污水处理厂高程布置
污水处理厂高程布置

6.2污水厂的高程布置污水处理厂污水处理高程布置的主要任务是:确定各构筑物和泵房的标高确定处理构筑物之间连接管(渠)的尺寸及其标高,通过计算确定各部位的水位标高,从而能够使污水沿处理流程在处理构筑物之间通畅的流动,保证污水处理厂的正常运行[2]。
6.2.1污水处理厂高程布置应考虑事项考虑事项[2]:(1)选择一条最长、水头损失最大的流程进行水力计算,并应适当留有余地,以保证任何情况下,处理系统都能够运行正常;(2)计算水头损失时一般以近期最大的流程作为构筑物和管渠的设计流量;计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头;(3)在做高程布置时应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
6.2.2污水厂的高程布置为了降低运行费用和便于管理,污水在处理构筑物之间的流动按重力流考虑为宜(污泥流动不在此例)。
为此,必须精确地计算污水流动中的水头损失。
水头损失包括[2]:(1)污水经各处理构筑物的内部水头损失;(2)污水经连接前后两构筑物管渠的水头损失,包括沿程水头损失和局部水头损失;(3)局部水头损失按沿程水头损失的0.3 倍计。
6.2.3高程计算沿程水头损失按:h = iL计算,i为管渠的坡度;局部水头损失按:h = ξ v2/ 2 g 计算,ξ 为局部水头损失系数1.污水水头损失[1,4]构筑物水头损失表构筑物名称水头损失( m)构筑物名称水头损失( m)中格栅0.08二沉池0.4细格栅0.15消毒池0.3旋流沉砂池0.26浓缩池 1.2厌氧池0.3贮泥池 1.0氧化沟0.5脱水间 1.3配水井0.2管道的设计包括管材的选择,管径及其流速确定.为了便于维修 ,本设计除泵房 (提升泵房 ,污泥泵房 ) 内及相关压力管道选择铸铁管和气体管道选择钢管外 ,其余管道均选择钢筋混凝土管 .表 6-2污水管渠水力计算表管渠及构流量管渠设计参数水头损失筑物名称( L/s )D(mm)L(m)H( m)消毒池至二沉池183600250.575二沉池至配水井91.5400 1.50.100配水井至氧化沟183600150.186氧化沟至厌氧池183600400.219厌氧池至沉砂池183600 2.80.215沉砂池至细格栅18360030.125细格栅至提升泵房91.5400150.236提升泵房至中格栅18360050.3002.污泥管道水头损失[1,7]表 6-3污泥管渠水力计算表管渠及构流量管渠设计参数水头损失筑物名称( L/s )D(mm)L(m)H( m)二沉池至提升泵房26400220.530提升泵房至浓缩池13200240.540浓缩池至贮泥池26300 1.50.135贮泥池至脱水间26300 1.80.175以 0m为地面基准,接触池水位为 -0.500m。
城市污水厂高程布置PPT演示课件

4
三、高程布置的一般规定
1.考虑远期发展,水量增加的预留水头;
2.考虑某一构筑物发生故障时,其余构筑物负担全部流 量的情况; 3.考虑管内淤积,阻力增加的可能; 4.充分利用地形高差,实现重力自流; 5.在认真计算并留有余量的前提下,力求缩小全程水头损 失,降低水泵提扬程; 6.尽可能使污水厂的出水管渠不受排放水体洪水顶托,并 尽量实现自流排放;
构筑物名称
水头损失/m
曝气池:污水潜流入池
0.25~0.5
曝气池:污水跌水入池
0.5~1.5
生物滤池(工作高度为2m时):
(1)装有旋转式布水器:
2.7~2.8
(2)装有固定喷洒布水器: 4.5~4.75
混合池
0.1~0.3
接触池
0.1~0.3
污泥干化场
2~3.5
构筑物的水头损失主要产生在:进口、出口和需要跌水处。、高程布置的计算
为减小阻力,按紊流设计: 此时水头损失包括沿程和局部两部分: 沿程按下式计算(教材P161):
hf
K
6.82
L D1.17
CH
1.85
hf--输泥管沿程水头损失,m; L--输泥管长度,m;
D--输泥管管径,m;D>0.15m;
ν--连接管中的流速,m/s,最小流速参见表6.1;
10
四、高程布置的计算
2.污泥处理高程水力计算
目前有关污泥水力特征研究还不够,因此 污泥管道的水力计算主要采用经验公式或 实验资料。
(1)重力输泥管道: 适用于污水厂内短距离输送 ; 设计坡度采用0.01~0.02; 最小管径DN200,中途设清通口。
(2) 压力流输泥管道: 适用于长距离输送,或加压设备加压后输送;
城污水厂高程布置

适用于污水厂内短距离输送 ;
设计坡度采用 0.01~0.02; (2) 压力流输泥管道:
最小管径 DN200,中途设清通口。 适用于长距离输送,或加压设备加压后输送;
部分污水厂总高差统计
东区污水厂2.7m(至二沉池) 曹阳污水厂2.5m(至二沉池) 北郊污水厂1.3m(至二沉池) 天山污水厂3.05m(至二沉池) 泗塘污水厂5.31m(至接触池) 程桥污水厂2.4m(至接触池) 闵行污水厂3.7m(至接触池)
在初步设计时,压力流输泥管道也可采用以下简单的
计算方法:[崔玉川编, 城市污水厂处理设施设计计算, P432]
按清水计算,并乘以比例系数;
在紊流状态下,污泥含水率大于98%时,污泥管道的 水头损失为清水的2~4倍;含水率为90%~92%时,为清 水的6~8倍。
当污泥管道较长时,为了不使水头损失过大,一般流 速采用1.0m/s。丹麦Kruger 公司设计指南中对污泥管道的计 算做如下规定:
时为0.4~0.6m/s; 3. 在确定连接管时,可考虑留有水量发展的余地; 4. 生化池至二沉池的管道流量为:设计流量+回流污泥量。
9
四、高程布置的计算
(3)计量设备:水头损失应通过计算确定。初 步设计时可按 0.2m估算。 (4)配水设备:配水井的水头损失可按一般水 力学公式计算。
10
四、高程布置的计算
污水处理厂高程布置
1
污水处理高程布置图
一. 目的 二. 任务 三. 一般规定 四. 计算 五. 绘图
2
一、高程布置的目的
1. 确保污水、污泥通畅流动。 2. 降低水头损失,节省运行费用。
污水处理厂高程设计参考

精心整理1处理流程高程设计为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行高程布置,以确定各构筑物及连接管高程。
为降低运行费用和便于维护管理,污水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若需提升时,应尽量减少抽升次数。
为保证污泥的顺利自流,应精确计算处理构筑物之间的水头损失,并考虑扩建时预留的储备水头,高程图的比例与水平方向的比例尺一般不相同,一般垂直比例大,水平的比例小些[12]。
1.1主要任务(1)(2)(3)1.2(1)(2)(3)(4) 1.3沿程水头损失按下式计算:iL L RC v h f ==22(7.1)式中f h ——为沿程水头损失,m ;L ——为管段长度,m ;R ——为水力半径,m ;v ——为管内流速,m s ;C ——为谢才系数。
局部水头损失为:gv h m 22ξ=(7.2)式中ξ——局部阻力系数,查阅《给排水设计手册第一册》获得。
1.3.1构筑物初步设计时,构筑物水头损失可按经验数值计算。
污水流经处理构筑物的水头损失,主要产生在进7.1。
1.3.2沉砂池至厌氧池取一个进出口损失及一个90︒弯头损失,取局部阻力系数为:0.1+1.0+1.1=2.2。
管渠水力计算见表7.2。
表7.2污水管渠水力计算表1.3.3。
以0.751.3.4污泥处理构筑物高程布置 (1)污泥管道的水头损失管道沿程损失按下式计算:85.117.149.2⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=H f C v D L h (7.3) 管道局部损失计算:式中H C D v (2)污泥处理构筑物水头损失当污泥以重力流排出池体时,污泥处理构筑物的水头损失以各构筑物的出流水头计算,浓缩池一般取1.5m ,二沉池一般取1.2m 。
(3)污泥高程布置设计中污泥在二沉池到污泥浓缩池以及贮泥池到脱水车间得到提升,取脱水机房标高为53m ,贮泥池泥面相对地标为0.000m ,超高0.3m 。
污水处理厂高程设计参考

污水处理厂高程设计参考一、引言污水处理厂的高程设计是指确定各处理单元之间的高度差和流向,以保证污水在处理过程中能够顺利流动,并达到处理效果。
本文将针对污水处理厂高程设计进行详细介绍。
二、设计原则1. 保证流动性:在设计过程中,应确保污水能够自然流动,避免死角和积水现象的发生。
2. 考虑处理工艺:根据污水处理工艺的特点,合理安排各处理单元之间的高度差和流向,以提高处理效果。
3. 节约能源:在设计过程中,应尽量减少泵站的使用,采用重力流动的方式来降低能耗。
4. 考虑维护和操作:设计时应考虑到维护和操作的便利性,确保设备的正常运行和维护。
三、高程设计步骤1. 采集基础数据:采集污水处理厂所在地的地形地貌、地下水位等基础数据,用于后续的设计计算。
2. 制定高程控制方案:根据处理工艺和设备布置方案,制定高程控制方案,确定各处理单元之间的高度差和流向。
3. 进行水力计算:根据设计流量和处理工艺,进行水力计算,确定各处理单元的水位和流速。
4. 设计污水管道:根据水力计算结果,设计污水管道的高程和坡度,确保污水能够顺利流动。
5. 设计泵站:如果需要使用泵站,进行泵站的设计,确定泵站的位置和泵的参数。
6. 进行校核和优化:对设计结果进行校核和优化,确保设计的合理性和安全性。
7. 编制设计报告:根据设计结果,编制污水处理厂高程设计报告,包括设计原理、计算过程和结果等内容。
四、实例分析以某污水处理厂为例,设计流量为10000m³/d,采用A2/O工艺进行处理。
根据设计原则和设计步骤,进行高程设计如下:1. 制定高程控制方案:根据A2/O工艺的特点,确定进水池、调节池、好氧池、缺氧池、沉淀池和出水池的高度差和流向。
2. 进行水力计算:根据设计流量和工艺要求,计算各处理单元的水位和流速。
3. 设计污水管道:根据水力计算结果,设计各处理单元之间的污水管道的高程和坡度。
4. 设计泵站:根据需要,设计泵站的位置和泵的参数,确保污水能够顺利流动。
最新污水处理厂高程设计参考

1处理流程高程设计1为使污水能在各处理构筑物之间通畅流动,以保证处理厂的正常运行,需进行2高程布置,以确定各构筑物及连接管高程。
为降低运行费用和便于维护管理,污3水在处理构筑物之间的流动已按重力流考虑为宜;污泥也最好利用重力流动,若4需提升时,应尽量减少抽升次数。
为保证污泥的顺利自流,应精确计算处理构筑5物之间的水头损失,并考虑扩建时预留的储备水头,高程图的比例与水平方向的6比例尺一般不相同,一般垂直比例大,水平的比例小些[12]。
71.1 主要任务8污水处理厂污水处理流程高程布置的主要任务是:9(1) 确定各处理构筑物和泵房的标高;10(2) 确定处理构筑物之间连接管渠的尺寸及其标高;11(3) 通过计算确定各部分的水面标高,从而能够使污水沿处理流程在处理构筑12物之间畅通地流动,保证污水处理厂的正常运行。
131.2 高程布置的一般原则14(1) 计算各处理构筑物的水头损失时,应选择一条距离最长、水头损失最大的15流程进行较准确的计算,考虑最大流量、雨天流量和事故时流量的增加。
并应适16当留有余地,以防止淤积时水头不够而造成的涌水现象,影响处理系统的正常运17行。
18(2) 计算水头损失时,以最大流量(设计远期流量的管渠与设备,按远期最大19流量考虑)作为构筑物与管渠的设计流量。
还应当考虑当某座构筑物停止运行时,20与其并联运行的其余构筑物与有关的连接管渠能通过全部流量。
21(3) 高程计算时,常以受纳水体的最高水位作为起点,逆废水处理流程向上倒22推计算,以使处理后废水在洪水季节也能自流排出,并且水泵需要的扬程较小。
23 如果最高水位较高,应在废水厂处理水排入水体前设置泵站,水体水位高时抽水24 排放。
如果水体最高水位很低时,可在处理水排入水体前设跌水井,处理构筑物25 可按最适宜的埋深来确定标高。
26(4) 在做高程布置时,还应注意污水流程与污泥流程的配合,尽量减少需要提27 升的污泥量。
环保专业一讲义:污水厂的平面布置与高程布置

3.2.4污⽔⼚的平⾯布置与⾼程布置
1.平⾯布置
污⽔处理⼚包括⽣产性的处理构筑物和泵站、⿎风机房、药剂间和化验室等构筑物,以及辅助性的修理间、仓库、办公室和值班室等。
在⼚区内还有道路系统、室外照明系统和美化的绿化设施。
在各构筑物和建筑物的个数和尺⼨可参考设计规定进⾏确定以后,根据流程和⼚区的地形和地质条件,进⾏平⾯布置,布置时,应考虑以下原则:⑴布置应紧凑;⑵各处理构筑物之间的连接管应尽量避免⽴体交叉;⑶在⾼程布置上,充分利⽤地形;⑷使需要开挖的处理构筑物避开劣质地基;⑸考虑分期施⼯和扩建的可能性。
2.⾼程布置
污⽔⼚的⾼程布置就是确定各构筑物的⾼程,当地形有利,⼚区有⾃然坡度时,应充分利⽤,以减少填、挖⼟⽅量,甚⾄不⽤泵站。
污⽔处理⼚的⾼程布置还要确定消化池、污泥脱⽔设备等和污泥有关的设施的⾼程。
污水处理厂平面布置及高程布置资料

污水处理厂平面布置及高程布置一污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5—8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 污水厂的高程布置
污水处理厂污水处理高程布置的主要任务是:确定各构筑物和泵房的标高确定处理构筑物之间连接管(渠)的尺寸及其标高,通过计算确定各部位的水位标高,从而能够使污水沿处理流程在处理构筑物之间通畅的流动,保证污水处理厂的正常运行[2]。
6.2.1 污水处理厂高程布置应考虑事项
考虑事项[2]:
(1)选择一条最长、水头损失最大的流程进行水力计算,并应适当留有余地,以保证任何情况下,处理系统都能够运行正常;
(2)计算水头损失时一般以近期最大的流程作为构筑物和管渠的设计流量;计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头;
(3)在做高程布置时应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。
6.2.2 污水厂的高程布置
为了降低运行费用和便于管理,污水在处理构筑物之间的流动按重力流考虑为宜(污泥流动不在此例)。
为此,必须精确地计算污水流动中的水头损失。
水头损失包括[2]:
(1)污水经各处理构筑物的内部水头损失;
(2)污水经连接前后两构筑物管渠的水头损失,包括沿程水头损失和局部水头损失;
(3)局部水头损失按沿程水头损失的0.3倍计。
6.2.3 高程计算
沿程水头损失按:h = iL计算,i 为管渠的坡度;
局部水头损失按:h = ξv2/ 2g计算,ξ为局部水头损失系数
1.污水水头损失[1,4]
构筑物水头损失表
管道的设计包括管材的选择,管径及其流速确定.为了便于维修,本设计除泵房(提升泵房,污泥泵房)内及相关压力管道选择铸铁管和气体管道选择钢管外,其余管道均选择钢筋混凝土管.
表6-2 污水管渠水力计算表
2. 污泥管道水头损失[1,7]
表6-3 污泥管渠水力计算表
以0m为地面基准,接触池水位为-0.500m。
本设计共有两个提升泵房,分别提升:污水提升泵房:污泥提升泵房:
表6-4 污水高程计算表
表6-5 污泥高程计算表。