数学建模常用统计方法介绍

合集下载

数学建模的主要建模方法

数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。

它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。

数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。

下面将分别介绍这些主要建模方法。

1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。

它适用于对大量数据进行分析和归纳,提取有用的信息。

数理统计法可以通过描述统计和推断统计两种方式实现。

描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。

2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。

它可以用来寻找最大值、最小值、使一些目标函数最优等问题。

最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。

这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。

3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。

这种方法适用于可以用一些基本的方程来描述的问题。

方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。

通过求解这些方程,可以得到问题的解析解或数值解。

4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。

它可以用来处理随机变量、随机过程和随机事件等问题。

概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。

利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。

5.图论方法:图论方法是研究图结构的数学理论和应用方法。

它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。

图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。

数学建模各类方法归纳总结

数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。

随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。

本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。

一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。

它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。

贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。

2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。

它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。

数理统计模型在市场预测、风险评估等领域有着重要的应用。

3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。

线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。

4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。

非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。

二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。

它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。

神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。

2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。

它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。

遗传算法模型在组合优化、机器学习等领域具有广泛的应用。

3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。

它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。

数学建模中的统计方法介绍

数学建模中的统计方法介绍
同济大学 数学系
维度归约
• 维度归约使用数据编码或变换,以便得到 原数据的归约或“压缩”表示。分为无损 和有损两种。
• 主要方法:
– 串压缩:无损,但只允许有限的数据操作。 – 小波变换(DWT):有损,适合高维数据。 – 主成分分析(PCA):有损,能更好地处理稀
* Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34
同济大学 数学系
• 回归:用一个函数(回归函数)拟合数据来光滑 数据。 –线性回归 –多元线性回归
• 聚类:将类似的值聚集为簇。检测离群点
–反映了每个数与均值相比平均相差的数值
同济大学 数学系
18
度量数据的离散程度…
• 盒图boxplot,也称箱线图 • 从下到上五条线分别表示最小值、下四分
位数Q1 、中位数、上四分位数Q3和最大值 • 盒的长度等于IRQ • 中位数用盒内的横线表示 • 盒外的两条线(胡须) 分别延伸到最小和
最大观测值。
同济大学 数学系
局部回归(Loess)曲线 • 添加一条光滑曲线到散布图
同济大学 数学系
数据清理
•现实世界的数据一般是不完整的、有噪 声的和不一致的。 •数据清理的任务:
填充缺失的值,光滑噪声并识别离群 点,纠正数据中的不一致。
同济大学 数学系
缺失值
• 忽略元组 • 人工填写空缺值 • 使用一个全局常量填充空缺值 • 使用属性的平均值填充空缺值 • 使用与给定元组属同一类的所有样本的平均
• 含噪声的
– 包含错误或存在偏离期望的离群值。
• 不一致的

数学建模方法大汇总

数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。

在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。

1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。

2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。

3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。

4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。

5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。

6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。

7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。

8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。

9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。

10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。

11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。

12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。

13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。

14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。

15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。

数学建模数理统计总结

数学建模数理统计总结
极大似然估计法就是用使 L( )达到最大值的 ˆ去估计 .
L(ˆ) max L( )
称 ˆ为 的极大似然估计值 . 而相应的统计量
θ( X1, , Xn ) 称为 θ 的极大似然估计量 .
例2 设X1,X2,…Xn是取自总体X的一个样本
X
~
f
(
x)
1
e
(
x
)
,
x
, 为未知参数
0,
其它
n
2
近似
即当n足够大时,t ~ N (0,1).
3. t分布的分位点 对于给定的,0 1,称满足条件
pt t (n) t(n) h(t )dt
的点t (n)为t (n)分布的上分位点.如图所示.
t(n)
t分布的上分位点的性质: t1 (n) t (n)
t分布的上分位点t (n)可查表 求得,例t0.025(15) 2.1315.
的样本方差,则有
1、
S12 S22
12 22
~
F (n1
1, n2
1)
2、
X Y (1 2) (n1 1)S12 (n2 1)S22
1
1
~ t(n1 n2 2)
n1 n2 2
n1 n2
例1设总体X服从正态分布N (12,2 ),抽取容量为 25的样本,求样本均值X大于12.5的概率.如果(1)已
t(n)
当n 45时,对于常用的的值,可用正态近似 t(n) z
3、F分布
定义: 设 U ~ 2(n1 ),V ~ 2(n2 ),U 与V 相互
独立,则称随机变量
F U n1 V n2
服从自由度为n1及 n2 的F分布,n1称为第自 由度,n2称为第二自由度,记作

数学建模十大经典算法( 数学建模必备资料)

数学建模十大经典算法(  数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。

2、数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。

3、线性规划、整数规划、多元规划、二次规划等规划类问题。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。

4、图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7、网格算法和穷举法。

网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8、一些连续离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9、数值分析算法。

如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10、图象处理算法。

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。

历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。

数学建模之统计学基本概念与方法

数学建模之统计学基本概念与方法

非线性回归分析
总结词
非线性回归分析是研究非线性关系的统计方法。
计算公式
非线性回归分析采用各种非线性函数形式,如多项式、指 数、对数等,来描述因变量与自变量之间的非线性关系。
详细描述
非线性回归分析通过建立非线性模型,分析因变量与自变 量之间的非线性关系,并预测因变量的取值。它主要应用 于探索非线性关系和复杂数据模式。
根据样本数据对原假设进行拒绝或接受。
ABCD
假设检验的步骤
提出假设、构造检验统计量、确定临界值、做出 决策。
假设检验的局限性
依赖于样本数据和假设的合理性。
常见假设检验方法及应用
t检验
用于比较两组平均值是否有显著差异,常用于样本均数与总体均数的 比较。
方差分析
用于比较多个总体均数是否有显著差异,常用于实验设计中的多因素 比较。
区间估计
根据样本数据推断未知参数或 总体参数可能落在某一区间内 的概率。
置信区间
在一定置信水平下,估计参数 可能取值范围的区间。
误差范围
区间估计的精度,通常用标准 误差或置信区间宽度来表示。
假设检验的基本原理
假设检验的基本思想
根据样本数据对未知参数或总体分布提出假设, 然后通过统计方法检验该假设是否成立。
为什么学习数学建模?
数学建模是现代科学研究和工程应用中不可或缺的工具,它 有助于解决实际问题。
学习数学建模有助于提高分析问题和解决问题的能力,培养 创新思维和团队协作能力。
为什么学习数学建模?
数学建模是现代科学研究和工程应用中不可或缺的工具,它 有助于解决实际问题。
学习数学建模有助于提高分析问题和解决问题的能力,培养 创新思维和团队协作能力。
正态分布

数学建模中的统计方法

数学建模中的统计方法

数据的描述性统计
分布形态的统计量:偏度(skewness)、峰度(kurtosis) 偏度:RV标准化的三阶中心距。反映分布的对称性 >0,右偏态,此时数据位于均值右边的比位于左边多 峰度:随机变量标准化的四阶中心距。
>3,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数据
92年施肥方案数据分析:
SSe ( X ij - X i )2
i 1 j 1 n m
自由度ve = m(n – 1) = N – m
总变差的分解
SS A n ( X i - X )
i 1 m 2
SSe ( X ij - X i )2
i 1 j 1
n
m
SST ( X ij - X ) [( X ij - X i ) + ( X i - X )]2
r n
r
组内离差平方和:SS E ( X ij - X . j )
j 1 i 1
2
SST=SSA+SSE
四、基本步骤
step1:明确观测变量和控制变量。
step2:剖析观测变量的方差。
step3:通过比较观测变量总离差平方和各部分所占的比例, 推断控制变量是否给观测变量带来了显著影响。
平均值 0.142 0.153 0.161 0.183 0.174
在方差分析中,把所有数据之间的差异叫 做总变差。产生总变差的原因有两类,一 类是条件变差(本例中即是酸度的影响), 另一类就是试验误差。方差分析解决这个 问题的办法就是:
1 、从总变差中区分出试验变差和条件变差, 也就是将不同因素的影响给区分开来。 2、利用F检验比较这两个变差的大小,确定 出主要变差。 3 、根据主要的变差,去选择较好的分析条 件,或确定进一步试验的方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

stepwise(x,y,inmodel,alpha) SPSS,SAS

统计方法(聚类分析)
聚类分析—所研究的样本或者变量之间存
在程度不同的相似性,要求设法找出一些 能够度量它们之间相似程度的统计量作为 分类的依据,再利用这些量将样本或者变 量进行分类 系统聚类分析—将n个样本或者n个指标看 成n类,一类包括一个样本或者指标,然 后将性质最接近的两类合并成为一个新类, 依此类推。最终可以按照需要来决定分多 少类,每类有多少样本(指标)
统计方法(逐步回归分析)

逐步回归分析—从一个自变量开始,视自变量 作用的显著程度,从大到小依次逐个引入回归 方程
当引入的自变量由于后面变量的引入而变得不显著
时,要将其剔除掉 引入一个自变量或从回归方程中剔除一个自变量, 为逐步回归的一步 对于每一步都要进行检验,以确保每次引入新的显 著性变量前回归方程中只包含作用显著的变量 这个过程反复进行,直至既无不显著的变量从回归 方程中剔除,又无显著变量可引入回归方程时为止
函 数 pdist squareform 功 能 计算观测量两两之间的距离 将距离矩阵从上三角形式转换为方形 形式,或从方形形式转换为上三角形 式 创建系统聚类树
linkage
dendrogram cophenet cluster clusterdata inconsistent
输出冰柱图 计算Cophenetic相关系数 根据linkage函数的输出创建分类 根据数据创建分类 计算聚类树的不连续系数

判别分析
判别分析是利用原有的分类信息,得到体 现这种分类的函数关系式(称之为判别 函数,一般是与分类相关的若干个指标 的线性关系式),然后利用该函数去判 断未知样品属于哪一类。 对于给定的数据,用classify函数进行线性 判别分析,用mahal函数计算马氏距离。
判别分析

判别分析(Discriminatory Analysis)的任 务是根据已掌握的1批分类明确的样品, 建立较好的判别函数,使产生错判的事 例最少,进而对给定的1个新样品,判断 它来自哪个总体。
聚类分析
系统聚类法是聚类分析中应用最为广泛 的一种方法,它的基本原理是:首先将 一定数量的样品或指标各自看成一类, 然后根据样品(或指标)的亲疏程度, 将亲疏程度最高的两类进行合并。然后 考虑合并后的类与其他类之间的亲疏程 度,再进行合并。重复这一过程,直至 将所有的样品(或指标)合并为一类。
系统聚类分析用到的函数
数学建模常用的随机数学方法:
概率基础方法(分布,数字特征等)
随机模拟法(蒙特卡洛方法,MCM)
统计基础方法(统计描述,统计推断等) 回归分析法 方差分析方法 聚类分析方法
判别分析方法
主成分分析方法
数学建模常用的随机数学方法:
马尔可夫(MARKOV)过程方法 时间序列分析方法 排队论方法 存储论方法 决策论方法
因子分析
因子分析是一种降维方法。需要用模型解释 数据内部的相关性时,使用因子分析法进行 分析。 MATLAB中,用factoran函数进行因子分析。 最近邻法 线性插值 三次插值 用interpn函数进行更高维数据的插值,同样 有最近邻插值、线性插值和三次插值三种方 法。
统计方法(判别分析)
判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算 各类的重心,计算新个体到每类的距离,确定最短 的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别 式(同类差别较小、不同类差别较大),按照判别 式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率, 比较概率的大小,然后将新样品判归为来自概率最 大的总体
(6) Multivariate statistics(多元统 计):聚类分析,判别分析,主成分分析,因 子分析等; (7)Statistics plots(统计图):各类统 计图形; (8) Statistical process control(统计 过程控制): (9) Design of experiments(试验设 计): (10) Hidden markov models(隐马尔 可夫模型):

随机数学建模常用软件
Excel
MATLAB
SAS SPSS
R
C++
Matlab :
1. Matlab 主包:数百个核心内部函数; 2. 各种可选Toolbox”工具包”.下面简介统计工具 箱(statistics toolbox):
(1) Probability distributions(概率分 布):分布,参数估计,随机数等; (2)Descriptive statistics(描述统计): 样本的各种描述统计量; (3)Linear models (线性模型):线性 回归分析,方差分析; (4) Nonlinear models(非线性模型): 非线性回归,Logistic回归; (5) Hypothesis test(假设检验):参数 非参数检验,分布检验;
统计方法(系统聚类分析步骤)
系统聚类方法步骤: 1. 计算n个样本两两之间的距离 2. 构成n个类,每类只包含一个样品 3. 合并距离最近的两类为一个新类 4. 计算新类与当前各类的距离(新类与当 前类的距离等于当前类与组合类中包含 的类的距离最小值),若类的个数等于 1,转5,否则转3 5. 画聚类图 6. 决定类的个数和类。
统计方法(回归分析)



回归分析—对具有相关关系的现象,根据其关系形态,选择 一个合适的数学模型,用来近似地表示变量间的平均变化关 系的一种统计方法 (一元线性回归、多元线性回归、非线性 回归) 回归分析在一组数据的基础上研究这样几个问题: 建立因变量与自变量之间的回归模型(经验公式) 对回归模型的可信度进行检验 判断每个自变量对因变量的影响是否显著 判断回归模型是否适合这组数据 利用回归模型对进行预报或控制 [b, bint,r,rint,stats]=regress(Y,X,alpha) (线性回归) rstool(x,y,’model’, alpha)(多元二项式回归) [beta,r,J]=nlinfit(x,y,’model’, beta0)(非线性回归)
数学建模常用统计方法介绍
吕 佳
延安大学 数学与计算机科学学院
数学建模需要的随机数学知识:
概率论(probability
theory) 数理统计(mathematical statistics) 随机过程(stochastics processes) 回归分析(regression analysis) 多元统计分析(multivariate statistical analysis) 时间序列分析(time series analysis) 随机运筹学( stochastics operation research)
相关文档
最新文档