大数据平台方案设计
大数据平台数据管理设计方案

大数据平台数据管理设计方案一、背景介绍随着大数据技术的持续发展,越来越多的企业开始意识到大数据在业务决策中的重要性。
而大数据平台作为支持企业进行数据分析和洞察的基础设施,数据管理的设计方案对于平台的可靠性和可扩展性至关重要。
二、数据管理目标数据管理的目标是为大数据平台提供高效、可靠、安全的数据存储和访问,保证数据的一致性、完整性和可用性。
三、方案设计1. 数据存储:大数据平台需要选择适当的数据存储技术,并根据实际应用场景进行存储架构和容量规划。
一般来说,可以采用分布式文件系统(如HDFS)和分布式数据库(如HBase)结合的方式进行数据存储。
同时,需要考虑数据的冗余备份和灾备方案,确保数据的可靠性和可用性。
2.数据访问:大数据平台的数据访问需要支持高并发、低延迟的需求。
可以通过数据分片、负载均衡和缓存等方式来提高数据访问的性能。
此外,还需要考虑数据的安全性,可以采用权限控制、加密传输等方式保护数据的安全。
3.数据清洗和处理:大数据平台的数据通常包含大量的噪声和冗余信息,需要进行数据清洗和处理。
可以采用数据预处理的方式,对数据进行清洗、去重、筛选等操作,提高数据的质量和可用性。
4.数据同步和迁移:在大数据平台中,常常需要将数据从其他系统同步或迁移到平台中。
可以通过ETL工具或自己开发数据同步和迁移的程序,将数据从原始系统获取并按照规定的格式导入到大数据平台中。
5.数据备份和恢复:为了防止数据丢失或损坏,需要进行数据的备份和恢复。
可以通过定期进行数据备份,并将备份数据存储在不同的地点,以提高数据的可靠性和可恢复性。
6.数据质量监控:为了保证数据的质量和准确性,需要进行数据质量监控。
可以通过实时监控数据的采集、清洗和处理过程中的异常情况,并及时报警和处理,以提高数据的质量和可用性。
7.数据安全和隐私保护:大数据平台存储了大量的敏感数据,需要采取一定的安全措施来保护数据的安全和隐私。
可以通过数据加密、访问控制和审计等方式来加强数据的安全性和隐私保护。
大数据平台方案

大数据平台方案在当今信息化时代,大数据平台已成为企业获取竞争优势的关键工具。
一个完善的大数据平台方案应包括数据采集、存储、处理、分析和可视化等多个环节。
以下是一份详细的大数据平台方案:1. 数据采集数据是大数据平台的基础。
首先需要确定数据来源,包括内部数据(如交易记录、日志文件等)和外部数据(如社交媒体、公开数据集等)。
数据采集工具应能够支持多种数据格式和协议,如HTTP、FTP、API等,以确保数据的高效、准确采集。
2. 数据存储采集到的数据需要存储在适合的系统中。
根据数据类型和使用场景,可以选择关系型数据库、NoSQL数据库或分布式文件系统。
存储系统应具备高可靠性、可扩展性和高效的数据检索能力。
3. 数据处理原始数据往往需要经过清洗、转换和整合才能用于分析。
数据处理工具应支持数据的ETL(提取、转换、加载)操作,以及数据的实时处理。
此外,还需要考虑数据的安全性和隐私保护。
4. 数据分析数据分析是大数据平台的核心。
分析工具应支持复杂的数据处理和统计分析,如机器学习、预测分析等。
同时,应提供友好的用户界面,使非技术用户也能轻松进行数据分析。
5. 数据可视化数据可视化是将数据分析结果以图形或图表的形式展示出来,帮助用户直观理解数据。
可视化工具应支持多种图表类型,如柱状图、折线图、地图等,并允许用户自定义图表样式和布局。
6. 平台架构大数据平台的架构设计应考虑系统的可扩展性、容错性和性能。
通常采用分布式架构,以支持大规模数据处理和高并发访问。
同时,应采用微服务架构,以提高系统的灵活性和可维护性。
7. 安全与合规在设计大数据平台时,必须考虑数据安全和合规性问题。
应实施数据加密、访问控制和审计日志等安全措施,以保护数据不被未授权访问或泄露。
同时,应遵守相关法律法规,如GDPR等。
8. 成本控制大数据平台的建设和维护成本较高。
在设计平台时,应考虑成本效益,选择合适的硬件和软件,以及优化资源使用,以降低整体成本。
大数据平台建设方案

大数据平台建设方案随着信息技术的不断发展和智能化时代的来临,大数据已经成为企业及各行业决策的重要依据。
为了更好地应对海量数据的处理和分析,企业需要建设一个完备的大数据平台。
本文将从整体架构、硬件设备、软件工具和安全保障等方面,提出一套完善的大数据平台建设方案。
一、整体架构大数据平台的整体架构决定了数据的处理效率和系统的可扩展性。
在构建大数据平台时,应采用分布式、集群化的架构模式,以满足高并发、高容量的需求。
建议采用以下架构:1. 数据采集层:负责从各种数据源收集数据,包括传感器、数据库、日志等。
可使用相关的数据采集工具进行数据的提取和转换,确保数据的准确性和完整性。
2. 数据存储层:用于存储海量的数据,包括结构化数据和非结构化数据。
建议采用分布式文件系统,如HDFS(Hadoop Distributed File System),保证数据的高可靠性和高可扩展性。
3. 数据处理层:负责对存储在数据存储层中的数据进行分析、挖掘和处理。
使用分布式计算框架,如Hadoop、Spark等,实现高效的数据处理和计算。
4. 数据展示层:提供数据可视化和报表功能,便于用户进行数据分析和决策。
可使用开源的数据可视化工具,如Echarts、Tableau等。
二、硬件设备大数据平台的硬件设备对系统性能和处理能力有着重要影响。
根据数据量和业务需求,建议选择高性能的服务器、存储设备和网络设备,以确保系统的稳定和高效运行。
1. 服务器:选择高性能的服务器,可根据实际需求配置多个节点组成集群,提高系统的并发处理能力。
2. 存储设备:采用高容量、高可靠性的存储设备,如分布式文件系统、网络存储等,以满足海量数据存储的需求。
3. 网络设备:建立高速的网络通信环境,提供数据传输和通信的带宽,确保数据的快速传输和实时处理。
三、软件工具在大数据平台建设中,选择适合的软件工具对于系统的性能和数据处理能力至关重要。
下面列举一些常用的大数据软件工具:1. Hadoop:分布式计算框架,提供高效的数据处理和分布式存储功能。
大数据平台与架构设计方案

大数据平台与架构设计方案目录一、引言 (2)二、大数据平台与架构设计 (3)三、全球大数据产业发展现状 (5)四、中国大数据产业发展状况 (7)五、大数据人才短缺与培养挑战 (10)六、大数据行业发展趋势预测 (12)一、引言随着互联网的不断发展和数字化时代的加速推进,大数据技术已逐渐渗透到各行各业中,并对经济和社会发展产生重要影响。
在大数据技术蓬勃发展的也面临着技术创新的挑战以及应用中的多重困境。
近年来,中国大数据产业规模不断扩大。
随着信息化建设的深入推进和数字化转型步伐的加快,国内大数据市场呈现快速增长态势。
大数据产业涉及硬件基础设施、软件服务、数据处理等多个领域,整体产业链日趋完善。
数据泄露可能导致个人隐私曝光、企业资产损失、客户流失等严重后果。
对于个人而言,数据泄露可能导致其身份信息、财产信息等被非法利用。
对于企业而言,数据泄露可能导致商业机密泄露、客户信任危机,甚至可能面临法律制裁。
数据采集是大数据处理的第一步。
为了实现高效的数据采集,需要采用各种数据抓取、数据接口等技术手段,从各种来源收集数据。
还需要考虑数据的实时性和准确性。
对象存储技术是一种基于对象的存储架构,它将数据作为对象进行存储和管理。
对象存储系统采用分布式存储方式,具有可扩展性强、数据一致性高等优点,特别适用于非结构化数据的存储。
声明:本文内容来源于公开渠道或根据行业大模型生成,对文中内容的准确性不作任何保证。
本文内容仅供参考,不构成相关领域的建议和依据。
二、大数据平台与架构设计(一)大数据平台概述大数据平台是指基于大数据技术,集数据存储、处理、分析和应用为一体的综合性平台。
它以高效、稳定、安全、灵活的方式处理海量数据,为用户提供数据驱动的业务决策和支持。
大数据平台的特点主要体现在以下几个方面:1、数据量大:能够处理海量数据,满足各种规模的数据处理需求。
2、数据类型多样:支持结构化、非结构化等多种数据类型。
3、处理速度快:采用高性能的数据处理技术和架构,提高数据处理速度。
大数据平台建设方案

大数据平台建设方案随着科技的不断发展,大数据已经成为推动社会进步和经济发展的重要支持。
大数据平台建设是指在企业或组织中搭建一个可支持海量数据存储、快速处理和有效分析的技术基础设施的过程。
下面是一个大数据平台建设方案的示例,旨在帮助企业或组织更好地利用大数据资源。
一、需求分析1.数据规模:明确数据规模,包括实时数据流量、历史数据量等。
2.数据源:确定需要收集和存储的数据源,如数据库、日志文件、传感器数据等。
3.数据类型:明确数据的类型,包括结构化数据、半结构化数据和非结构化数据等。
4.数据处理需求:了解对数据进行清洗、整理、加工和分析的具体需求,包括数据清洗、数据转换、数据集成、数据分析等。
5.查询需求:确定查询和检索数据的需求,包括实时查询、历史查询、自定义查询等。
二、平台选型1. 云平台选择:根据企业或组织的实际情况,选择合适的云平台,如AWS、Azure、Google Cloud等。
2. 大数据技术选择:根据企业或组织的数据处理需求,选择合适的大数据技术,如Hadoop、Spark、Hive、HBase等。
3.数据存储选择:选择适合的数据存储技术,如HDFS、S3、NoSQL数据库等。
4. 数据处理选择:根据数据处理需求,选择合适的数据处理技术,如MapReduce、SQL查询、实时流处理等。
三、架构设计1.数据收集与传输:设计数据采集和传输系统,包括数据源接入、数据传输和数据采集模块的设计,确保数据的实时采集和传输。
2.数据存储与管理:设计数据存储和管理系统,包括数据存储架构和数据管理系统的设计,确保数据的安全存储和高效管理。
3.数据处理与分析:设计数据处理和分析系统,包括数据清洗、数据转化、数据集成和数据分析模块的设计,确保数据的高效处理和有效分析。
4.查询与可视化:设计查询和可视化系统,包括查询引擎和可视化工具的设计,确保用户可以轻松查询和可视化数据。
四、数据安全1.数据加密:采用数据加密技术,确保数据在传输和存储过程中的安全性。
市大数据中心大数据资源平台概要设计方案

市大数据管理中心大数据资源平台概要设计方案目录背景与需求分析12345大数据管理中心发展背景为建设卓越全球城市,实现政府治理能力现代化目标,由市大数据中心牵头,在政务公共数据管理和互联网政务服务方面采取了一系列的实践工作。
根据《市公共数据和一网通办管理办法》要求,前期已在“一网通办”的政务服务领域进行了信息化项目建设,在提升了政府治理能力和公共服务水平的同时,也产生了汇聚全市政务公共数据,探索政务服务领域应用的需求。
市大数据中心作为全市政务数据的主要管理单位,承担着政策本地化落实、政务数据交换、大数据应用研究、信息化建设运维以及其他数据相关的工作职责,从中心成立之初便开始研究政务数据管理和应用的方法,去年年底探索了以政务数据交换共享为核心的实践,但随着对中心职能的理解加深,我们认为中心不仅作为全市政务数据的“枢纽中转中心”,更应该成为各政务服务条线领域的“归集管理中心”,为本市的经济活动、公共事业、社会关系、人员密度等各城市管理领域提供数据层面的最大支撑。
规划公共数据发展路线支撑城市服务能效提升精准城市服务整体共享协同数据科学管理ü公共数据共享ü社会数据协同ü条线业务协同ü数据服务开放ü社会治理ü宏观经济ü市场监管ü生态保护城市高效运行ü应急事件响应ü事件风险预防ü数据完整归集ü数据实时同步ü资源目录健全ü数据全面治理大数据共享交换平台建设与使用情况大数据中心自去年开始,根据整体规划启动了市数据共享交换平台项目的建设,并于2019年1月开始正式进行全市范围的试运行。
平台建设内容包括:1、总集成及部分应用开发:平台集成门户及整体平台的基础功能菜单级整合;2、数据治理子系统:包含数据交换模块和服务管理模块,实现数据资源目录及三清单的管理,并提供市级数据库的对外发布利用;3、数据共享交换子系统:实现数据交换引擎、统一调度引擎、任务管理、数据桥接等功能,以及数据湖数据的存储管理、共享与交换;4、数据质量监管及支撑子系统:实现数据质量管理功能,包括数据质量规则制定、数据质量稽核、数据质量问题闭环管理;5、大数据支撑管理子系统:包含市级数据湖和市级数据库,汇聚“四大基础库”、“市级统建系统”、“各市级委办系统”、“各行政区系统”的经过初始治理的原始数据;并存放经过一系列清洗、转换、加载、治理步骤后的高质量的政务数据资源,为城市管理、公共服务等提供数据来源;平台接入52个委办的公共数据,每月16亿条以上,数据总容量在176.0 TB,人口库预计46.75TB,法人库预计1.78TB,空间地理库预计7.99TB,电子证照库预计91.05TB。
大数据平台规划方案

大数据平台规划方案
一、整体规划。
在构建大数据平台之前,首先需要明确整体规划。
企业需要明确大数据平台的
定位和目标,明确数据的来源和去向,明确数据的存储和计算需求,以及数据的分析和挖掘目标。
同时,需要考虑到未来的扩展和升级需求,确保大数据平台具有良好的可扩展性和灵活性。
二、技术架构。
在选择技术架构时,需要根据企业的实际需求和现有技术基础进行选择。
可以
考虑采用分布式存储和计算技术,如Hadoop、Spark等,以及实时流处理技术,如Kafka、Flink等。
同时,需要考虑到数据的采集、清洗、存储、计算和展现等环节,选择合适的技术和工具进行支撑。
三、数据治理。
数据治理是大数据平台建设中至关重要的一环。
需要建立完善的数据管理体系,包括数据的采集、存储、清洗、加工、分析和展现等环节。
同时,需要建立数据质量管理机制,确保数据的准确性和完整性。
此外,还需要建立数据安全和隐私保护机制,保障数据的安全和合规性。
四、安全保障。
在大数据平台建设过程中,安全保障是不可忽视的一环。
需要建立完善的安全
策略和机制,包括数据的加密、访问控制、安全审计等方面。
同时,需要建立灾备和容灾机制,确保数据的持久性和可靠性。
此外,还需要建立监控和预警机制,及时发现和应对安全威胁。
综上所述,构建一套完善的大数据平台需要从整体规划、技术架构、数据治理
和安全保障等方面进行综合考虑。
只有在这些方面都做到位,才能确保大数据平台
的稳定运行和持续发展。
希望本文的内容能够为企业构建大数据平台提供一些参考和帮助。
大数据平台建设方案

大数据平台建设方案随着互联网的快速发展,我们进入了信息爆炸的时代。
大数据作为新一代的核心驱动力,正逐渐成为各行业的重要资源。
在这个背景下,如何构建一个高效的大数据平台,成为了各个企业与组织亟待解决的问题。
本文将着重探讨大数据平台的建设方案,从不同的角度与维度入手,为读者带来深度思考与新的观点。
一、平台架构设计在构建大数据平台之前,我们首先需要设计一套合理的平台架构。
一个好的平台架构应该具备以下几个要素:1. 数据采集与存储层:这是大数据平台的基础,应该具备高效、稳定的数据采集与存储能力。
在采集层,我们可以使用各种数据采集工具和技术,如Flume、Kafka等,将数据从不同的数据源收集到平台中。
在存储层,我们可以选择使用Hadoop、HBase等分布式存储系统,确保数据的高可靠性和可扩展性。
2. 数据处理与计算层:这是大数据平台的核心,主要用于对数据进行分析与挖掘。
在这一层,我们可以使用各种计算框架和引擎,如MapReduce、Spark等,处理海量的结构化和非结构化数据,提取有价值的信息。
同时,可以采用机器学习和深度学习算法,对数据进行建模和预测,为业务决策提供支持。
3. 数据可视化与应用层:这是大数据平台的最终目标,将处理后的数据以可视化的形式展现出来,并应用于各个业务场景中。
在这一层,我们可以使用各种数据可视化工具和技术,如Tableau、PowerBI等,将数据转化为直观、易懂的图表和报表。
同时,可以开发各种基于大数据的应用程序,实现个性化的服务和精准营销。
二、技术选型与整合在搭建大数据平台时,选择合适的技术和工具非常重要。
不同的技术和工具在处理大数据的能力和效率上存在差异,因此需要进行合理的技术选型与整合。
1. 数据存储技术:在选择数据存储技术时,应考虑数据的类型、规模和访问要求。
如果数据主要为结构化数据,并且需要进行实时查询和分析,可以选择关系型数据库;如果数据主要为非结构化数据,并且需要进行批量处理和分析,可以选择分布式文件系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目技术方案大数据平台方案设计1.1需求分析1.1.1采购范围与基本要求建设XX高新区开发区智慧园区的人口库(12万居民)、法人库(1200家企业)、地理信息库(已建设区域35平方公里的3维电子地图、未建设区域80平方公里的航拍电子地图)、视频库(1000个摄像点)、大数据处理平台、数据管理服务平台。
1.1.2建设内容要求1.1.2.1人口库人口库的基本信息以公安部门户籍和暂住人口信息为基础,整合人社、计生、民政、教育等多个部门信息资源,建设统一规范的人口库和人口信息服务平台。
(1)人口库的内容目录数据库层:能够安全存储人口库的内容目录中列出的信息内容,对居民、企业、政府提供安全的人口信息服务,为人口大数据分析提供基本数据源。
应用支撑层:包括门户框架、数据库维护、报表组件、数据挖掘等,用于为应用层提供应用支撑。
数据挖掘提供常见的数据分析/挖掘工具、通用算法,利用大数据平台的计算能力进行分析,对人口库数据进行数据挖掘与发现,提供有价值的分析结果。
应用层:包括人口信息服务、人口专题分析、公共服务等。
1.1.2.2法人库法人库以工商部门的企业信息为基础,整合各参建部门系统中的法人信息,如机构代码、机构名称、机构类型、经济行业、业务经营范围、机构地址、法定代表人等字段信息,建成标识统一、结构科学、查询快捷、动态管理的法人信息库。
制定与交换平台对应的相关标准、制度和规范管理体系,实现工商局、地税局、国税局、质量技术监督局等法人数据相关业务部门之间的网络互联和业务数据的实时交换与应用。
(1)法人库的内容目录数据库层:能够安全存储法人库的内容目录中列出的信息内容,对居民、企业、政府提供安全的法人信息服务,为法人大数据分析提供基本数据源。
应用支撑层:包括门户框架、数据库维护、统计与报表组件、数据挖掘等,用于为应用层提供应用支撑。
数据挖掘提供常见的数据分析/挖掘工具、通用算法,利用大数据平台的计算能力进行分析,对法人库数据进行数据挖掘与发现,提供有价值的分析结果。
应用层:包括法人信息服务、法人专题分析、公共服务等。
1.1.2.3地理信息库以国土资源部空间地理数据框架作为基础,采用分布式存储并行计算的技术思路统一搭建地理信息库,再与智慧园区建设涉及的各类专题图层进行融合、关联,实现统一共享,逐渐形成XX高新区权威、丰富的地理信息数据库。
要求根据不同信息资源类别,提供数据库表结构设计。
地理信息库维护文件主要提供地图基本操作、地图测量、图层控制、空间分析等信息服务功能。
地理信息库配置一套高性能GIS工具软件,基于高性能云GIS平台搭建,实现空间数据的统一管理,完成空间数据检查、转换、入库、管理、制图显示、服务发布等一系列空间数据分析处理功能。
(1)地理信息库的内容目录数据处理:格式转换、坐标转换、属性编辑、数据裁切。
数据质检:矢量数据检查、栅格数据检查、三维模型数据检查、元数据检查。
入库更新:矢量数据入库、影像数据入库、三维模型数据入库、元数据入库。
数据输出:矢量数据提取、栅格数据提取。
查询浏览:地图浏览、数据加载、SQL查询、空间查询、数据对比浏览、元数据查询。
历史数据管理:历史版本数据比较、版本数据提取。
系统管理:权限管理、日志管理、备份恢复。
1.1.2.4视频库(1)视频库的内容目录与视频监控系统的接口、视频入库、视频目录管理、视频文件管理、视频特征文件生成、视频检索、视频异常发现等。
1.1.2.5大数据处理平台(1)大数据基础平台提供基础管控、基础服务的大数据基础支撑功能。
大数据基础平台要充分利用目前先进的大数据处理技术,保证系统技术的前瞻性和先进性。
大数据基础平台要求提供海量数据的采集、存储、计算、接口服务能力;需要满足海量、异构的大数据的存储、共享、开放及分析挖掘方面的要求;需要采用主流的大数据的技术架构,全面满足结构化数据、半构化数据及非结构化数据的存储、处理及计算要求;提供多种数据采集工具,支持多种格式数据采集;提供接口服务,供二次开发应用等。
大数据基础平台要求能够管理大数据中心集群的物理服务器资源,控制分布式程序运行,隐藏下层故障恢复和数据冗余等细节,为大数据处理平台提供统一的管理、监控、维护等日常管理功能。
主要包括:资源管理、安全管理、运维管理、集群部署及监控、任务调度等功能,同时配备友好的管理界面。
①数据采集要求大数据处理平台数据主要来自数据资源中心,包括基础库(人口库、法人库、地理信息库、视频库)数据、主题库(业务数据库)数据和互联网数据,同时也支持其他外部系统数据来源。
数据采集系统要求提供多种数据采集工具,支持多种格式数据采集。
对于结构化数据、非结构化数据以及网络数据采用不同的采集工具进行数据导入。
支持多种数据采集方式,比如ETL、FTP、文件导入导出、关系数据库数据等。
②分布式存储要求平台能够根据结构化数据和非结构数据的不同特点,分别提供数据仓库和分布式列式数据库存储服务,底层支撑技术支持分布式文件系统,所有的数据可以形成多份副本均匀分布存储在各个服务节点的存储上,保证数据可靠性和提高读写效率。
③大数据计算引擎要求离线计算引擎(Mapreduce):离线分布式计算作为一个海量结构化数据离线处理与分析服务,着力于实时性要求不高的海量数据(TB/PB级别)离线处理。
支持并行化、容错、数据分布、负载均衡。
离线计算引擎需要具有PB级的存储处理能力和计算吞吐能力,支持多应用多实例并发同时计算并隔离应用数据和程序的能力。
支持Mapreduce等批量数据分布式计算框架。
支持分布式内存计算框架。
支持作业查询预处理调度算法,可根据业务属性对指定的多个队列按照优先级的配置进行任务的提交。
具备高可靠性,支持主控节点双机,避免单点故障不可恢复。
具备高度可扩展,可动态增加/削减计算节点,真正实现弹性计算。
支持离线计算组件界面配置化,可以对配置进行查看和修改,并立刻生效。
支持离线计算组件性能指标界面可视化,通过界面实时监控组件性能指标。
支持多租户权限管理能力,支持不同用户之间的资源隔离。
支持多应用多实例并发同时计算并隔离应用数据和程序的能力。
内存计算引擎(Spark):基于内存的框架,适用于需要多次操作特定数据集的应用场合。
由于中间输出和结果可以保存在内存中,从而不再需要读写分布式文件系统,能更好地适用于数据挖掘与机器学习等需要迭代的算法。
支持作业查询预处理调度算法,可以根据业务属性对指定的多个队列按照优先级的配置进行任务的提交。
支持审计日志可查询,在管理运维的界面中可以进行内存计算引擎日志的查询。
支持相关存储目录规整,对内存计算引擎的数据目录进行规整,修改默认配置,并提供界面上的修改配置的地方。
支持配置界面化,能够在管理运维界面上对内存计算引擎的配置进行查看和修改,并能够同步到前台立刻生效。
支持通过界面展示性能指标,能够在界面上查看内存计算引擎的性能指标数据。
支持on Yarn 等方式,在管理运维界面上安装服务,可以在安装的时候,选择On Yarn等的方式安装。
支持内存计算引擎的Master的HA等,可以对内存计算引擎的master角色进行HA等部署,以保证该节点的高可用性。
实时计算引擎(例如spark streaming、Storm):实时分布式计算需要提供大吞吐量的实时流式数据处理。
要求保证高可靠性的前提下让数据处理更加实时,具备低延时、容错和分布计算特性。
采用分布式计算框架提供实时计算服务,可按需扩容。
支持高并发低延时的数据处理。
计算引擎:支持SPARK STREAMING等实时计算框架、STORM分布式流式计算框架两种计算框架功能。
支持对流数据的处理,数据可以建立关联处理。
高效处理数据:支持消息的分流、合流、聚合的消息处理。
数据按业务分析,可支持不同的应用接入,并对应不同的应用输出计算结果。
事件监测:对数据处理低延时,满足事件监控等实时性要求很高的场景。
具备高可靠性,支持主控节点双机,具备自动容错能力,避免单点故障不可恢复。
支持实时计算组件界面配置化,可以对配置进行查看和修改,配置修改立刻生效。
支持实时计算组件性能指标界面可视化,通过界面实时监控实时计算组件性能指标。
④(例如solr)提供丰富的查询语言,同时实现可配置、可扩展并对查询性能进行优化,提供一个完善的功能管理界面。
可以实现集中式的配置信息、自动容错、查询时自动负载均衡、自动分发的索引和索引分片和事务日志等多种特色功能。
可以对搜索引擎集合进行快照,可以周期、定时创建集合快照,对索引数据进行备份。
提供搜索引擎数据切换自动化工具,一键式操作实现搜索引擎数据从一个集群切换到另外一个集群,安全可靠。
提供搜索引擎节点扩容数据重分布自动化工具,搜索引擎节点扩容后数据均匀的重分布到新增节点上,负载均匀的分担到各节点上。
支持搜索引擎服务自动拉起功能,提高可靠性。
除管理平台界面手工停止服务之外的异常服务停止后都会自动拉起,保证服务连续可用。
⑤资源管理(例如yarn)资源管理要求能够实现调度和分配集群的内存和计算等资源给上层应用和服务,能够管理运行在集群节点上的任务的生命周期和资源使用,提供静态资源池和动态资源池功能。
在多用户运行环境中,能够支持计算额度和访问控制,作业优先级和资源抢占,达到在保障公平的前提下,有效地共享集群资源。
支持VIP队列管理,支持根据业务需要指定作业在指定的计算节点上运行,隔离重点任务和普通任务,保障重点任务的物理资源。
要求给出详细的设计方案。
资源管理能够面向海量数据处理和大规模计算类型的复杂应用提供统一的资源管理和调度。
提供通用的并行计算框架,要求兼容批量分布式计算、内存分布式计算、流式计算等多种编程模式。
具备高可扩展性,支持作业定点调度,支持优先级高的作业优先分配到资源。
能够自动检测故障和系统热点,重试失败任务,保证作业稳定可靠运行完成。
支持作业定点调度,指定作业在哪些主机上运行,隔离重点任务和普通任务。
支持队列增加优先级属性,优先级高的作业优先分配到资源。
支持白名单功能,限制客户端向集群的resourcemanager提交作业。
支持提交权限,限制无权用户提交作业并运行。
支持队列属性修改图形化,在图形化界面中配置新增、修改、删除队列属性。
支持队列属性增加“最大作业提交数”属性,在图形化界面中新增“最大作业提交数”属性可配置⑥分布式协作服务(例如Zookeeper)分布式协作服务提供分布式、高可用的协作服务,可以用来构建分布式应用。
它能为分布式文件系统、分布式列式数据库、离线计算、资源管理与调度、数据仓库等大数据组件提供重要的功能支撑。
在分布式应用中,通常需要分布式协作服务来提供可靠的、可扩展的、分布式的、可配置的协调机制来统一各系统的状态。
帮助系统避免单点故障,建立可靠的应用程序。