燃气轮机(透平)基础知识和基本原理

燃气轮机(透平)基础知识和基本原理
燃气轮机(透平)基础知识和基本原理

乙烯装置基础知识900句

化工装置基础知识语录 1.稀释线的作用降低反应器入口MAPD浓度和控制反应器的入口温度。 2.碳三加氢反应器发生飞温时,热区仍应保证正常运行。 3.碳三反应器开车时,氢气(补压线)根部阀应关闭,防止氢气窜入反应器,导致开车时 发生飞温。 4.碳三加氢反应器发生飞温事故时,应立即按PB停车泄压。 5.液体排放系统用于不含水的低温液体物料的排放。 6.乙烯装置中的燃气轮机,一般用来带动发电机,其优点是不会因燃气轮机产生故障而 使整个装置停车。 7.仪表风带水发生冻堵使调节阀失灵造成事故,是公用工程系统故障造成的。 8.乙烯装置中,6000伏供125千瓦以上电机,380/220伏供125千瓦以下电机及照明。 9.乙烯装置开车前,要配合施工单位审查单机试运方案并编制联动试车方案、化工投料 方案,编制装置试运转和化工投料总体方案。 10.由外界提供丙烯开丙烯制冷机是必备条件之一,但是,由外界提供乙烯开乙烯制冷机 是乙烯装置开车的优化条件,而不是必备条件。 11.丙烯开车前就要大量储备。乙烯装置无乙烯开车的关键是裂解炉投油后及早生产和积 累合格的碳二馏分,以便乙烯制冷系统尽快投入运行。 12.开车前建立乙烯精馏塔的全回流运转的同时,还可以通过乙烯精馏塔与脱乙烷、脱甲 烷塔相连管线,对脱甲烷塔系统和脱乙烷系统进行预冷,缩短开车时间。 13.冷箱系统开车前要求裂解气压缩机、丙烯制冷压缩机运行稳定。 14.裂解气压缩机各罐液面应降至不窜压为止(最低液面),并关闭各系统返回裂解气压缩 机的所有阀门。 15.在编制乙烯装置停车网络计划时,可以将制冷压缩机倒液与裂解气压缩机氮气运转作 为平行工序。 16.装置正常停车后,氨制冷系统才开始运转。 17.急冷水泵故障后为减少向急冷系统输入热量,裂解炉必须紧急停车。 18.紧急停车后,冷箱系统应尽可能保温保压保液位,以便下一步开车。 19.全面紧急停车后冷区各塔系统处于保压状态,碳二反应器泄压。 20.紧急停车时,要尽可能保证产品外送的正常。 21.全面紧急停车后,外操要在第一时间将乙烯外送加热改为蒸汽加热维持其外送压力和 温度稳定。 22.氢气纯度降低会造成甲烷化反应器床层温度升高。 23.乙烷炉注硫系统故障可造成甲烷化反应器床层温度升高。 24.紧急停车后甲烷化反应器不一定要用氮气置换。 25.甲烷化反应器停车后,若床层温度下降快时,要立即通氮气置换。 26.乙炔加氢系统选择何种工艺流程和反应器形式,主要根据反应器入口物料中乙炔的浓 度。 27.全馏分加氢工艺中,反应器床层温升小,催化剂选择性高,比较安全稳定。 28.催化剂活性是指催化剂加速反应的程度。 29.碳二加氢反应器使用过程中,加入粗氢的目的是降低催化剂的活性,提高催化剂的选 择性。 30.冷箱温度高,会造成氢气纯度下降,致使碳二加氢反应器出口不合格。 31.当提高碳二加氢反应器入口温度及氢炔比后,反应器出口乙炔仍超标,此时应判断反

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

透平膨胀机安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.透平膨胀机安全操作规程 正式版

透平膨胀机安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1、膨胀机前过滤器阻力超过0.05MPa 时,应停机加温。 2、运行中,当出现冰、二氧化碳等堵塞喷嘴或其它异常情况,立即停车加温吹除,加温过程中须保持润滑油和密封气的供应。 3、出现超速、异常声响、油压过低、冷却水量不足或轴承温度高时,迅速关闭紧急切断阀,停车检查处理。 4、保证进口温度在正常范围内;膨胀后,气体温度应保持一定的过热度,严格控制机后温度不低于-185℃,以防带液损

坏叶轮。 5、轴封压力应高于油压0.02MPa以上。 6、增压透平膨胀机启动前,打开增压机冷却器气侧排污阀;如有水滴,禁止通气。起动和停车时,须防止在管路发生共振的转速点停留,以免损坏机器。 7、检修后,应对油压、轴温、转速等有关联锁保护装置进行校验;开机前,应对联锁信号做联动调试。 8、对长期不运行的膨胀机,每周要手动盘车。 ——此位置可填写公司或团队名字——

空分基础知识

空分基础知识 空气中主要组份的物理特性如下 空气中99.04%是氧气和氮气,0.932%是氩气,它们的体积百分比基本不变。氢、二氧化碳和碳氢化合物视地区和环境在一定范围内变化。空气中的水蒸汽含量随着饱和温度和地理环境条件影响而变化较大。水蒸汽和二氧化碳具有和空气大不相同的性质,在大气压力下,水蒸汽达到0℃和二氧化碳达到-79℃时,就分别变成冰和干冰,?就会阻塞板式换热器的通道和筛板上的小孔。因此这些组份必须在空气进冷箱前除去。空气中的危险杂质是碳氢化合物,特别是乙炔。在精馏过程中如乙炔在液空和液氧中浓缩到一定程度即有发生爆炸的可能,因此乙炔在液氧中含量规定不得超过0.1ppm,

这必须予以充分的注意。?稀有气体中的不凝性气体如氖氦气,由于其冷凝温度很低,总以气态集聚在冷凝蒸发器中,侵占了换热面积而影响换热效果,因此也要经常排放。 氧气的用途: 氧气是地球上一切生命有机体赖以生存的物质,它的化学性 质非常活泼,很容易与其他物质化合生成氧化物。利用这一 物质,氧在冶金、化工、国防工业等部门都得到广泛的应用。 在甲醇合成的生产中,氧气与煤浆进行部分氧化反应,可生 产出有效的原料气:氢气、一氧化碳。 氮气的用途: (1) 氮的分子结构十分稳定,通常很难同其它物质发生化学 反应,表现出很大的惰性,所以工业上常用它来作为保护气。(2) 充氮气贮藏水果、蔬菜是一种先进的贮藏保鲜方法,它 使水果、蔬菜在高氮低氧的环境中减缓新陈代谢,并进入冬 眠状态,抑制后熟,从而长期保鲜。 (3) “真空充氮”,贮藏大米及其它粮食,可使粮食不蛀虫、不 发热、不霉变。 (4) 氮是植物生长的重要养分之一,空气中的氮很难被:随 物直接吸收,人们一般通过生产合成氨,然后以氨为原料, 生产备种能够被植物吸收的氮肥,如尿素。 空气分离主要有三种方法: 1低温法:先将空气通过压缩、膨胀降温,直至空气液化,

9E燃气轮机联合循环问题总结

9E燃气轮机联合循环发电厂必须知道 1.有差无差系统 (1) 2.除氧装置 (1) 3.燃机转速代号和对应转速比例 (2) 4.省煤器的再循环管的主要作用有二点: (2) 5.电缆先放电验电再装设接地线 (3) 6.主变接线方式 (3) 7. 电机缺相运行的现象与原因 (3) 8. 9E燃机开停机过程中FSR的变化 (4) 9. 操作过电压 (5) 10. 发电机中性点0PT的作用,出现异常有何现象 (5) 11. 发电机运行过程中机端电压升高和降低有哪些危害 (6) 12. 发电机转子接地 (7) 13. 进相运行: (8) 14. 励磁控制系统的限制器的分类 (9) 15. 无功 (11) 16. 主励磁机为什么是100赫兹 (13) 1.有差无差系统 简单而言就是看是否能求稳态误差,如果能求则是有差系统,否则是无差系统。 2.除氧装置 本锅炉配置的除氧装置由除氧器、给水箱和汽水分离器三大部件组成。其中除氧器和水箱对给水起到了除氧和蓄水的作用,汽水分离器主要是负责对除氧蒸发器来的汽水混合物进行分离供除氧器除氧使用。 除氧器立式布置在除氧水箱之上,除氧器顶部设有配水管和14只喷嘴,凝结水经喷头雾化成水雾后与蒸汽充分接触后加热变成饱和水。此时水中绝大部分氧气及其他不凝气体由于再也无法溶解于饱和水中而被逸出,最后由除氧器顶部排气管排出,以此达到一次除氧效果。经一次除氧的水由布水盘均匀地淋洒到乱堆的鲍尔环填料表面,使其表面积再一次增大,与除氧器下部进来蒸汽充分接触以达到深度除氧的效果。

3.燃机转速代号和对应转速比例 4.省煤器的再循环管的主要作用有二点: 第一点,启动时省煤器内的水是不流动的,而热烟气不断流过省煤器,将热量传给省煤器内的水,这样就有可能使省煤器内水局部汽化。 第二点,某些运行条件下,当省煤器内水温太低,容易引起管外壁结露,特别是烟气中含有氧化硫或氧气都会腐蚀管子。提供温度高的循环水,可以提高省煤器内水温,防止腐蚀。

透平膨胀机培训资料最新版

天然气透平膨胀机 培 训 教 程 四川空分设备(集团)有限责任公司 2010年 04月

第一部分基础理论简介 一、概述 目前低温技术应用非常广泛,从航天到超导,从气体分离到能量回收等,而低温能量的获得主要靠气体的膨胀,特别是气体的等熵绝热膨胀,透平膨胀机则是实现这一膨胀的有效设备,现已广泛用到气体液化分离、能量综合利用等方面。 二、膨胀机的形式 1、活塞式膨胀机:通称容积型,其特点是适宜于小流量、高压力、大膨 胀比工况;缺点是复杂、体积大、易损件多、操作维护复杂。 2、透平膨胀机:通称速度型,其特点是转速高、体积小、重量轻、结构 简单、易损件少、因而制造维修工作量小,适宜于大流量、中高压力 而初温较低。 按工作原理分: 1)冲动式:膨胀过程几乎完全在静止的喷嘴中进行; 2)反作用式:膨胀过程不仅在静止的喷嘴中进行,还在叶轮中进一步膨胀。 按气流流流动方向分: 1)径流式:气体在垂直于旋转轴的平面内沿半径方向流动; 2)轴流式:气体沿着平行于工作轮旋转轴方向流动; 3)径轴流式:气体由径向流入工作轮而由轴向流出。 4)透平膨胀机基本结构及工作原理 1)基本结构 膨胀机由通流部分、制动器及机身三部分组成 膨胀机通流部分:蜗壳、喷嘴、工作轮、扩压器 制动器:1)压缩机——入口管、叶轮、扩压器、蜗壳 2)风机——入口管、叶轮、扩压器、蜗壳 3)电机或油制动器 机身:支撑和隔热作用 3、工作原理 1)气体在喷嘴中流动 设置喷嘴的目的是使气流的动力能转变为气流的速度能并且使气 流降温,在喷嘴前后存在着压差,这些压差推动着气流流动。当气

流通过喷嘴时由于减压膨胀而使焓值降低,即使压力、温度下降, 这些焓降转变成气流的动能,使在喷嘴出口处气流获得巨大的速 度,因此喷嘴主要解决的问题是保持合理的形状以减小各种损失。 喷嘴在结构上可分为三段:即进口段、主体段、出口段 主体段又可分为2类:渐缩喷嘴(当喷嘴出口马赫数小于等于1) 缩放喷嘴(当喷嘴出口马赫数大于1)2)气体在工作轮中的流动(反动式透平膨胀机) 工作轮的作用: (1)把喷嘴出来的高速气体的动能,通过工作轮转化为机械能并由主轴外输出做功,以降低内能使温度进一步降低。 (2)使气体在工作轮进一步膨胀做功,进一步降低气体的焓值和温度; (3)改变气体的流动方向,使它由径向转化为轴向流动 反动度:气体在工作轮中膨胀的程度 反动度(ρ)=工作轮内的等熵焓降(h2s)/总的等熵焓降(h0)工作轮结构:目前常用的是带径向叶片的半开式和闭式叶轮 工作轮可分为主体段:使气流由外圆向中心的径向流动 导流段:使气流由径向转为轴向流动(减少流动损失, 提高效率) 4、气体在扩压器中的流动 为了使工作轮流道避免减速运动,以减少流动损失(工作轮出口速度 可达到50—80米/秒,甚至更大),为了充分利用能量及减少管道流动 摩擦损失,在工作轮出口外设置扩压器(与喷嘴作用相反)。 三、透平膨胀机的组成 主机、密封气系统、供油系统、仪控系统 1、主机:主机由蜗壳、转子、喷嘴、传动机构、轴承、密封、机身 1)蜗壳;它是为了使气流顺利改变方向并均匀分配给喷嘴,原则上保证气流在出口内圆上成轴对称流动。材料为铝合金、铜合金或不锈 钢。 2)喷嘴:透平能量转换的主要部件,近年来均采用叶片可以转动的可调喷嘴,以调节流道的通流面积,从而调节气量。材料为3Cr13或 2 Cr13等。

透平膨胀机基础知识

透平膨胀机 基础理论简介 一、概述 目前低温技术应用非常广泛,从航天到超导,从气体分离到能量回收等,而低温能量的获得主要靠气体的膨胀,特别是气体的等熵绝热膨胀,透平膨胀机则是实现这一膨胀的有效设备,现已广泛用到气体液化分离、能量综合利用等方面。 二、膨胀机的形式 1、活塞式膨胀机:通称容积型,其特点是适宜于小流量、高 压力、大膨胀比工况;缺点是复杂、体积大、易损件多、 操作维护复杂。 2、透平膨胀机:通称速度型,其特点是转速高、体积小、重 量轻、结构简单、易损件少、因而制造维修工作量小,适 宜于大流量、中高压力而初温较低。 按工作原理分: 1)冲动式:膨胀过程几乎完全在静止的喷嘴中进行; 2)反作用式:膨胀过程不仅在静止的喷嘴中进行,还在叶轮中进一步膨胀。 按气流流流动方向分: 1)径流式:气体在垂直于旋转轴的平面内沿半径方向流动; 2)轴流式:气体沿着平行于工作轮旋转轴方向流动; 3)径轴流式:气体由径向流入工作轮而由轴向流出。 三、透平膨胀机基本结构及工作原理 1、基本结构 膨胀机由通流部分、制动器及机身三部分组成 膨胀机通流部分:蜗壳、喷嘴、工作轮、扩压器 制动器:1)压缩机——入口管、叶轮、扩压器、蜗壳 2)风机——入口管、叶轮、扩压器、蜗壳 3)电机或油制动器

机身:支撑和隔热作用 2、工作原理 1)气体在喷嘴中流动 设置喷嘴的目的是使气流的动力能转变为气流的速度 能并且使气流降温,在喷嘴前后存在着压差,这些压 差推动着气流流动。当气流通过喷嘴时由于减压膨胀 而使焓值降低,即使压力、温度下降,这些焓降转变 成气流的动能,使在喷嘴出口处气流获得巨大的速度, 因此喷嘴主要解决的问题是保持合理的形状以减小各 种损失。 喷嘴在结构上可分为三段:即进口段、主体段、出口段 主体段又可分为2类:渐缩喷嘴(当喷嘴出口马赫数小于等于1) 缩放喷嘴(当喷嘴出口马赫数 大于1) 2)气体在工作轮中的流动(反动式透平膨胀机) 工作轮的作用: (1)把喷嘴出来的高速气体的动能,通过工作轮转化为 机械能并由主轴外输出做功,以降低内能使温度进 一步降低。 (2)使气体在工作轮进一步膨胀做功,进一步降低气体 的焓值和温度; (3)改变气体的流动方向,使它由径向转化为轴向流动 反动度:气体在工作轮中膨胀的程度 反动度(ρ)=工作轮内的等熵焓降(h2s)/总的等 熵焓降(h0) 工作轮结构:目前常用的是带径向叶片的半开式和闭式叶轮 工作轮可分为主体段:使气流由外圆向中心的径向流动 导流段:使气流由径向转为轴向流动(减少

天然气基础知识

天然气基础知识

一、天然气的基础知识 1. 天然气的特点与组成 天然气泛指自然界的一切气体,狭义则指采自地层的可燃气体。石油工业中称采自气田或凝析气田的可燃气体为天然气,又称气田气;在油田中与石油一起开采出来的可燃气体称为石油伴生气。 天然气是一种多组分的混合气体,主要成分是可燃烃类气体,包括甲烷、乙烷、丙烷、丁烷等,其中甲烷比例占绝对优势,例如我国四川气田天然气甲烷含量一般不低于90%,而陕甘宁气田则达95%左右。此外,还可能含有少量二氧化碳、硫化氢、氮气、水蒸气以及微量的氦、氖、氩等气体。在标准状况(0℃及101325Pa)下,甲烷至丁烷以气体状态存在,戊烷以上为液态。 2. 天然气的密度 单位体积气体的质量称为密度。气体的体积和压力与温度有关,说明密度时就必须指明它的压力、温度状态。例如空气在P=101325pa,t=20℃时,密度ρ=1.206kg/m3;在P=101325pa,t=0℃时, ρ=1.2931kg/m3。如果不指明压力,温度状态,通常就是指标准状态下的参数。 标准状态下,甲烷的密度为0.717 kg/m3 ,空气的密度为1.2931 kg/m3 ,故甲烷的相对密度 ?*CH 4=0.7174/ 1.2931= 0.5548 天然气的相对密度一般为0.58~0.62,石油伴生气为0.7~0.85。 3. 天然气的粘度 当两层气体相对运动时,气体的分子之间不仅具有与运动方向一致的相对运动而造成的内摩擦,而且由于气体分子无秩序的热运动,两层气体分子之间可以互相扩散和交

换。当流动速度较快的气层分子跑到流速较慢的一层时,这些具有较大动能的气体分子,将使较慢的气层产生加速的作用,反之流动速度较慢的气层分子跑进较快的气层时,则对气层产生一种阻滞气层运动的作用,结果两层气体之间就产生了内摩擦。温度升高,气体的无秩序热运功增强,气层之间的加速和阻滞作用跟着增加,内摩擦也就增加。所以,气体的粘度随着温度的升高而加大。 4. 天然气含水量(湿度) 天然气在地层温度和压力条件下含有饱和水汽,天然气的水汽含水量取决于天然气的温度、压力和组成等条件。天然气含水量,通常用绝对湿度、相对湿度和水露点来表示。 天然气绝对湿度是指一立方米天然气中所含水汽的克数,单位可用g/m3表示。 天然气的饱和含水量是指在一定温度和压力下,天然气中可能含有的最大水汽量,即天然气与液态平衡时的含水汽量。 天然气相对湿度是指在一定温度和压力下,天然气绝对湿度和饱和含水量之比。 天然气水露点是指天然气在一定压力下析出第一滴水时的温度,即天然气饱和水汽量对应的温度。在GB 50251-2003 《输气管道工程设计规范》中作了明确规定:进入输气管道的气体水露点应比输送条件下最低环境温度低5℃ 5. 天然气的热值 天然气作为燃料使用,热值是一项重要的经济指标。天然气的热值是指单位数量的天然气完全燃烧所放出的热量。天然气主要组分烃类是由炭和氢构成,氢在燃烧时生成水并被汽化,由液态变为气态,于是一部分燃料热能消耗于水的汽化。消耗于水的汽化的热叫汽化热(或蒸汽潜热)。将汽化热计算在内的热值叫高热值(全热值),不计汽化的热值叫低热值(净热值)。由于天然气燃烧的汽化无法利用,工程上通常使用

H级燃气轮机介绍

目录 GE公司“H”联合循环燃机系列介绍 (2) H型燃气轮机蒸汽冷却技术的开发及技术特点 (4) H级燃气轮机进入南韩 (9) 西门子效率超过60%的H级燃气轮机成功推向市场 (9)

GE公司“H”联合循环燃机系列介绍 21世纪的发电系统—通用电气“H”联合循环燃机系列介绍 “H”系列的背景及基本原理 使用燃机发电50年来一直在持续稳定地增长,燃机循环自身所固有的性能使其比常规电厂拥用更高的功率密度,更高的热效率以及更低的排放。燃机的性能是由燃点温度决定的,它和单位功率有直接的关系,反过来又影响发电的燃耗。这就意味着燃点温度的增高可以提供更高的热效率(降低发电的燃耗),同时提供更高的单位β剩?堪醮┕?钙降目掌?刹???嗟牡缌浚??/P> 通过使用飞机发动机材料和冷却技术,可以允许GE工业燃机的燃点温度稳定增高,当然燃烧室的高温同时产生更多地的NOx。在本文的“概念设计”部分,我们将阐述GE “H”系列如何解决NOx问题,如何能将燃点温度比目前“F”系列燃机提高2000F/1100C而同时将NOx排放量维持在“F”型燃机的水平。 通用电气的业务涵盖不同类型的业务,公司的各项业务得以兴旺发展,部分原因正是借助于改良技术的迅速引入和运用。公司的一线技术开发部门就是坐落在纽约的GE研发中心。H系列新产品引进部也坐落在此地,是他们将GE研发中心的研究成果引入到生产中。另外还有一些正式的技术协会,如热碍喷涂协会,高温材料协会,NOx干燥剂降低协会也在协同推广工作,支持新技术的发展。 GE发电部及GE飞机发动机部在很多方面协同作战,包括NOx干燥剂降低测试手段、压气机元件和汽轮机元件等方面。GE的制造厂拥有独特的资源,GE飞机发动机部可以派出200名工程师到GE研发中心和GE发电部支持H系列的开发工作,这只有在GE公司才做得到。这些调入人员都成为H系列设计与系统部的中坚力量,而“H”系列的技术由GE发电部及GE飞机发动机部共享资源,包括实验数据和分析源码。 与GE发电部及GE飞机发动机部的核心技术人员能够互相交流相比,GE的几个其他竞争对手却不得不从公司以外购买很有限的飞机发动机技术,结果是只能获得有限的资料,而无法得到核心技术。 相比之下,GE发电部从GE飞机发动机部得到的技术包括但并不限于以下内容:(在后面的章节中将会详细阐述) 压气机气体力学,机械设计、几何模型装置测试,运行压力和温度状况下的整体燃烧器测试、透平气体力学、传热、喷嘴测试、材料和喷涂数据的传递、透平片和透平轮超级合金的加工、燃机仪器的使用与监控、 GE研发中心投入的技术包括: 传热和流体流动源码的开发、热碍喷涂工艺开发、材料特征和数据、特殊功能元件和子系统的测试、非破坏性评估技艺的设计和引入。 概念设计 GE“H”系列为联合循环设备,燃机排除的热气进入下游锅炉或者余热锅炉,所产生的蒸汽穿过汽轮机,然后通过汽轮机的功率得到增强。汽轮机这种“底部循环”的出力和效率也是燃机排放温度的一个功能。就“H”系列所规定的燃点温度26000F/14300C而言,燃机排放温度很大程度上取决于压气机运行所需的功。即,它受“压气机压力比”的影响。“H”系列所选择的压力比是23:1,以便优化联合循环的性能,同时可以允许燃机末级叶片不被冷却,这也符合GE发电部过去的规程。 23:1的压气机压力比反过来又决定了使用4级燃机可以优化性能和成本,这是一个与原来“F”系列燃机不同的主要变化,“F”系列的压气机压力比是15:1,3级燃机结构。“H”系列的压力比增高后,3级

透平膨胀机

涡轮膨胀机是空气分离设备,天然气(石油气)液化分离设备和低温破碎设备的关键部件,以获取冷却能力。确保整套设备的稳定运行是我们的心。 原理 其主要原理是将一定压力的气体用于透平膨胀机中的绝热膨胀,做外部功,消耗气体本身的内能,从而使气体本身得到强烈的冷却,达到制冷的目的。当使用气缸泵送空气时,我们会发现气缸体被加热了。那是因为活塞压缩气体以释放热量。否则,其原理类似于膨胀机(更确切地说是活塞膨胀机)的原理。从涡轮膨胀机输出的能量由同轴压缩机回收或由制动风扇消耗。 处理预防性 失败原因 转速表指示不正确的原因一般有两个:一是由于膨胀机自身故障导致转速表指示异常,经常伴有严重的膨胀机异常声音。另一个是由于磁电传感器的故障引起的。

磁电传感器安装在制动风扇端盖的中间,该风扇由两个带有线圈的永磁体组成。根据磁电感应原理,如果线圈接地短路或由于潮湿而损坏内部绝缘,则当转子旋转时,通过切断磁力线产生的感应电流会发生变化,从而导致测量速度不准确。兆欧表可用于测量接地电阻和线圈接线的绝缘程度,以进行准确的诊断。 膨胀机的转速表可以在0?40℃的环境温度下正常工作。温度太低或太高,不利于转速表的测量。加热分馏器时未除去膨胀机。即使关闭了风扇的排气阀,冷风阶段的空气温度仍远低于0℃,而后期加热阶段的空气温度仍高于40℃。这两种温差较大的气体长时间充满了风扇系统,磁电传感器的线圈受影响最大。如果线圈被反复加热,则线圈会潮湿且未绝缘接地短路故障,在这种情况下,转速表指示将变慢并且低于实际速度。 转速表本身的故障非常罕见。如果转速表指示不正确,可以判断是否是由于机械故障引起的,应将膨胀机拆下进行检查。如果机械系统没有异常,则可以根据经验进行操作,并且速度显示较低。由于超高速,无需担心膨胀机的自动关闭,这将导致分馏塔上的压力升高并威胁到分馏塔的安全。可使膨胀机的压力和温度保持在正常范围内。

现代煤化工公用工程基础知识,空分装置说明

3 空分装置 3.1 工艺设计基础 3.1.1装置生产能力 空分装置制氧能力:30000Nm3/h 3.1.2 装置组成 空分装置由如下4工序组成: (1)空气压缩工序; (2)空气净化工序; (3)空气分离工序; (4)液氧液氮液氩贮存工序。 空分装置、工序、主项编码如下表。 3.1.3 原料、产品和催化剂等规格 (1)原料 本装置原料为空气。 原料空气质量规格(杂质含量)如下表:

(2)产品规格 (3)化学品规格 3.1.4 原料、催化剂和化学品消耗量

3.1.5 公用工程物料规格及消耗 3.2 工艺说明 3.2.1 生产方法及工艺特点 空分装置以空气为原料,通过离心式空气压缩、分子筛空气净化、两级空气精馏的方法将空气分离为氧气和氮气,供煤气化装置、备煤装置及公用工程系统使用。空分装置副产的仪表空气供全厂装置正常生产时使用,副产的液氧液氮液氩外售。 空分装置采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵内压缩”工艺技术,此技术是成熟的工艺技术,有以下主要特点: ●用高效的两级精馏制取高纯度的氧气和氮气; ●用增压透平膨胀机,利用气体膨胀的输出功直接带动增压风机以节 省能耗,提高制冷量;

●热交换器采用高效的铝板翅式换热器,使结构紧凑,传热效率高; ●采用分子筛净化空气,具有流程简单、操作简便、运行稳定、安全 可靠等优点,大大延长装置的连续运转周期; ●采用液氧泵内增压流程,使空分装置操作运行更加安全; 采用DCS控制,使空分装置始终在最佳经济点运行。 3.2.2 工艺流程简述 从大气吸入的空气经空气过滤器(S01101)滤去灰尘杂质后,入空气压缩机 (K01101)加压至0.5MPa(G),然后进入空气冷却塔(C01201)。 空气在空冷塔下段,与循环冷却水逆流接触而降温。然后通过上段与经冷水 机组冷却的冷冻水逆流接触,降温后入分子筛吸附器(C02103A/B),清除空气 中的水份、二氧化碳和碳氢化合物。 已净化的空气一部分作为仪表空气供全厂用户使用,剩余部分进入冷箱 (Z01301)进行深冷分离。出冷箱的产品氧气供煤气化装置使用。 出冷箱的氮气经氮气压缩机(K01102)压缩至0.5MPa(G),送全厂低压氮 气用户。 出冷箱的氮气经氮气鼓风机(K01103)压缩至0.03MPa(G),送煤气化装 置用于开车。 从冷箱抽出部分液氧液氮液氩,送入液氧贮罐(T01402)、液氮贮罐(T01401)、 液氩贮罐(T01403)储存待售。 3.3 节能措施及效益 (1)空压机及空气增压机为离心式压缩机,采用同一台蒸汽透平驱动,节省投资并提高能量转换效率。 (2)空冷系统通过水冷塔来充分利用污氮气的不饱和吸湿性,降低冷却水温度,从而可以降低冷水机组的制冷量,节省运行费用。 (3)分子筛吸附器采用双层床结构(活性氧化铝+分子筛)底层活性氧化铝床层可有效地保护分子筛,延长分子筛使用寿命,同时采用双层床也使吸附器再生阻力下降,再生温度降低,节约再生能耗。 (4)采用增压透平膨胀机,利用气体膨胀的输出功直接带动增压风机以节省能耗,

燃气轮机及其联合循环课后题答案(姚秀平主编版)上海电力学院

第一章 3和4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量;汽轮机是工作于低温区的一种热机,易于利用低品位的热量;而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO基本功率是指在国际标准化委员会所规定的ISO环境条件下燃汽轮机连续运行所能达到的功率。ISO环境条件:温度15℃,压力0.01013MPa,相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组;燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热;后置循环是工作于低温区以前置循环的余热为主要热源的循环。两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 10、余热型:优点是技术成熟。系统简单、造价低、启停速度快。缺点是余热锅炉效率低、汽轮机的功率和效率也低,所以不仅机组功率不大,而且效率也不高。 补燃型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量大幅度提高,从而使机组的容量增大、效率提高;同时机组的变工况性能也可得到改善。缺点是它并不是纯粹能量梯级利用意义上的联合循环,其中或多或少有一部分热量参与了汽轮机循环。所以,他只是在因蒸汽参数受限而无法采用高参数大功率汽轮机的条件下才可能优越于纯粹能量梯级利用意义上的余热锅炉型联合循环。 增压型:优点是在燃气轮机排气温度较低的情况下,可使蒸汽参数及流量不受限制,从而可达到较大的机组容量和较高的机组效率;同时由于燃烧是在较高的压力下进行的,且烟气的质量流速较高,所以锅炉的传热效率高,所需的传热面积小,锅炉尺寸紧凑。缺点是系统复杂、制造技术要求高、燃气轮机不能单独运行,同时兼有和补燃型类似的缺点。 综上可知,余热锅炉型联合循环将是今后的发展方向。 11、增压流化床联合循环PFBCC和整体煤气化联合循环IGCC是最有发展前途的两种燃煤型联合循环。 12、最基本的优点:高效率、低污染、低水耗。 13、 14、配置旁通烟道的好处: A、启停时,不必对燃气轮机、余热锅炉和汽轮机的工作状态进行严格协调; B、增加运行调节的灵活性,并方便临时性的检修及事故处理; C、必要时,可使燃气轮机维持单循环运行; D、可对整个工程分段建设、分期投运,从而可合理注入资金,更快地获得回报。 但配置旁通烟道需要增加投资,并且即使在正常运行的情况下,旁通挡板处也往往存在烟气泄漏损失,所以不再配置。

透平膨胀机安全操作规程示范文本

透平膨胀机安全操作规程 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

透平膨胀机安全操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、膨胀机前过滤器阻力超过0.05MPa时,应停机加 温。 2、运行中,当出现冰、二氧化碳等堵塞喷嘴或其它异 常情况,立即停车加温吹除,加温过程中须保持润滑油和 密封气的供应。 3、出现超速、异常声响、油压过低、冷却水量不足或 轴承温度高时,迅速关闭紧急切断阀,停车检查处理。 4、保证进口温度在正常范围内;膨胀后,气体温度应 保持一定的过热度,严格控制机后温度不低于-185℃,以 防带液损坏叶轮。 5、轴封压力应高于油压0.02MPa以上。 6、增压透平膨胀机启动前,打开增压机冷却器气侧排

污阀;如有水滴,禁止通气。起动和停车时,须防止在管路发生共振的转速点停留,以免损坏机器。 7、检修后,应对油压、轴温、转速等有关联锁保护装置进行校验;开机前,应对联锁信号做联动调试。 8、对长期不运行的膨胀机,每周要手动盘车。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

低温透平膨胀机成长的五十载

低温透平膨胀机成长的五十载 一、前言 中国空分制造业已经经过了整整五十年了。回顾五十年,我国的空分行业从无到有,从仿造到自行开发研究,制氧容量从小型的几十立方每小时到目前已经能生产每小时三万等级,从整套制氧机运行需由三五个人手工操作发展到今天在控制室电脑屏幕前由一个人可对整套空分设备进行操作,从流程上来说从一般简单节流流程已经发展到现在根据不同需要可采用不同流程:如正流膨胀流程、反流膨胀流程、增压膨胀流程、内压缩流程等等。既能达到高的提取率又能节省能耗的新流程。 低温透平膨胀机是空分设备的心脏,它是空分设备中最主要的冷源。它的技术性能水平直接反映出空分设备的水准。我国60年代初尚处于仿造当时苏联3 0、40年代3350m3/h制氧机,其中配套的透平膨胀机还是冲动式(反动度为零)的型式,绝热效率在70%左右。经过这四十年的发展,我国的低温透平膨胀机已经从原只能仿造逐步发展成完全可以自行开发在空气液化分离设备;石油气天然气的液化及分离;氮、氦气体的液化;氦制冷设备;航空航天环境拟设备上的广泛应用,为我国在冶金、化工、石化、核物理和航空航天事业上挥了重大的作用。 二、我国低温透平膨胀机发展的主要里程 1、60年代初,在当时的机械部的大力支持下,当时杭州制氧机研究所第一副所长陈大慈积极指导下,我们几位刚毕业的大学生接受了开发低温透平膨胀机的任务。在当时缺乏资料情况下,通过不同途径从各个方面收集相关资料,开始了国内首台自行设计低温透平膨胀机的研制,并进行了大量的试验研究。完成了喷咀相关闭对效率的影响试验;喷咀叶片高度对叶轮进口叶高过盖度对效率的影响试验;反动度对效率的影响试验;制动风机对透平膨胀机的调节性能试验;常

燃气轮机与联合循环-姚秀平-课后题答案-第一单元

1. 从高温热源吸收热量:a-2-3-4-5-b-a; 对外做功:1-2-3-4-5-6-1; 向低温热源放出热量:a-2-3-4-5-b-a; 效率:对外做功:1-2-3-4-5-6-1与从高温热源吸收热量:a-2-3-4-5-b-a的间接比。 2. 可用能 不可用能 1 2 3 4 a b T S 从高温热源吸收热量:a-2-3-b-a; 对外做功:1-2-3-4-1; 向低温热源放出热量:a-1-4-b-a; 效率:对外做功:1-2-3-4-1与从高温热源吸收热量:a-2-3-b-a间接比。 3 和 4、从热力学角度看,汽轮机循环利用了蒸汽可在常温下凝结的特性,达到了较低的工质平均放热温度,但工质平均吸热温度不高。燃气轮机循环的工质平均吸热温度高,但工质平均吸热温度不低。 汽轮机发展方向:开发新材料以便把主蒸汽参数从亚临界水平逐步提高到超超临界水平;采用两次再热等手段改进热力系统及设备的设计。其中,主要方向为提高工质平均吸热温度。燃气轮机发展方向:提高燃气平均吸热温度。 5、燃气轮机是工作于高温区的一种热机,易于利用高品位的热量; 汽轮机是工作于低温区的一种热机,易于利用低品位的热量; 而联合循环按照热量梯级利用的原则将燃气轮机和汽轮机结合起来,可以将高品位和低品位的热量同时利用起来。由于联合循环同时利用了燃气轮机循环平均吸热温度高和汽轮机

循环平均放热温度低的优点,又同时克服了两者的缺点,所以可以达到较高的循环效率。 6、ISO 基本功率是指在国际标准化委员会所规定的ISO 环境条件下燃汽轮机连续运行所能达到的功率。ISO 环境条件:温度15℃,压力0.01013MPa 相对湿度60%。 7、燃气轮机与汽轮机同轴,共同驱动一台发电机的联合循环机组称为单轴机组; 燃气轮机与汽轮机不同轴,各驱动一台发电机的联合循环机组成为多轴机组。 8、前置循环是工作于高温区,输入大部分热量的循环,它会产生大量的余热; 后置循环是工作于低温区以前置循环的余热为主要热源的循环。 两者通常用换热设备耦合在一起,最广泛的应用是燃气——蒸汽联合循环。 9、最基本的三种联合循环形式:余热锅炉型、补燃余热锅炉型和增压锅炉型。 余热锅炉型: 2 1C GT B 燃料 3 G 4 G 5 6 HRSG 7811 P CC 10 ST 9 燃气轮机可用能2T s 4 3 1 611 7 5 8 9 10b d c a 汽轮机可用能 燃气轮机子循环:从高温热源吸收热量:a-2-3-c-a ; 对外做功:1-2-3-4-1; 通过余热锅炉传向谁的热量:b-5-4-c-b ; 向外界放出了热量:a-1-5-b-a ; 汽轮机子循环:从余热锅炉吸收的热量:b-6-7-8-9-d-b ,与面积b-5-4-c-b 相等; 对外做功:6-7-8-9-10-11-6;通过凝汽器向外界放出的热量:b-11-10-d-b ; 补燃余热锅炉型: P C G 12 B 燃料 84 HRSG GT 3 6 7 911 ST 5 CC 10G 燃料a 1 2b 11 65 7 T c d s 10 8 4 9 3 12 汽轮机可用能 燃气轮机可用能 增压锅炉型: P C G 12燃料 84 PCB GT 367 9 11ST 5 CC 10G 12 ECO 汽轮机可用能 1 a 211 b 65 7T 燃 机可用能 3 10 c d s 8 412 9 13

空分的基本知识

空分的基本知识 1.1.什么是空分 空分就是空气分离的简称。 1.2空分的原料:空气 空气的成分:主要成分是O2、N2和Ar; 体积比:O2:N2:Ar=20.95% :78.09% :0.932%; 此外还含有微量的氢及氖、氦、氪、氙等稀有气体; 根据地区条件不同,还含有不定量的二氧化碳、水蒸气及乙炔等碳氢化合物。 1.3 空气分离的方法: 吸附法、膜分离法、低温精馏法。 1吸附法 让空气通过分子筛吸附塔,利用吸附塔中特殊的分子筛对空气中的氧、氮组分选择性吸附而使空气分离获得氧气。 2.膜分离法 利用有机聚合膜的选择渗透性,从气体混合物中将氧、氮分离,获得富氧气体。 3.低温精馏法: 我们公司采用的是低温精馏法,因为前二者不能同时产出大量的高质量的气体。只有低温精馏法能够满足大批量高纯度的生产需要。 低温精馏法他是利用多组分构成的液体介质里,各组分沸点的不同,进行多次部分冷凝和多次部分蒸发,从而逐步达到分离的目的。

沸点:在一定压力下,液体温度达到沸腾时的温度。 压力越高,沸点越高;压力越低,沸点越低。 1)O2沸点:-183℃(90K) 2)N2沸点:-196℃(77K) 3)Ar沸点:-186℃(87K) 4)液空的沸点:-191℃(82K) 5)液空的冷凝点:-194℃(79K) 空分主要分为下面几个系统; 空气预冷系统 目的;空气预冷系统是串接于空气压缩机系统和分子筛吸附系统

之间,旨在降低进分子筛纯化器的空气温度,来减少空气的含水量,并通过水洗涤除去大部分水溶性有害物质,起的冷却,洗涤,净化作用以保证分子筛纯化器的安全工作。 主要设备由空冷塔,水冷塔,和四水泵组成; 空冷塔的流程; 压缩空气从空冷塔下部由下至上穿过空冷塔与至上而下的常温水,冷冻水逆流接触,进行热质交换冷却空气。 空冷塔原理;对于空冷塔,当进塔的热空气为不饱和状态,进塔水温低于进塔空气的露点时,经过塔内的气液逆流接触,空气为减湿降温过程,传热方向都是由空气传给水;而水的出塔温度将可能高于进塔空气露点时,塔底的传质是由水传给空气,而塔顶的传质是由空气传给水,故在全塔内传质方向是不同的。在改变传质方向的塔截面处,水温将等于空气露点。; 水冷塔的流程; 污氮气从塔下部进与从顶部下流的常温水充分接触进行热质交换,降低水温, 水冷塔的原理 由于污氮气对应当地温度是不饱和的,所有有一部分蒸发成水蒸气进入污氮中,水蒸发时吸收了大量潜热,使得水得到冷却,潜能汽化作用 净化系统, 1空气过滤目的。

ORC系统向心透平膨胀机动态特性研究

ORC系统向心透平膨胀机动态特性研究 应用有机朗肯循环(ORC)将低品位热能转换为高品位电能,适用于工业废热、地热能、海洋温差能等领域。ORC系统具有结构简单、环境友好、无有害气体排放等特点,其关键的换能设备是有机工质膨胀机。本文在实验室搭建的ORC低温余热发电实验平台上,对自主设计的向心透平膨胀机进行性能研究。分别研究了向心透平的工作性能和转子系统的振动特性;对向心透平流动特性、转子系统临界转速以及不平衡响应特性进行了实验和数值研究,并优化了透平的结构。 以R123为工质,实验研究了向心透平及其系统的性能变化规律。对向心透平转轴的径向振动进行了测量,研究了转子系统的振动特性。结果表明:随着工质流量的增加,透平转速增大,存在最佳转速,使得向心透平等熵效率最大;随着热源温度的升高,最佳转速不断增大;随着冷源流量的增加,向心透平的压比、转速以及膨胀功率不断增加,系统热效率逐渐升高;随着透平转速的增加,转轴径向振动幅值增加,振动峰值的特征频率增大;向心透平的最高转速达到54850r/m,等熵 效率最大值为83.6%,膨胀机最大功率为3.041kW,达到设计要求。使用ANSYS Fluent软件,建立向心透平内部流动的单流道数值计算模型,研究不同的导叶安装角、导叶静叶数以及动叶的非可展直纹抛物面对内部流动特性的影响;根据实验数据,对比工质流量、膨胀功率以及等熵效率等参数的计算值,验证了单流道模型的正确性;根据数值研究结果,对透平结构进行了优化,导叶优化后,周向速度提高7.4%,速度系数提高1.12%;动叶优化后,叶轮效率提高1.05%,最大叶轮效率为90.3%。 向心透平整级优化后,总-静效率提高1.7%。利用ANSYS Workbench软件,对叶轮进行了模态分析,得到叶轮和转子前八阶固有频率及振型,并对向心透平转子系统进行临界转速分析。结果表明:预应力下的叶轮固有频率大于无预应力的情况,离心力对叶轮的刚化作用明显;实验用转子系统一阶临界转速为 33218r/min,二阶临界转速为65061 r/min;随着轴承支撑刚度的增加,临界转速先快速增大后逐渐缓慢增加,选取转子系统的轴承刚度为1×10~8N/m较为合理;随着转轴轴尾伸长量的增加,转子临界转速不断减小;随着叶轮密度的增加,临界转速将逐渐减小。通过灵敏度分析发现,转子临界转速受轴承刚度的影响最大,叶轮密度的影响次之,而转轴轴尾伸长量对转子临界转速的影响程度最小。

相关文档
最新文档