最新人教版初三数学圆的测试题及答案

合集下载

最新人教版初中数学九年级数学上册第四单元《圆》测试题(有答案解析)(2)

最新人教版初中数学九年级数学上册第四单元《圆》测试题(有答案解析)(2)
A.1B. C.2D.
9.如图, 的顶点 是 上的一个动点, , ,边 , 分别交 于点 , ,分别过点 , 作 的切线交于点 ,且点 恰好在边 上,连接 ,若 的半径为 ,则 的最大值为()
A. B. C. D.
10.如图,半径为1cm的 在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2
∵AC=AB
∴∠BAC=180°-2∠C=45°
∴∠BOC=90°
∴BC= .
故答案为C.
【点睛】
本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.
8.B
解析:B
【分析】
因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=2时PA最小.运用勾股定理求解.
13.如图, 是 的内心, 的延长线与 的外接圆相交于点 ,与 交于点 ,连接 、 、 、 .下列说法:① ,② ,③ ;④点 是 的外心;正确的有______.(填写正确说法的序号)
14.如图,在半径为2,圆心角为90°的扇形内,以 为直径作半圆,交弦 于点 ,连接 ,则图中阴影部分的面积是______.(结果用含 的式子表示)
A. B. C. D.
6.如图,⊙O的直径 , 是⊙O的弦, ,垂足为 , ,则 的长为()
A. B. C.16D.8
7.如图,⊙O的半径为2,四边形ADBC为⊙O的内接四边形,AB=AC,∠D=112.5°,则弦BC的长为( )
A. B.2C. D.
8.如图,⊙O的半径为1,点O到直线 的距离为2,点P是直线 上的一个动点,PA切⊙O于点A,则PA的最小值是()

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

人教版初三数学圆的测试题附详细标准答案

人教版初三数学圆的测试题附详细标准答案

九年级圆测试题一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影地面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等地圆内接正三角形、正方形、正六边形地边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)地位置在 ( )A ⊙O 内B ⊙O 上C ⊙O 外D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′地两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( )A.30° B.45° C.60° D.90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥地底面半径为 3,母线长为5,则它地侧面展开图地圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆地圆心距d = 3 cm ,两圆地半径分别为方程0352=+-x x地两根,则两圆地位置关系是 ( )A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆地是 ( )A 平行四边形 B 菱形 C 矩形 D 以上答案都不对OO'AB 第4题图9.如图,以等腰三角形地腰为直径作圆,交底边于D ,连结AD ,那么 ( )A ∠BAD +∠CAD= 90° B ∠BAD >∠CAD C ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题地有 ( )①平分弦地直径垂直于弦;②如果两个三角形地周长之比为3∶2,则其面积之比为3∶4;③圆地半径垂直于这个圆地切线;④在同一圆中,等弧所对地圆心角相等;⑤过三点有且只有一个圆.A 1个 B 2个 C 3个 D 4个二、填空题(每题3分,共24分)11.一个正多边形地内角和是720°,则这个多边形是正边形;12.现用总长为m 80地建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛地面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形地边长 是 1 cm ,那么徽章地直径是 ;14.如图,弦AB 地长等于⊙O 地半径,如果C 是AmC 上任意一点,则sinC =;15.一条弦分圆成2∶3两部分,过这条弦地一个端点引远地切线,则所成地两弦切角为;16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们地半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分地面积 之和是;17.如图:这是某机械传动部分地示意图,已知两轮地O·mBABCDAO外沿直径分别为2分米和8分米,轴心距为6分米,那么两轮上地外公切线长为分米.18.如图,ABC 是圆内接三角形,BC 是圆地直径,∠B=35°,MN 是过A 点地切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形地各边地中点在同一个圆上.已知:如图所示,菱形ABCD 地对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 地中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 地直径,C 是⊙O 上一点,AD 和⊙O 在点C 地切线相垂直,垂足为D ,延长AD 和BC 地延长线交于点E ,求证:AB=AE .★•第50题图 20题图21.如图,⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰 AC 于 E ,交 BC 于D . 求证:BC=2DE22.如图,过圆心O 地割线PAB 交⊙O 于A 、B ,PC 切⊙O 于C ,弦CD ⊥AB 于点H ,点H分AB 所成地两条线段AH 、HB 地长分别为2和8. 求PA 地长.23.已知:⊙O 1、⊙O 2地半径分别为2cm 和7cm ,圆心O 1O 2=13cm ,AB 是⊙O 1、⊙O 2地外公切线,切点分别是A 、B.求:公切线地长AB.圆测试题题答案一、选择题1. D.提示:设两个半圆交点为D.连接CD,CD ⊥AB.阴影地面积为两个半圆地面积减去直角三角形地面积2242 3.则CD=3,AD=1,BD=3.2.C .提示:设圆地半径为R,则三角形边长为3R,正方形边长为2R,正六边形地边长为R.3.B.提示:用勾股定理可以求出点A到圆心地距离为5.4.C.提示:连接O’A,O’B.O’O.O’A⊥OA,O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图地圆心角等于216°.7.D.提示:设两圆地半径r1,r2.r1+r2=22ba=ba=5.r1-r21-r2.两圆内含.8.B.提示:从圆地圆心引两条相交直径,再过直径端点作切线,可以得到菱形.9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形.AB=AC,∠BAD =∠CAD. . 10.A.提示:④正确.①错在两条直径平分但不互相垂直.②面积之比为3∶2.③直径垂直于过直径端点地切线.⑤这三点可能在同一直线上.二、填空题11.6.提示:根据多边形地内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值.13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形地边长22()()22a b+=1.r=1.14.12.提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°,∠C=30°.15.72°.提示:如图.劣弧AB=144°,∠AOB=144°,∠OBA=18°,∠ABC=72°,OCBA16.32π,五边形ABCDE地内角和为540°,五个阴影部分地扇形地圆心角为540°,540°地扇形相当于32个圆.图中五个阴影部分地面积之和是32π.17.提示:将两圆圆心与切点连接起来,并将两圆地圆心联结起来,两圆地半径差是3,可抽象出如下地图形.过O作OC⊥O’B,OO’=6,O’C=CBAO'O18.55°,35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B.∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形地对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上地中线,∴OE=12AB,OF=12BC,OG=12CD,OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径地圆上.应当指出地是:由于我们是在平面几何中研究地平面图形,所以在圆地定义中略去了“平面内”一词.更准确而严格地定义应是,圆是平面内到定点地距离等于定长地点地集合.证明四点共圆地另一种方法是证明这四个点所构成地四边形对角互补.20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径地,通常要将圆上地一点与直径地端点连接起来,构造直角三角形.我们发现∠ACD是弦切角,∠ACD =∠B.∠ACD与∠CAD互余.在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O地切线,∴∠ACD=∠B.又∵AB是⊙O地直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形地性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆地一个内角等于对角地外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理.PC2=PA•PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH•BH=CH2解:∵PC为O地切线,∴PC2=PA•PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH•BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点地半径,为求公切线地长AB,首先应连结O1A、O2B,得直角梯形O1ABO2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰地问题了.解:连结O1A、O2B,则O1A⊥AB,O2B⊥AB.过O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆地对称性可知,图中有两条外公切线,并且这两条外公切线地长相等.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.83lcP 。

人教初三数学圆试卷答案

人教初三数学圆试卷答案

一、选择题1. 下列各数中,不是有理数的是()A. √4B. √9C. √16D. √-1答案:D2. 圆的半径为5cm,则圆的直径为()A. 10cmB. 25cmC. 50cmD. 100cm答案:A3. 圆的周长与直径的比是()A. 2π:1B. π:2C. 1:πD. 1:2π答案:A4. 一个圆的半径扩大到原来的2倍,那么它的周长扩大到原来的()A. 2倍B. 4倍C. 1倍D. 8倍答案:A5. 圆的面积公式为S=πr²,若圆的半径为3cm,则圆的面积为()A. 9πcm²B. 15πcm²C. 18πcm²D. 27πcm²答案:A二、填空题6. 圆的直径是圆的半径的()答案:27. 圆的周长是圆的直径的()答案:π8. 一个圆的半径为4cm,那么它的周长是()答案:8πcm9. 一个圆的面积为36πcm²,那么它的半径是()答案:6cm10. 一个圆的周长是25.12cm,那么它的直径是()答案:8cm三、解答题11. 已知一个圆的半径为10cm,求这个圆的周长和面积。

解答:圆的周长C=2πr=2π×10cm=20πcm,圆的面积S=πr²=π×10²cm²=100πcm²。

12. 一个圆的直径为24cm,求这个圆的半径、周长和面积。

解答:圆的半径r=直径÷2=24cm÷2=12cm,圆的周长C=2πr=2π×12cm=24πcm,圆的面积S=πr²=π×12²cm²=144πcm²。

13. 一个圆的周长是圆的直径的π倍,求这个圆的半径、周长和面积。

解答:设圆的半径为r,则圆的周长C=2πr,圆的直径d=2r,根据题意,C=πd,即2πr=π×2r,化简得r=2cm。

圆的周长C=2πr=2π×2cm=4πcm,圆的面积S=πr²=π×2²cm²=4πcm²。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

人教版初三圆测试题及答案

人教版初三圆测试题及答案

人教版初三圆测试题及答案一、选择题(每题2分,共10分)1. 半径为2的圆的面积是多少?A. 4πB. 6πC. 8πD. 12π2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 若圆的半径是3,圆心角为60°,那么这个弧长是多少?A. πB. 3πC. 6πD. 9π4. 点P到圆心O的距离是5,圆的半径是3,那么点P与圆的位置关系是:A. 在圆上B. 在圆内C. 在圆外D. 无法确定5. 圆的切线与半径垂直,且切点到圆心的距离等于:A. 半径B. 直径C. 周长的一半D. 面积的平方根二、填空题(每题2分,共10分)6. 半径为4的圆的面积是_________。

7. 若圆的周长为12π,那么圆的半径是_________。

8. 圆心角为120°的弧所对的圆心角是_________。

9. 点P到圆心O的距离是2,圆的半径是4,点P与圆的位置关系是_________。

10. 圆的切线与半径垂直,切点到圆心的距离是_________。

三、计算题(每题5分,共20分)11. 已知圆的半径为5,求圆的周长和面积。

12. 已知圆的周长为16π,求圆的半径。

13. 若圆的半径为7,圆心角为45°,求该弧长。

14. 已知点P到圆心O的距离为10,圆的半径为8,求点P与圆的位置关系。

四、解答题(每题10分,共20分)15. 某圆的半径为6,圆心角为30°,求该弧所对的圆心角和弧长。

16. 已知圆的切线在点M处与圆相切,OM=6,半径为4,求切线PM的长度。

五、综合题(15分)17. 某工厂需要在一块半径为10米的圆形场地上安装一个直径为4米的圆形水池,水池的中心与场地的中心重合。

求水池的半径占场地半径的比例,以及水池的面积占整个场地面积的比例。

六、结束语本测试题覆盖了圆的基本概念、公式和计算方法,旨在帮助学生巩固和检验对圆的相关知识的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级圆测试题一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么OO'AB 第4题图( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

A 1个B 2个C 3个D 4个 二、填空题(每题3分,共24分)11.一个正多边形的内角和是720°,则这个多边形是正 边形;12.现用总长为m 80的建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛的面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形的边长 是 1 cm ,那么徽章的直径是 ;14.如图,弦AB 的长等于⊙O 的半径,如果C 是AmC 上任意一点,则sinC = ;15.一条弦分圆成2∶3两部分,过这条弦的一个端点引远的切线,则所成的两弦切角为 ;BCA16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分的面积 之和是 ;17.如图:这是某机械传动部分的示意图,已知两轮的 外沿直径分别为2分米和8分米,轴心距为6分米,那 么两轮上的外公切线长为 分米。

18.如图,ABC 是圆内接三角形,BC 是圆的直径,∠B=35°,MN 是过A 点的切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形的各边的中点在同一个圆上.已知:如图所示,菱形ABCD 的对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 和⊙O 在点C 的切线相垂直,垂足为D ,延长AD 和BC 的延长线交于点E ,求证:AB=AE .★•第50题图 20题图21.如图,⊙O以等腰三角形ABC一腰AB为直径,它交另一腰AC于E,交BC于D.求证:BC=2DE22.如图,过圆心O的割线PAB交⊙O于A、B,PC切⊙O于C,弦CD⊥AB于点H,点H 分AB所成的两条线段AH、HB的长分别为2和8.求PA的长.23.已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.圆测试题题答案一、选择题1.D.提示:设两个半圆交点为D.连接CD,CD⊥AB. 阴影的面积为两个半圆的面积减去直角三角形的面积。

3.则CD=3,AD=1,BD=3.2.C.提示:设圆的半径为R,则三角形边长为3R, 正方形边长为2R, 正六边形的边长为R.3.B.提示:用勾股定理可以求出点A到圆心的距离为5.4.C. 提示:连接O’A,O’B. O’O.O’A⊥OA, O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图的圆心角等于216°.7.D.提示:设两圆的半径r1,r2. r1+r2=22ba=ba=5.r1-r21-r2. 两圆内含.8.B.提示:从圆的圆心引两条相交直径,再过直径端点作切线,可以得到菱形。

9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形。

AB=AC, ∠BAD =∠CAD. . 10.A.提示:④正确。

①错在两条直径平分但不互相垂直。

②面积之比为3∶2。

③直径垂直于过直径端点的切线。

⑤这三点可能在同一直线上。

二、填空题11.6.提示:根据多边形的内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值。

13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形的边长22()()22a b+=1。

r=1.14.12。

提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°, ∠C=30°.15.72°。

提示:如图。

劣弧AB=144°,∠AOB=144°, ∠OBA=18°, ∠ABC=72°,OCBA16.32π,五边形ABCDE的内角和为540°,五个阴影部分的扇形的圆心角为540°, 540°的扇形相当于32个圆。

图中五个阴影部分的面积之和是32π。

17.。

提示:将两圆圆心与切点连接起来,并将两圆的圆心联结起来,两圆的半径差是3,可抽象出如下的图形。

过O作OC⊥O’B,OO’=6, O’C=CBAO'O18.55°, 35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B. ∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形的对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上的中线,∴OE=12AB,OF=12BC,OG=12CD, OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径的圆上.应当指出的是:由于我们是在平面几何中研究的平面图形,所以在圆的定义中略去了“平面内”一词.更准确而严格的定义应是,圆是平面内到定点的距离等于定长的点的集合.证明四点共圆的另一种方法是证明这四个点所构成的四边形对角互补。

20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径的,通常要将圆上的一点与直径的端点连接起来,构造直角三角形。

我们发现∠ACD是弦切角,∠ACD =∠B。

∠ACD与∠CAD互余。

在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O的切线,∴∠ACD=∠B.又∵AB是⊙O的直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形的性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆的一个内角等于对角的外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理。

PC2=PA•PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH•BH=CH2解:∵PC为O的切线,∴PC2=PA•PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH•BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点的半径,为求公切线的长AB ,首先应连结O 1A 、O 2B ,得直角梯形O 1ABO 2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰的问题了. 解:连结O 1A 、O 2B ,则O 1A ⊥AB ,O 2B ⊥AB.过O 1作O 1C ⊥O 2B ,垂足为C ,则四边形O 1ABC 为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆的对称性可知,图中有两条外公切线,并且这两条外公切线的长相等.。

相关文档
最新文档