北师大版七年级数学下册全册教案

合集下载

北师大版七年级下册数学教案初中数学七年级下册

北师大版七年级下册数学教案初中数学七年级下册

北师大版七年级下册数学教案初中数学七年级下册对于数学老师而言,上课之前准备好一份教案既能保证上课质量,又可以使老师轻松很多。

下面小编为你整理的北师大版七年级下册数学教案,希望对你有所帮助!七年级下册数学教案篇一教学目标:1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.3.通过法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.4.培养学生耐心细致、严谨的数学思维品质.重点、难点:1.多项式除以单项式的法则及其应用.2.理解法则导出的根据。

课时安排:一课时.教具学具:投影仪、胶片.教学过程:1.复习导入(l)用式子表示乘法分配律.(2)单项式除以单项式法则是什么?(3)计算:①②③(4)填空:规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.讲授新课例1 计算:(1)(2)解:(1)原式(2)原式注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.例2 化简:解:原式说明:注意弄清题中运算顺序,正确运用有关法则、公式。

练习:(1)P150 1,2,。

(2)错例辩析:有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为3.小结1.多项式除以单项式的法则是什么?2.运用该法则应注意什么?正确地把多项式除以单项式问题转化为单项式除以单项式问题。

计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

4.作业P152 A组1,2。

B组1,2。

七年级下册数学教案篇二一、教学目标1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.2.培养学生抽象的数学思维能力.3.通过例题和习题,训练学生综合解题的能力和计算能力.4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.二、重点·难点1.重点理解和应用负整数指数幂的性质.2.难点理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.三、教学过程1.创造情境、复习导入(l)幂的运算性质是什么?请用式子表示.(2)用科学记数法表示:①*****②-5746(3)计算:①②③2.导向深入,揭示规律由此我们规定规律一:任何不等于0的数的0次幂都等于1.同底数幂扫除,若被除式的指数小于除式的指数,例如:可仿照同底数幂的除法性质来计算,得由此我们规定一般我们规定规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.3.尝试反馈.理解新知例1 计算:(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(4)原式例2 用小数表示下列各数:(1)(2)解:(1)(2)练习:P 141 1,2.例3 把100、1、0.1、0.01、0.0001写成10的幂的形式.由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.问:把0.000007写成只有一个整数位的数与10的幂的积的形式.解:像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.例4 用科学记数法表示下列各数:0.008、0.000016、0.***-*****25解:例5 地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字) 解:(吨) 答:木星的质量约是吨.练习:P142 1,2.四总结、扩展1.负整数指数幂的性质:2.用科学记数法表示数的规律:(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1. (2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)五、布置作业P143 A组4,5,6; B组1,2,3,4.点击下页还有更多北师大版七年级下册数学教案。

北师大版七年级数学下册教案_第三章_生活中的数据

北师大版七年级数学下册教案_第三章_生活中的数据

第三章 生活中的数据 3.1 认识百万分之一一、复习提问1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。

2.什么叫科学记数法?把下列各数用科学记数法来表示:(1)2500000 (2)753000 (3)205000000 四、随堂练习:几吨的百万分之一是多少吨?是多少克? 五、继续探索新知识,用科学计数法表示绝对值较小数 1. 正的纯小数的科学记数法表示: (1)学生填空:551010100001.0-==(2)总结规律:n-=1001......0.0:一般地把一个绝对值小于1的数也可以表示成na 10⨯的形式,其中101 a ≤,n 为负整数,n 等于非零的数前面的连续零的个数。

1、例:大多数花粉的直径约为20微米到50微米,这相当于多少米?解:因为1微米=610-米,所以大多数花粉的直径为61020-⨯米到61050-⨯米,即5102-⨯米到5105-⨯米。

2、做一做(1)你能在科学计算器上表示出12109.2⨯吗?7102.7-⨯呢?(2)在显微镜下,人体内一种细胞的截面图的形状可以近似地看成圆,它的直径约为61056.1-⨯米,利用科学计算器求出这种细胞的截面图的面积。

3、练习:把下列各数用科学记数学法表示: (1)0.000 000 001 65;(2)0.000 36微米,相当于多少米? (3)600纳米,相当于多少米? 小结1、1米=1000毫米、1毫米=1000微米、1微米=百万分之一米,即610-米。

2、把较小的数表示成科学记数法,小数点向右移动几位,就写成10的负几次方。

3、用科学记数法表示绝对值较小的数也是将它写成na 10⨯米的形式,其中a 也是大于或等于1且小于10的一个数,不同的地方是此时10的指数n 变成了负整数。

3.2近似数与有效数字 (一)通过学生的练习,加深对近似数的理解,并讲解例题1、2 (二)练习: 1、判断下列各数,哪些是准确数,哪些是近似数(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;( )(2)检查一双没洗过的手,发现带有各种细菌80000万个;( ) (3)张明家里养了5只鸡;( )(4)1990年人口普查,我国的人口总数为11.6亿;( ) (5)小王身高为1.53米;( )(6)月球与地球相距约为38万千米;( ) (7)圆周率π取3.14156( )2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:(1)四舍五入到十分位___________ (2)四舍五入到百分位_________ (3)四舍五入到个位____________一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 在上题中,小明得到的近似数分别精确到哪一位。

(完整版)新北师大版七年级数学下册全册教案

(完整版)新北师大版七年级数学下册全册教案

周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。

1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

七年级数学下册第一章整式的乘除1.3同底数幂的除法第2课时教案新版北师大版

七年级数学下册第一章整式的乘除1.3同底数幂的除法第2课时教案新版北师大版

七年级数学下册第一章整式的乘除1.3同底数幂的除法第2课时教案新版北师大版第一章整式的乘除3同底数幂的除法(第2课时)一、学生起点分析学生的知识技能基础:在七年级学习有理数的乘方时学生已经会用科学记数法表示大于10的数,在上一课时同底数幂除法的运算结果中会出现了一些绝对值较小的数据,学生也理解了负整数指数幂的意义,这就为本课时将科学记数法的应用范围拓广到较小数据奠定了知识基础.二、教学任务分析教科书在学生原有的知识和经验基础上,提出了本课时的具体学习任务:会用科学记数法表示小于1的正数,借助自己熟悉的事物感受绝对值较小的数据.这仅仅是这堂课的近期目标,而本课教学还应服务于数学教学的远期目标“建立数感,学会从数学的角度发现、提出问题和解决问题,获得分析和解决问题的一些基本方法,综合运用数学知识解决简单的实际问题,增强应用意识”同时在学习中应力图达成有关情感态度目标.为此,本节课的教学目标是:1.知识与技能:会用科学记数法表示小于1的正数,能进行它们的乘除运算,并将结果用科学记数法表示出来.2.过程与方法:借助自己熟悉的事物感受绝对值较小的数据,进一步发展学生的数感,体会估测微小事物的方法与策略.3.情感与态度:了解数学的价值,体会数学在生活中的广泛应用.教学重点:用科学记数法表示小于1的正数,借助熟悉的事物感受绝对值较小的数据教学难点:用科学记数法表示小于1的正分数,估测微小事物的策略三、教学过程设计本课时设计了七个教学环节:复习回顾、交流引入、巩固落实、感受数据、反馈拓展、课堂小结、布置作业.第一环节复习回顾2.在用科学记数法表示数据时,我们要注意哪些问题?活动目的:这一环节的目的是引导学生回顾如何用科学记数法表示大于10的数以及应注意的问题,为下面类比表示小于1的正数奠定基础.活动的注意事项:活动1布置为课前作业,学生比较容易得到1米=1910 纳米,活动2学生可能能说出科学记数法的表示形式a ×10n ,教学时主要关注学生是否理解其中a 与n 的取值范围:1≤a <10,n 为正整数,以及n 与小数点移动位数之间的关系第二环节交流引入活动内容:1. 1纳米= 米?这个结果还能用科学记数法表示吗?2. 你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?生活中你还见到过哪些较小的数?请把你找到的资料和数据与同伴交流3.你能用科学记数法表示这些数吗?活动的注意事项:活动1和2也已经布置为课前作业,活动1中要用到上节课关于负整数指数幂的知识,应表示为1纳米= 91011?米(=0.000 000 001米)=10000000001米=9101米=910-米=1910-?米,学生可能只计算出了结果910-但没有用科学记数法表示,也应予以肯定,可以追问“这个结果是否符合科学记数法的形式呢”引导学生进一步思考.活动2让学生课前经历查找数据的过程,学生查到的数据可能是不一样的,课上应注意给学生提供组内展示和全班交流的空间与时间.这里提供一些参考答案:洋葱表皮细胞的大小,直径大约是0.001毫米左右;照相机的快门时间与相机的类型有关,单反相机的快门时间有的是1001秒,有的是8001秒;中彩票头奖的可能性与彩票类型有关,双色球头奖概率为117210881,大乐透头奖概率为214257121,七乐彩头奖概率为20358001,七星彩头奖概率为100000001等;头发的直径儿童的大约是0.04毫米,成人大约是0.07毫米.教师还可以根据情况再补充一些绝对值特别小的数据,例如一个氧原子的质量0.000 000 000 000 000 000 000 000 026 57kg ,增加学生的体验.在学生已经充分感受到这些绝对值较小数据的广泛存在和书写的复杂之后,他们可能产生简便地表示这些数据的强烈愿望,这样活动3的进行就顺理成章.活动3的教学可以按照下面的步骤进行:① 先引导学生体会这些数据都在0到1之间,也就是说它们都是小于1的正数. ② 这里的数据有的是用小数呈现的,有的是用分数呈现的,对学生而言用科学记数法表示0到1之间的小数更容易思考一些,因此上课时可以先解决小数的表示问题.有了前面用科学记数法表示大于10的数的经验,这里可以完全放手让学生自主探索,再通过全班交流得到科学记数法表示小于1的正数的正确方法.教师应关注:学生在用科学计数法表示时是否注意到a 和n 的取值范围、是否能理解n 与小数点移动位数间的关系.③ 教材中并没有出现用科学记数法来表示0到1之间分数的题目,一方面,用科学记数法表示分数对学生而言比较困难;另一方面,0到1之间的分数在书写上没有小数那么复杂.但是生活中很多绝对值较小的数据都是用分数表示的,而且学生在用科学记数法表示完小数后自然会产生表示分数愿望,因此建议在课上也将这个问题予以解决.这里可以让学生先独立思考,尝试表示.学生可能会出现一些错误,例如8001,学生可能会出现21081-?甚至2108-?等错误,可以引导学生先将分数转化为小数,再用科学记数法表示,从而解决这一难题.得到正确的答案后还应将它与错误的结果进行对比、加深认识,帮助学生养成反思的习惯.④ 部分难计算的数据还可以让学生利用计算器来帮助计算,一些特别小的数据在计算器上呈现的结果就已经采用了科学记数法,教学时应该充分利用这些资源,让学生体会科学记数法的简便性和广泛运用.第三环节巩固落实活动内容:1.用科学记数法表示下列各数:0.000 000 000 1= 0.000 000 000 002 9= 0.000 000 001 295=2. 下面的数据都是用科学记数法表示的,请你用小数把它们表示出来:7×10-5=1.35×10-10=2.657×10-16=活动目的:两组题目通过正反两个方面的运用来巩固学生对科学记数法的理解,为了避免让学生只对这些无背景的数据进行简单改写,本环节的题量不大,在后面的环节中还给学生提供了较多的具有实际背景的数据再进行巩固练习.活动的注意事项:活动1教学时应关注学生是否还存在困惑,及时解决.活动2让学生从逆向思维的角度思考数的两种表示之间的关系,从而进一步体会科学记数法的优越性.教学时应并引导学生再次体会n 与小数点移动的位数之间的关系.特别的,应注意引导学生区别7×10-5与7-5, 加深学生对科学记数法的理解.第四环节感受数据活动内容:1. PM2.5是指大气中直径小于或等于2.5μm 的颗粒物,也称为可入肺颗粒物.虽然他们的直径还不到人的头发丝粗细的20 1,但它们含有大量的有毒、有害物质,并且在大气中停留的时间长、输送距离远,因而对人体健康和大气环境质量有很大的危害.假设一种可入肺颗粒物的直径约为2.5μm ,相当于多少米?多少个这样的颗粒物首尾连接起来能达到1m ?与同伴交流2. 估计1张纸的厚度大约是多少厘米.你是怎样做的?与同伴交流活动目的:活动1提供给学生一个有趣的社会环境背景,让他们体会较小的数对人类生活也可以产生重大的影响,同时通过进行乘除运算,加深他们对科学记数法的理解.活动2目的是让学生借助熟悉的事物感受绝对值较小的数,进一步发展数感,形成估测微小事物的方法和策略.活动注意事项:活动1教学时,应注意引导学生品味它的实际背景,计算时,学生可能出现下面两种不同的计算方法,可以板书进行对比,加深他们对科学记数法表示方法和简便性的理解:用原数计算用科学记数法表示后再计算2.5μm=2.5610-?m ,1÷(2.5610-?)=4510-?(个)活动2由于受测量器械的限制,无法直接测量1张纸的厚度,教学时可放手给学生,先让他们分组讨论测量方法,再操作实验,最后在全班范围内交流各自的作法:学生可能会先数100张(或其他整数)的纸,再测量总厚度来计算估计一张纸的厚度;也可能会先量出1厘米厚(或一整本书)的纸,再数张数来计算估计一张纸的厚度.这样,通过交流使学生进行反思和提升,形成估测微小事物的策略.第五环节反馈拓展活动内容:1.基础练习:(1)用科学记数法表示下列各数,并在计算器上表示出来:0.000 000 72; 0.000 861; 0.000 000 000 342 5(2)1个电子的质量是:0.000 000 000 000 000 00 000 000 000 911g ,用科学记数法表示为 g ;冠状病毒的直径为1.2×102 纳米,用科学记数法表示为______________米.2.变式练习:10-g,用小数表示为;每个水分子的直径是(1)每个水分子的质量是3×2610-m,用小数表示为 .4×10(2)拓展延伸:如果一滴水的质量约为0.05g,请根据(1)中提供的数据,回答下列问题:①一滴水中大约有多少个水分子?请用科学记数法表示 .②如果把一滴水中的水分子依次排成一列(中间没有空隙),能排多少米?请用科学计数法表示 .活动目的:这里的题目大多都提供了贴近生活的情境,让学生将数据的感受和表示结合起来,实现对本节课所学知识的巩固和拓展.活动的注意事项:学生可能会出现一些错误,例如,活动1中的第(2)题第二空可能会忽视单位的换算,正确答案应为1.2×10-7米.针对错处,教师可以让学生分析自己的思考和计算过程,自己反思、订正,加深理解和认识.第六环节课堂小结活动内容:1.这节课你学到了哪些知识?2.用科学记数法表示小于1的正数与表示大于10的数有什么相同之处?有什么不同之处?3.用科学记数法表示容易出现哪些错误?你有哪些经验?与同伴交流4.在估测微小事物时你用到了哪些方法和策略?活动目的:通过问题串引导学生回顾本节课所学的知识与方法,对比表示小于1的正数与表示大于10的数的异同可以让学生更好地理解和掌握科学记数法.活动的注意事项:鼓励学生畅谈自己学习体会,分享学习经验,增强学生学习数学的兴趣与信心.第七环节布置作业1.完成课本习题1.52.拓展作业:阅读课本“读一读”,你想了解更多的有关纳米技术或微小世界中的有趣问题吗?请你查阅资料,制作成手抄报,一周后带来与同学分享.四、教学设计反思:1. 把知识的学习与学生的需求紧密结合在这节课中,课前先布置了预习作业让学生在自己熟悉的生活场景中查找绝对值较小的数据,在记录的时候学生会充分感受到这些数据书写的复杂性,从而自己产生寻求简便表示方法的强烈愿望,这时课上再引入科学记数法就顺理成章了.这样的设计巧妙地把科学记数法这一数学知识的学习与学生自己的需求紧密的结合起来,提高了他们的学习兴趣,使学生了解了数学的价值,体会了数学与生活之间的密切联系.在教材中并没有出现用科学记数法来表示0到1之间分数的题目,但是学生查找的数据中很多都是用分数表示的,而且学生在用科学记数法表示完小数后自然会产生表示分数愿望,因此教学设计中也顺应学生的需求,把这一难点知识在课上予以解决.像这样根据学情适当调整教学内容,把知识的学习与学生的需求紧密结合,才能真正的激发学生的兴趣,调动学生的积极性.2. 创设丰富的情景,激发学习的兴趣七年级的学生大都十二三岁,这个年龄的孩子对周围世界和社会环境中的问题具有越来越强烈的探究兴趣,因此在教学设计中尽量避免了让学生进行单纯的数据计算,而是充分挖掘生活中与数据有关的素材,为他们创设了丰富的情境,把数据置于学生熟悉的、感兴趣的背景中,从而将数据的感受和表示结合起来,使他们体会到所学内容与现实世界的密切联系,加深了对数据实际意义的理解.另外,在引入环节中,如果能让学生将课前收集的资料,用图片或课件的形式在课上展示,给学生更强烈的视觉冲击,会更好的激发学生的探究兴趣.。

北师大版七年级数学下册表格式电子教案

北师大版七年级数学下册表格式电子教案

北师大版七年级数学下册最新目录第一章整式的乘除1、同底数幂的乘法2、幂的乘方与积的乘方3、同底数幂的除法4、整式的乘法5、平方差公式6、完全平方公式7、整式的除法回顾与思考复习题第二章相交线与平行线1、两条直线的位置关系2、探索直线平行的条件3、平行线的性质4、用尺规作角回顾与思考复习题第三章变量之间的关系1、用表格表示的变量间关系2、用关系式表示的变量间关系3、用图象表示的变量间关系回顾与思考复习题第四章三角形1、认识三角形2、图形的全等3、探索三角形全等的条件4、用尺规作三角形5、利用三角形全等测距离回顾与思考复习题第五章生活中的轴对称1、轴对称现象2、探索轴对称的性质3、简单的轴对称图形4、利用轴对称进行设计回顾与思考复习题第六章概率初步1、感受可能性2、频率的稳定性3、等可能事件的概率第 1 课时课题 1.1同底数幂的乘法主备审阅教学目标1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.教学重点幂的运算性质.教学难点幂的运算性质.教学设计教学过程个性化设计导入引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.为了学习整式的乘法,首先必须学习幂的运算性质.在此我们先复习乘方、幂的意义.二、复习提问2.指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?新授1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3、引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.四、应用举例变式练习例1计算:(1)107×104;(2)x2·x5.解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.例2 计算:(1)-a2·a6; (2)(-x)·(-x)3 ;(3)y m·y m+1.解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;(2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;(3)y m·y m+1=y m+(m+1)=y2m+1.提醒学生注意:(1)中-a2与(-a)2的差别;(3)要合并同类项..巩固练习1、计算:(1)105·106; (2)a7·a3;(3)y3·y2;(4)b5·b; (5)a6·a6; (6)x5·x5.对于第(2)小题,要指出y的指数是1,不能忽略.2、计算:(1)y12·y6; (2)x10·x;(3)x3·x9; (4)10·102·104;(5)y4·y3·y2·y; (6)x5·x6·x3.3、计算:(1)-b3·b3; (2)-a·(-a)3;(3)(-a)2·(-a)3·(-a);(4)(-x)·x2·(-x)4;课堂小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算课后作业板书设计教学后记第 6 课时课题 1.4整式的乘法单项式的乘法主备审阅教学目标1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算;2.注意培养学生归纳、概括能力,以及运算能力.教学重点准确、迅速地进行单项式的乘法运算.教学难点准确、迅速地进行单项式的乘法运算.教学设计教学过程个性化设计导入一、从学生原有认知结构提出问题1.下列单项式各是几次单项式?它们的系数各是什么?2.下列代数式中,哪些是单项式?哪些不是?3.利用乘法的交换律、结合律计算6×4×13×25.4.前面学习了哪三种幂的运算性质?内容是什么?新授1.引导学生得出单项式的乘法法则利用乘法交换律、结合律以及前面所学的幂的运算性质,计算下列单项式乘以单项式:(1) 2x2y·3xy2=(2×3)(x2·x)(y·y2)=6x3y3;(利用乘法交换律、结合律将系数与系数,相同字母分别结合,有理数的乘法、同底数幂的乘法)(2) 4a2x5·(-3a3bx)=[4×(-3)](a2·a3)·b·(x5·x)=-12a5bx6.(b只在一个单项式中出现,这个字母及其指数照抄) 由学生总结出单项式的乘法法则:单项式相乘,把它的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.引导学生剖析法则(1)法则实际分为三点:①系数相乘——有理数的乘法;②相同字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.(2)不论几个单项式相乘,都可以用这个法则.(3)单项式相乘的结果仍是单项式.巩固练习例1 计算:(1)(-5a2b3)(-3a);(2)(2x)3(-5x2y);(4)(-3ab)(-a2c)2·6ab(c2)3.第(1)小题由学生口答,教师板演;第(2),(3),(4)小题由学生板演,根据学生板演情况,教师提醒学生注意:先做乘方,再做单项式相乘,中间过程要详细写出,待熟练后才可省略.课堂练习1.计算:(1) 3x5·5x3;(2)4y·(-2xy3);2.计算:(1)(3x2y)3·(-4xy2);(2)(-xy2z3)4·(-x2y)3.3.计算:(1)(-6a n+2)·3a n b;(4)6ab n·(-5a n+1b2).例2 光的速度每秒约为3×105千米,太阳光射到地球上需要的时间约是5×102秒,地球与太阳的距离约是多少千米?解:(3×105)×(5×102)=15×107=1.5×108.答:地球与太阳的距离约是1.5×108千米.先由学生讨论解题的方法,然后由教师根据学生的回答板书.课堂练习一种电子计算机每秒可作108次运算,它工作5×102秒可作多少次运算?课堂小结1.单项式的乘法法则可分为三点,在解题中要灵活应用.2.在运算中要注意运算顺序.课后作业板书设计教学后记第 8 课时课题 1.6 整式的乘法(3)——多项式乘以多项式主备审阅教学目标1.经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。

第1章1同底数幂的乘法(教案)2023-2024学年七年级下册数学(教案)(北师大版)

第1章1同底数幂的乘法(教案)2023-2024学年七年级下册数学(教案)(北师大版)
-重点强调数幂的乘法法则简化计算过程,解决数学问题。
-举例:计算2^3⋅2^4时,应得出2^(3+4)=2^7的结果,而非2^12。
2.教学难点
-难点识别:理解同底数幂乘法法则中指数相加的概念。
-学生难点:在具体计算中,容易混淆指数相乘与指数相加的区别。
在实践活动中,分组讨论和实验操作让学生们有了实际操作的机会,这有助于他们更好地理解同底数幂乘法的原理。同时,我也发现学生在讨论过程中,能够相互启发,共同解决问题。但在小组分享成果时,有些同学的表达能力还有待提高。
学生小组讨论环节,我尽量让自己成为一个引导者和协助者,让学生发挥主体作用。我发现,当学生围绕一个主题展开讨论时,他们的思维非常活跃,能够从不同角度去思考问题。但在这个过程中,我也注意到,部分学生在提出观点时,还需要进一步培养逻辑思维能力。
第1章1同底数幂的乘法(教案)2023-2024学年七年级下册数学(教案)(北师大版)
一、教学内容
本节课选自北师大版数学七年级下册,第1章“整式的运算”中的第1节“同底数幂的乘法”。教学内容主要包括以下方面:
1.掌握同底数幂的乘法法则,即:am⋅an=am+n(m、n是正整数)。
2.能够运用同底数幂的乘法法则进行简便计算。
1.加强对基础知识的讲解和巩固,让学生真正理解同底数幂乘法的内涵。
2.注重培养学生的抽象思维能力,帮助他们从具体实例中提炼出一般规律。
3.提高学生的表达和沟通能力,让他们在合作交流中更好地展示自己。
4.继续采用引导式教学,激发学生的思考,培养他们的逻辑思维能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)

北师大版七年级下册数学教案:1.1 《同底数幂的乘法》

北师大版七年级下册数学教案:1.1 《同底数幂的乘法》

北师大版七年级下册数学教案:1.1 《同底数幂的乘法》x一. 教材分析《同底数幂的乘法》是北师大版七年级下册数学的第一课时内容,主要介绍了同底数幂相乘的法则。

这一节内容是初中学员掌握幂的运算的重要基础,对于学生理解幂的运算法则和拓展学习其他数学知识有着重要的意义。

二. 学情分析七年级的学生已经掌握了有理数的乘法、幂的定义等基础知识,但对于幂的运算规则还比较陌生。

同时,由于幂的运算涉及到抽象的数学概念,学生可能对此难以理解。

因此,在教学过程中,需要注重让学生理解幂的运算规则,并通过大量的练习来巩固知识点。

三. 教学目标1.让学生理解同底数幂相乘的法则。

2.使学生能够运用同底数幂相乘的法则进行计算。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.教学重点:同底数幂相乘的法则。

2.教学难点:理解同底数幂相乘的法则,并能够灵活运用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索同底数幂相乘的法则;通过案例分析,让学生理解并掌握运算规则;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.PPT课件:包括同底数幂相乘的法则、案例分析、练习等内容。

2.练习题:包括基础题、提高题和拓展题。

3.板书:准备黑板和粉笔,用于板书重点内容和解题过程。

七. 教学过程1.导入(5分钟)通过一个实际问题引入同底数幂相乘的概念,如“已知x^3 * x^2 = x^(3+2),求x的值。

”引导学生思考同底数幂相乘的法则。

2.呈现(10分钟)讲解同底数幂相乘的法则,用PPT展示案例,如:x^3 * x^2 = x(3+2),x4 * x^-1= x^(4-1)。

让学生理解并记忆同底数幂相乘的规则。

3.操练(10分钟)让学生进行同底数幂相乘的练习,教师巡回指导。

可设置一些基础题,如:2^3 * 22,以及一些提高题,如:34 * 3^-2。

在此过程中,提醒学生注意指数的加减法。

北师大版七年级数学下册全套教学课件

北师大版七年级数学下册全套教学课件

m个a = a·a·… ·a
(m+n+p)个a =am+n+p
n个a
p个a
即am· an· ap = am+n+p.
【例题】
【例2】光在真空中的速度约为3×108 m/s,太阳光照射到 地球上大约需要5×102 s.地球距离太阳大约有多远?
【解析】3×108×5×102 =15×1010 =1.5×1011(m)
解:方法一 am·an·ap
方法二 am·an·ap
=(am·an)·ap =am+n·ap =am+n+p
即am· an· ap = am+n+p.
=am ·(an·ap ) =am·an+p =am+n+p 即am· an· ap = am+n+p.
方法三 am·an·ap =(a·a·… ·a) · (a·a·… ·a) ·(a·a·… ·a)
=105+8 .
(3)10 m× 10n =(10×10×···×10)×(10×10×···×10)
m个10
n个10
(根据 幂的意义)
=10×10×···×10
(根据 乘法结合律 )
(m+n)个10
=10 m+n (根据 幂的意义 ).
2. 2m×2n
=(2×2×···×2) × (2×2×···×2)
一年以3×107 s计算,比邻星与地球的距离约为多少?
3×108×3×107 ×4.22 = 37.98 ×(108×107). 108×107等于多少呢?
108× 10 7
=(10×10×···×10)×(10×10×···×10)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年度第二学期教学进度任课教师:学科:数学七年级注意事项:1、结合学生实际情况,多采取游戏式的教学,务实基础,引导学生乐于参与数学学习活动。

2、培养学生认真地计算能力及习惯,在原有基础上再提高。

3、培养学生的数学能力,提高解决数学问题的正确率,抓好尖子生。

4、在课堂教学中,注意多一些有利于孩子理解的问题,应该考虑学生实际的思维水平,多照顾中等生以及思维偏慢的学生。

1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点和难点:幂的运算性质.教学过程:一、实例导入:二、温故:2.,指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、知新:1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。

注意:强调幂的底数必须相同,相乘时指数才能相加.四、巩固:例1计算:(1) (-3)7×(-3)6;(2)(1/111)3×(1/111).(3) -x3·x5 (4) b2m·b2m+1..例2、光在真空中的速度约为3×108米/秒,泰阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?五、拓展:1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.六、课堂小结:1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算。

七、板书设计:八、教学后记:1.2幂的乘方与积的乘方(1)教学目标:知识与技能:了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

过程与方法:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点:会进行幂的乘方的运算。

教学难点:幂的乘方法则的总结及运用。

教学方法:尝试练习法,讨论法,归纳法。

活动准备:课件教学过程:一、温故:计算(1)(x+y)2·(x+y)3(2)x2·x2·x+x4·x1a)4(4)x3·x n-1-x n-2·x4(3)(0.75a)3·(4通过练习的方式,先让学生复习乘方的知识,并紧接着利用乘方的知识探索新课的内容。

二、知新:1、64表示_________个___________相乘.(62)4表示_________个___________相乘.a3表示_________个___________相乘.(a2)3表示_________个___________相乘.在这个练习中,要引导学生观察,推测(62)4与(a2)3的底数、指数。

并用乘方的概念解答问题。

2、(62)4=________×_________×_______×________=__________(33)5=_____×_______×_______×________×_______=__________(a2)3=_______×_________×_______=__________(a m)2=________×_________=__________(a m)n=________×________×…×_______×__________=__________即(a m)n= ______________(其中m、n都是正整数)通过上面的探索活动,发现了什么?幂的乘方,底数__________,指数__________.学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。

教师应当鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。

然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。

三、巩固:1、计算下列各题:(1)(102)3(2)(b5)5 (3)(a n)3(4)-(x2)m(5)(y2)3·y (6)2(a2)6-(a3)4学生在做练习时,不要鼓励他们直接套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义与幂的意义。

2、判断题,错误的予以改正。

(1)a5+a5=2a10 ()(2)(s3)3=x6 ()(3)(-3)2·(-3)4=(-3)6=-36 ()(4)x3+y3=(x+y)3()(5)[(m-n)3]4-[(m-n)2]6=0 ()学生通过练习巩固刚刚学习的新知识。

在此基础上加深知识的应用.四、拓展:1、1、计算5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)19902、若(x2)n=x8,则m=_____________.3、、若[(x3)m]2=x12,则m=_____________。

4、若x m·x2m=2,求x9m的值。

5、若a2n=3,求(a3n)4的值。

6、已知a m=2,a n=3,求a2m+3n的值.五、课堂小结:会进行幂的乘方的运算。

六、作业设计:课本P6习题1.2:1、2七、板书设计:八、教学后记:1.2幂的乘方与积的乘方(2)教学目标:知识与技能:了解积的乘方的运算性质,并能解决一些实际问题。

过程与方法:经历探索积的乘方的运算的性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点:积的乘方的运算教学难点:正确区别幂的乘方与积的乘方的异同。

教学方法:探索、猜想、实践法 教学用具:课件 教学过程: 一、温故:1、计算下列各式:(1)_______25=⋅x x (2)_______66=⋅x x (3)_______66=+x x (4)_______53=⋅⋅-x x x (5)_______)()(3=-⋅-x x (6)_______3423=⋅+⋅x x x x 2、下列各式正确的是( )(A )835)(a a = (B )632a a a =⋅ (C )532x x x =+(D )422x x x =⋅ 二、知新:1、 计算:333___)(____________________________52⨯==⨯=⨯2、 计算:888___)(____________________________52⨯==⨯=⨯3、 计算:121212___)(____________________________52⨯==⨯=⨯从上面的计算中,你发现了什么规律?_________________________ 4、猜一猜填空:(1)(___)(__)453)53(⋅=⨯ (2)(___)(__)53)53(⋅=⨯m (3)(___)(__))(b a ab n ⋅= 你能推出它的结果吗?结论:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。

三、巩固:1、 计算下列各题:(1)666(__)(__))(⋅=ab(2)_______(__)(__))2(333=⋅=m (3)_____(___)(__)(__))52(2222=⋅⋅=-pq (4)____(__)(__))(5552=⋅=-y x2、 计算下列各题:(1)_______)(3=ab (2)_______)(5=-xy(3)_____________)43(2==ab (4)_______________)23(32==-b a (5)____________)102(22==⨯ (6)____________)102(32==⨯- 四、拓展: 计算下列各题:(1)223)21(z xy - (2)3)32(m n b a - (3)n b a )4(32(4)2242)(32ab b a -⋅ (5)32332)(3)2(b a b a - (6)222)2()3()2(x x x ---+ 五、课堂小结:本节课学习了积的乘方的性质及应用,要注意它与幂的乘方的区别。

六、作业设计:第8页习题 1、2、3。

七、板书设计: 八、教学后记:1.3同底数幂的除法教学目标:知识与技能:了解同底数幂的除法的运算性质,并能解决一些实际问题。

过程与方法:经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义。

情感、态度、价值观:发展推理能力和有条理的表达能力。

教学重点:会进行同底数幂的除法运算。

教学难点:同底数幂的除法法则的总结及运用。

相关文档
最新文档