒绝;(D)不接受,也不拒绝。
三、(本题满分10分)三架飞机:已架长机两架僚机,一同飞往某目的地进行轰炸,但要到达目的地,一定要有无线电导航。
而只有长机有此设备。
一旦到达目的地,各机将独立进行轰炸,且每架飞机炸毁目标的概率均为0.3。
在到达目的地之前,必须经过高射炮阵地上空。
此时任一飞机被击落的概率为0.2,求目标被炸毁的概率。
四、(本题满分10分)使用了小时的电子管在以后的小时内损坏的概率等于,其中是不依赖于的数,求电子管在T小时内损坏的概率。
(本题满分10分)设随机变量X与Y独立同服从参数为1的指数分布。
证明五、相互独立。
六、(本题满分10分)设二维随机变量(X,Y)的联合密度函数为(1)计算;(2)求X与Y的密度函数;(3)求Z=X+Y 的密度和函数。
七、(本题满分15分)设总体X服从正态分布,是来自X的一个样本,是未知参数。
(1)区域的最大似然估计量;(2)是否是的有效估计?为什么?八、(本题满分15分)设有线性模型其中相互独立,同服从正态分布:(1)试求系数的最小二乘估计;(2)求的无偏估计量;(3)求构造检验假设的统计量。
概率论与数理统计模拟试题D解答。