数学建模知识及常用方法
数学建模重要知识点总结

数学建模重要知识点总结一、微积分微积分是数学建模中最重要的数学工具之一,它包括微分和积分两大部分。
微分是求函数的导数,用于描述函数的变化率和曲线的切线。
而积分则是求函数的不定积分或定积分,用于描述函数的面积、体积等性质。
在数学建模中,微积分可以用于建立问题的数学模型,求解微分方程和积分方程,对函数进行优化等。
例如,在物理建模中,我们经常会用到微积分来描述物体的运动、速度和加速度等。
在经济学建模中,微积分可以用来描述供求关系、利润最大化等问题。
二、线性代数线性代数是研究向量空间、线性映射和矩阵等数学对象的学科。
在数学建模中,线性代数可以用于描述多维空间中的几何关系、解线性方程组、求解最小二乘问题等。
例如,在计算机图形学中,线性代数可以用来描述和变换三维物体的位置和姿态。
在统计学建模中,线性代数可以用来对数据进行降维、拟合线性模型等。
三、概率论与数理统计概率论与数理统计是研究随机现象的规律性和统计规律的学科。
在数学建模中,概率论与数理统计可以用于描述随机现象的概率分布、推断总体参数、假设检验等。
例如,在风险管理建模中,我们经常会用到概率论与数理统计来描述风险的分布和进行风险评估。
在机器学习建模中,概率论与数理统计可以用来对数据进行建模和推断。
四、数学优化数学优化是研究如何在给定约束条件下,找到使目标函数取得极值的方法和理论。
在数学建模中,数学优化可以用来对问题进行建模和求解。
例如,在生产调度问题中,我们可以用数学优化来寻找最优的生产计划;在投资组合优化中,我们可以用数学优化来构建最优的资产配置。
五、微分方程微分方程是研究未知函数及其导数之间关系的方程。
在数学建模中,微分方程可以用来描述系统的动力学行为、生物种群的增长规律、热传导过程等。
我们可以通过对微分方程进行数值求解、解析求解或者定性分析,来获得系统的行为特征。
六、离散数学离散数学是研究离散结构及其性质的数学学科,包括集合论、图论、逻辑和代数等内容。
数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。
它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。
在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。
一、概率与统计概率与统计是数学建模的基础。
概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。
在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。
1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。
离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。
在选择概率模型时,需要根据实际问题的特点进行合理选择。
1.2 统计方法统计方法用于从观测数据中推断总体的特征。
在数学建模中,经常需要根据样本数据对总体参数进行估计。
常用的统计方法包括点估计和区间估计。
点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。
另外,假设检验和方差分析也是数学建模中常用的统计方法。
二、线性代数线性代数是数学建模的重要工具之一。
它研究线性方程组的解法、向量空间与线性变换等概念。
在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。
线性代数还广泛应用于图论、网络分析等领域。
2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。
求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。
2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。
数学建模常用知识点总结

数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。
可以进行加法、减法和数乘运算。
1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。
1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。
1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。
1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。
1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。
1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。
1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。
1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。
1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。
1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。
1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。
1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。
二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。
2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。
2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。
高三数学建模知识点梳理

高三数学建模知识点梳理数学建模是一项将现实世界中的问题转化为数学模型,并通过数学方法进行求解和分析的技术。
对于高三学生来说,掌握数学建模的基本知识点对于提高数学素养和解决实际问题具有重要意义。
本文将对高三数学建模的知识点进行梳理,帮助大家更好地理解和应用。
1. 数学建模的基本概念1.1 什么是数学建模数学建模是一种模拟现实世界问题的方法,通过将实际问题抽象为数学模型,并用数学语言和符号进行表述,从而为问题的求解和分析提供一种数学框架。
1.2 数学建模的步骤数学建模的一般步骤包括:问题分析、假设与简化、模型的建立、模型的求解、模型的验证与改进、模型的应用。
2. 数学建模的方法与技巧2.1 建立模型的方法建立模型的方法主要有以下几种:(1)解析模型:通过数学公式和逻辑推理来描述系统的运行规律。
(2)数值模型:通过数值模拟和计算来近似描述系统的行为。
(3)统计模型:通过统计分析和概率论方法来描述系统的随机性。
(4)机器学习模型:通过训练数据和算法来发现数据的规律性。
2.2 模型的求解方法模型的求解方法主要有以下几种:(1)微分方程法:利用微分方程来描述系统的动态变化。
(2)代数方程法:利用代数方程来描述系统的静态关系。
(3)线性规划法:利用线性规划来求解优化问题。
(4)非线性规划法:利用非线性规划来求解优化问题。
(5)最优化方法:利用各种优化算法来求解最优化问题。
2.3 模型的验证与改进模型的验证与改进主要包括以下几个方面:(1)模型的一致性:确保模型与实际问题在数学表述上的一致性。
(2)模型的准确性:通过实验数据和实际应用来检验模型的准确性。
(3)模型的适应性:根据实际情况对模型进行调整和改进。
3. 数学建模的应用领域数学建模广泛应用于自然科学、社会科学、工程技术等各个领域,具体包括:(1)物理科学:如天体运动、量子力学、热力学等。
(2)生物科学:如遗传算法、神经网络、生态模型等。
(3)经济学:如市场预测、优化生产、经济博弈等。
数学建模方法知识点总结

数学建模方法知识点总结一、问题分析和建模1.问题分析数学建模的第一步是对实际问题进行分析和理解。
这包括确定问题的背景和范围,理解问题的关键要素,分析问题的复杂程度和不确定性,并确定问题的数学建模的可行性和必要性。
在问题分析阶段,需要充分调研、分析和理解现实世界中的问题,并准确把握问题的本质和特点,为建模和求解奠定基础。
2.建模的基本步骤建模的基本步骤包括确定问题的数学模型的类型,选择合适的数学模型,建立数学模型,进行模型的分析和求解,验证模型的有效性和适用性。
在建模的过程中,需要充分考虑问题的实际背景和要求,选择合适的数学工具和方法,保证模型的准确性和实用性。
3.模型假设在建立数学模型时,需要明确模型的假设,包括输入变量和输出变量,模型的非线性程度,问题的约束条件等。
模型假设的准确性和合理性对于模型的可靠性和有效性至关重要。
二、数学建模的数学方法1.微积分微积分是数学建模中最基本和最常用的工具之一,包括导数、积分、微分方程等。
在建立数学模型和求解问题时,常常涉及到对函数的求导和积分,微分方程的建立和求解等。
2.线性代数线性代数是数学建模中重要的数学工具,包括矩阵和向量的理论和方法,线性方程组的求解,特征值和特征向量的计算等。
在建模和求解问题时,常常需要用到线性代数的知识和方法。
3.概率论与统计学概率论和统计学是数学建模中涉及到的另一个重要领域,包括概率分布,随机变量,样本统计量,假设检验等。
在建立数学模型和分析问题时,需要考虑问题的不确定性和随机性,因此概率论和统计学的知识和方法非常重要。
4.优化方法优化方法是数学建模中用于求解最优化问题的重要工具,包括线性规划、非线性规划、整数规划等。
在建模和求解问题时,常常需要考虑优化问题,选择合适的优化方法进行求解。
5.离散数学与图论离散数学和图论是数学建模中用于处理离散结构和关系的重要工具,包括图的表示和遍历,图的匹配和覆盖,图的着色和路径等。
在建模和求解问题时,常常需要用到离散数学和图论的知识和方法。
数学建模知识点总结

数学建模知识点总结一、数学建模的基本概念数学建模是指利用数学方法和技术对实际问题进行数学化描述和求解的过程。
数学建模的核心是将实际问题抽象化为数学模型,并通过数学方法对模型进行求解,从而得出对实际问题的合理解释和解决方案。
二、数学建模的基本步骤1. 问题的分析与建模:对实际问题进行深入分析,明确问题的目标和约束条件,然后将问题转化为数学模型的形式。
数学模型可以是代数方程、差分方程、微分方程、优化问题等。
2. 模型的求解:根据具体问题的特点,选择合适的数学方法和技术对模型进行求解。
常见的数学方法包括数值计算、概率统计、优化算法等。
3. 模型的验证与评估:对求解得到的数学模型进行验证,检验模型的有效性和可行性。
可以通过实际数据的拟合度、模型的稳定性等方面来评估模型的质量。
4. 结果的解释与应用:将数学模型的求解结果进行解释和分析,得出对实际问题的合理解释和解决方案。
根据实际需求,可以对模型进行调整和优化,进一步提高模型的准确性和实用性。
三、常见的数学建模方法和技术1. 线性规划:线性规划是一种优化方法,用于解决目标函数线性、约束条件线性的优化问题。
通过线性规划可以求解最大化或最小化目标函数的最优解,广泛应用于生产调度、资源分配等领域。
2. 非线性规划:非线性规划是一种优化方法,用于解决目标函数非线性、约束条件非线性的优化问题。
非线性规划相比线性规划更加复杂,但可以处理更为实际的问题,如经济增长模型、能源消耗模型等。
3. 微分方程模型:微分方程模型是一种描述系统演化过程的数学模型,广泛应用于物理、生物、经济等领域。
通过求解微分方程模型,可以揭示系统的动力学行为和稳定性特征。
4. 差分方程模型:差分方程模型是一种递推关系式,描述系统在离散时间点上的变化规律。
差分方程模型常用于描述离散事件系统、人口增长模型等。
5. 概率统计模型:概率统计模型是一种利用概率统计方法对随机事件进行建模和分析的方法。
通过概率统计模型,可以对实际问题的不确定性进行量化和分析,如风险评估、市场预测等。
大学数学建模知识点总结

大学数学建模知识点总结一、概率论基础知识1. 集合论基础知识集合的概念、集合的运算、集合的性质、集合的表示方法等。
2. 随机变量及其分布随机变量的概念、随机变量的分布、离散型随机变量、连续型随机变量等。
3. 数理统计基础知识抽样、统计量、分布函数、统计分布函数、极限定理等。
二、线性代数知识1. 行列式及其性质行列式的概念、行列式的性质、行列式的运算规则等。
2. 矩阵及其运算矩阵的概念、矩阵的运算、矩阵的性质、矩阵的逆、矩阵的转置等。
3. 矩阵方程组矩阵方程组的概念、矩阵方程组的求解、矩阵方程组的解的存在性和唯一性等。
三、微积分知识1. 极限函数极限的定义、函数极限的性质、无穷小量、无穷大量、极限的性质等。
2. 导数导数的概念、导数的求法、导数的性质、高阶导数、隐函数的导数等。
3. 微分方程微分方程的概念、微分方程的解、微分方程的分类、微分方程的求解方法等。
四、数理逻辑知识1. 命题与命题的联结词命题的概念、命题的分类、联结词的概念、联结词的分类、逻辑联结词的性质等。
2. 推理与证明推理的概念、推理的方法、证明的方法、证明的逻辑、直接证明、间接证明、数学归纳法等。
五、数学建模方法1. 模型建立模型的概念、模型的分类、模型的建立方法、模型的验证等。
2. 模型求解模型求解的方法、模型求解的工具、模型求解的步骤等。
3. 模型分析模型分析的方法、模型分析的工具、模型分析的步骤等。
六、优化理论1. 最优化问题最优化问题的概念、最优化问题的分类、最优化问题的求解方法、最优化问题的应用等。
2. 线性规划线性规划的概念、线性规划的模型、线性规划的求解方法、线性规划的应用等。
七、统计推断1. 参数估计参数估计的概念、参数估计的方法、参数估计的性质、参数估计的应用等。
2. 假设检验假设检验的概念、假设检验的原理、假设检验的方法、假设检验的应用等。
八、时间序列分析1. 时间序列的概念时间序列的定义、时间序列的分类、时间序列的性质、时间序列的应用等。
数学建模知识点总结

数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模知识——之新手上路一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤 1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
5. 模型分析对模型解答进行数学上的分析。
“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
例题:一个笼子里装有鸡和兔若干只,已知它们共有 8 个头和 22 只脚,问该笼子中有多少只鸡和多少只兔?解:设笼中有鸡 x 只,有兔 y 只,由已知条件有 x+y=8 2x+4y=22 求解如上二元方程后,得解 x=5,y=3,即该笼子中有鸡 5 只,有兔 3 只。
将此结果代入原题进行验证可知所求结果正确。
根据例题可以得出如下的数学建模步骤: 1)根据问题的背景和建模的目的做出假设(本题隐含假设鸡兔是正常的,畸形的鸡兔除外) 2)用字母表示要求的未知量 3)根据已知的常识列出数学式子或图形(本题中常识为鸡兔都有一个头且鸡有 2 只脚,兔有 4 只脚) 4)求出数学式子的解答 5)验证所得结果的正确性这就是数学建模的一般步骤三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。
对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。
其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一篇论文。
由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分: 1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
一般都有一个比较确切的现实问题。
2.若干假设条件有如下几种情况: 1)只有过程、规则等定性假设,无具体定量数据; 2)给出若干实测或统计数据; 3)给出若干参数或图形; 4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
3.要求回答的问题往往有几个问题,而且一般不是唯一答案。
一般包含以下两部分: 1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式是什么?内容和格式是什么提交一篇论文,基本内容和格式大致分三大部分:标题、 1. 标题、摘要部分题目——写出较确切的题目(不能只写 A 题、B 题)。
摘要——200-300 字,包括模型的主要特点、建模方法和主要结果。
内容较多时最好有个目录。
2. 中心部分 1)问题提出,问题分析。
2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质; 3)计算方法设计和计算机实现。
4)结果分析与检验。
5)讨论——模型的优缺点,改进方向,推广新思想。
6)参考文献——也有特定格式。
3. 附录部分计算程序,框图。
各种求解演算过程,计算中间结果。
各种图形、表格。
(论文有其严格的格式,这里只是一点挂一漏万的表述,详细的内容留有下期,敬请观看)参加数学建模竞赛是不是需要学习很多知识?六、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。
很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。
有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:第一方面:第一方面:数学知识的应用能力归结起来大体上有以下几类: 1)概率与数理统计 2)统筹与线轴规划 3)微分方程;相关的数学基础知识包括 1、线性规划 6、最优化理论 2、非线性规划 7、管理运筹学 3、离散数学 8、差分方程 4、概率统计 9、层次分析 5、常微分方程还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,记得数模评卷的负责教师曾经说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。
这些知识大部分都是学生自己利用课余时间学习的。
第三方面:第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。
要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。
评卷的教师们有一个共识,一篇文章用 10 来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
七、如何从建模例题中学习解题方法在看例题的时候,要看例题是如何作的,即是如何切入,如何选择合理假设,如何分析建立的模型等。
数学建模方法常见有:一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型 1. 回归分析法--用于对函数 f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法 1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真 --有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
八、小组中应该如何分工?小组中应该如何分工?传统的标准答案是——数学,编程,写作。
其实分工不用那么明确,但有个前提是大家关系很好。
不然的话,很容易产生矛盾。
分工太明确了,会让人产生依赖思想,不愿去动脑子。
理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。
在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。
具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。
另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次 Office 就成了。
数学建模是一种科研工作,需要研究、讨论的团队思维模式。
要分析、争论、相互启发、集思广义。
每个同学都要积极参与,积极思维。
若三人之间配合不好,会降低效率,导致整个建模学习的失败。
数学建模知识———之论文写作一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题答卷的基本内容, 1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构 1)摘要。
2)问题的叙述,问题的分析,背景的分析等。
3)模型的假设,符号说明(表)。
4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。
6)结果表示、分析与检验,误差分析,模型检验。
7)模型评价,特点,优缺点,改进方法,推广。
8)参考文献。
9)附录、计算框图、详细图表。