数字图像处理_图像测量和形状分析

合集下载

计算机图像处理与分析

计算机图像处理与分析

计算机图像处理与分析计算机图像处理与分析是指利用计算机技术对图像进行处理、分析和理解的过程。

它涉及到数字图像处理、计算机视觉、图像识别等多个领域,是计算机科学和工程领域的一个重要研究方向。

以下是计算机图像处理与分析的一些基本知识点:1.数字图像处理:将模拟图像转换为数字图像,并进行各种处理,如图像增强、滤波、边缘检测、图像分割、图像配准等。

2.图像分析:对图像进行量化、描述和解释,包括特征提取、目标检测、形状分析、纹理分析等。

3.计算机视觉:通过模拟人类的视觉系统,使计算机能够理解和解释图像和视频。

包括图像识别、场景重建、视觉伺服等。

4.图像识别:识别图像中的对象、场景和个体,是计算机视觉的一个重要任务。

包括监督学习、非监督学习、深度学习等方法。

5.图像编码和压缩:为了节省存储空间和带宽,需要对图像进行编码和压缩。

包括JPEG、PNG、H.264等编码标准。

6.图像重建:从多个图像中重建三维模型或场景,应用于医学、工业等领域。

7.图像处理与分析的应用:包括图像处理软件、计算机辅助设计、机器人视觉、遥感图像处理、医学图像分析等。

8.数学基础:包括线性代数、概率论和数理统计、微积分等,这些数学工具在图像处理与分析中起到重要作用。

9.编程语言和工具:熟悉常用的编程语言,如Python、MATLAB、C++等,以及图像处理库,如OpenCV、MATLAB的Image Processing Toolbox等。

10.硬件设备:图像处理与分析需要高性能的计算机和专业的图像采集设备,如摄像头、扫描仪等。

计算机图像处理与分析是一门综合性的学科,需要掌握多个领域的知识和技能。

通过学习和实践,可以更好地理解和应用图像处理与分析的技术。

习题及方法:1.习题:图像增强的目的是什么?解题方法:回顾图像增强的定义和目的,增强图像的视觉效果,提高图像的质量和清晰度,以便更好地进行图像分析和识别。

答案:图像增强的目的是提高图像的质量和清晰度,以便更好地进行图像分析和识别。

测绘技术中的数字图像处理与分析方法

测绘技术中的数字图像处理与分析方法

测绘技术中的数字图像处理与分析方法近年来,随着数字技术的不断发展与应用,数字图像处理与分析成为科学研究和实践的重要工具,尤其在测绘技术领域,它发挥着举足轻重的作用。

本文将探讨测绘技术中数字图像处理与分析方法的应用。

数字图像处理与分析方法使用计算机科学的原理和方法来获取、处理、分析和显示数字图像。

在测绘技术中,它广泛应用于地理信息系统、遥感、摄影测量等领域。

下面将介绍几种常见的数字图像处理与分析方法。

首先,空间滤波是数字图像处理中常用的一种方法。

它通过在图像的像素或像素邻域上定义一个滤波模板,对图像进行平滑、增强、噪声去除等操作。

空间滤波可以改善图像的质量,使图像更清晰、更易于分析。

在测绘技术中,空间滤波常用于遥感图像的预处理,如模糊滤波可以减少图像中的噪声和细节,锐化滤波可以增强图像的边缘和细节。

其次,阈值分割是一种常见的图像分割方法。

它通过将图像中灰度值在某个阈值以上或以下的像素分为两个类别,实现图像的分割。

在测绘技术中,阈值分割广泛应用于地物提取和分类,如提取地表水体、森林、道路等。

通过设置不同的阈值,可以实现对不同地物的分割和提取。

此外,特征提取是数字图像处理与分析中的重要环节。

它通过对图像中的局部特征进行提取和描述,实现图像的分类、目标识别和匹配等任务。

在测绘技术中,特征提取可用于地物识别和变化检测等应用。

例如,在航空摄影测量中,可以通过提取图像中的线段、角点等几何特征,估计物体的位置、尺寸和形状。

此外,变换和重建是数字图像处理与分析中常用的方法。

它通过将图像从一个域转换到另一个域,实现图像的变换和重建。

在测绘技术中,变换和重建广泛应用于三维数据的处理和可视化。

例如,通过将二维影像转换为三维模型,可以实现对地表形态和地形变化的分析和模拟。

最后,图像融合是数字图像处理与分析中的一项重要研究课题。

它通过将多幅图像的信息融合在一起,得到一幅更具有信息量和准确性的图像。

在测绘技术中,图像融合常用于多光谱和高光谱遥感图像的融合。

数字图像 12.二值图像处理与形状分析2

数字图像   12.二值图像处理与形状分析2

建立一种基本元素循环的方式来描述上述结构。 设S和A是变量,S是起始符号,a和b是基本元素的 常数,则可建立一种描述语法,或说可确定如下重 写(替换)规则:
(l)S->aA (起始符号可用元素a和变量A来替换); (2)A->bs (变量A可以用元素b和起始符号S来替换); (3)A+b (变量A可以用单个元素b来替换)。 由规则2知,如用b和S替换A则可回到规则1,整个过程可 以重复。 根据规则3,如果用b替换A则整个过程结束,因为表达式 中不再有变量。注意这些规则强制在每个a后面跟一个b,所 以a和b间的关系保持不变。
p( j ) f (i, j )
n
j
固定i0,得到图像f(i,j)的过i0而平行于j轴的截口f(i0 ,j) 固定j0,得到图像f(i,j)的过j0而平行于i轴的截口f(i, j0)
二值图像f(i,j)的截口长度为:
s (i 0 ) f (i0 , j ) s ( j 0 ) f (i, j0 )
2)结构分析法
利用二值图像的四叉树表示边界,可以提取
如欧拉数、区域面积、矩、形心、周长等区域的
形状特征。
2.区域外形变换法 区域外形变换是指对区域的边界作各种变 换,包括区域边界的付立叶描述算子、Hough变
换和广义Hough变换、区域边界和骨架的多项式
逼近等。这样将区域的边界或骨架转换成向量
或数量,并把它们作为区域的形状特征。
个结点与其相连通结点的信息,可用一组指向这些结点的 指针来记录。
树结构的两类信息中,一类确定了图象描述中的基本模
式元,第二类确定了各基本模式元之间的物理连接关系。下
图给出一个用树结构描述关系的例子,左图的是一个组合区 域,它可以用右图所示的树借助“在„之中”关系进行描述。 其中根结点R表示整幅图;a和c是在R之中的两个区域所对 应的两个子树的根结点,其余结点是它们的子结点。由图B所 示的树可知,e在d中,d和f在c中,b在a中;a和c在R中。

数字图像处理与分析

数字图像处理与分析

数字图像处理与分析数字图像处理与分析是一门涉及到数字信号处理、计算机科学、数学和物理学等多个领域的交叉学科。

它使用计算机对数字图像进行处理、分析和应用,既可以改善图像的质量,也可以提取出有用的信息并进行量化分析。

随着数字摄影技术的发展和计算机技术的普及,数字图像处理与分析在生产制造、医学、航空航天、气象地理等领域里得到了广泛的应用。

一、数字图像基础数字图像是由像素点组成的二维阵列,每个像素点代表一个灰度值或颜色值。

图像的分辨率取决于像素的数量,不同的颜色模式可以用不同的方式表示图像中像素的颜色。

灰度图像中每个像素用一个8位二进制数(称为灰度值)表示图像中的亮度,颜色图像则需要三个颜色通道来表示每个像素的颜色。

在数字图像中,可以通过使用图像处理算法来改善图像质量、增强图像细节、提取图像特征以及进行图像分析等处理。

二、图像处理算法图像处理算法是指将数字图像处理任务转换为数学运算的方法。

常见的图像处理算法包括:图像平滑、图像锐化、边缘检测、二值化、形态学处理、频域处理和特征提取等。

其中,图像平滑是为了平滑噪声和细节而进行的处理,图像锐化则是为了提高图像边缘的清晰度和对比度;边缘检测用于在图像中找到物体的边缘并提取有用信息;二值化将图像中的灰度值转换为黑白值,常用于目标检测;形态学处理可以用于填充、锐化、膨胀、腐蚀等操作;频域处理可以在频域中进行图像滤波、增强、去除噪声等处理;特征提取是从图像中提取有意义的信息,用于进一步分析和识别目标等。

三、图像分析图像分析是指使用图像处理算法自动或半自动地解释和理解图像。

图像分析的目的是将数字图像转换为可用于决策和控制的信息,常用于图像识别、目标检测和量化分析等领域。

图像识别可以通过对目标的特征进行匹配来实现,如通过比对目标的轮廓或纹理来进行分类。

目标检测可通过在图像中寻找符合目标特征的像素来实现,如寻找颜色、大小或形状等特征。

量化分析可通过对目标的特征数据进行统计和分析来实现,如测量目标大小、形状、颜色或纹理等。

如何使用数字图像处理进行测绘数据提取和分析

如何使用数字图像处理进行测绘数据提取和分析

如何使用数字图像处理进行测绘数据提取和分析数字图像处理是指利用计算机技术,对数字图像进行操作和处理的过程。

近年来,随着数字技术的快速发展,数字图像处理在各个领域得到了广泛应用,其中之一就是测绘数据的提取和分析。

测绘数据提取是指从图像中提取出与测绘相关的数据信息。

在过去,传统的测绘工作通常需要人工测量和绘制,耗时耗力且容易出错。

而通过数字图像处理技术,可以通过对特定区域的图像进行分析和处理,提取出所需的数据信息,极大地提高了测绘工作的效率和准确性。

首先,在进行数据提取前,我们需要对数字图像进行预处理。

预处理包括图像去噪、增强和几何校正等步骤。

去噪是指通过滤波器等方法去除图像中的噪声,在一定程度上提高图像的质量。

增强是指对图像的亮度、对比度和色彩进行调整,使得图像更加清晰明确。

几何校正是为了纠正图像中的几何畸变,使得图像的形状和大小符合实际测量情况。

接下来,我们可以利用数字图像处理技术进行特征提取。

特征提取是指从图像中提取出对于测绘而言具有代表性的特征信息。

在测绘数据提取中,常用的特征包括边界、角点、线段等。

边界是指图像中物体的边界线,可以通过边缘检测算法来提取。

角点是指图像中物体的拐角位置,可以通过角点检测算法来提取。

线段是指图像中具有一定长度的线条,可以通过直线检测算法来提取。

通过提取这些特征,可以进一步分析测绘数据的形态和结构。

此外,数字图像处理还可以用于测绘数据的分类和识别。

分类是指将图像数据划分为不同的类别。

在测绘中,常用的分类方法有基于像素值的阈值法和基于特征的分类方法。

阈值法是指通过设定一个阈值,将图像中大于该阈值和小于该阈值的像素分别归类。

基于特征的分类方法是指通过提取图像的特征信息,使用机器学习算法对图像进行分类。

通过分类,可以将不同的地物和目标从图像中提取出来,为后续的测绘分析提供基础。

最后,数字图像处理还可以用于测绘数据的量测和分析。

量测是指测量目标物体在图像中的大小和位置。

通过标定图像和目标物体之间的关系,可以利用数字图像处理技术计算出目标物体在实际世界中的大小和位置。

测绘技术中的数字图像处理与数字图像分析方法

测绘技术中的数字图像处理与数字图像分析方法

测绘技术中的数字图像处理与数字图像分析方法测绘技术作为一项重要的传统技术,在现代社会起到了至关重要的作用。

随着科技的不断发展,数字图像处理与数字图像分析方法在测绘技术中的应用也变得越来越广泛和深入。

本文将介绍一些常见的数字图像处理和数字图像分析方法,并探讨它们在测绘技术中的应用。

一、数字图像处理数字图像处理是通过计算机对图像数据进行处理和改善的过程。

它可以对图像进行增强、修复、滤波等操作,以提高图像质量和清晰度。

在测绘技术中,数字图像处理是不可或缺的一环。

为了解决数字图像处理中的一些问题,如图像模糊、噪声等,常用的方法包括滤波和增强。

滤波是数字图像处理中常用的技术,用于去除图像中的噪声和杂点。

常见的滤波方法包括平滑滤波和锐化滤波。

平滑滤波主要通过模糊图像来减少噪声,而锐化滤波则可以使图像的边缘更加清晰和鲜明。

增强是改善和提高图像质量的一种方法。

它可以使图像的亮度、对比度等属性得到改善,并使图像更加鲜艳和真实。

在测绘技术中,增强技术可以用于提高遥感图像的清晰度和分辨率,以获取更准确的地理信息。

二、数字图像分析数字图像分析是对图像数据进行量化和分析的过程。

它可以识别、分类和测量图像中的对象和特征,从而获取更多的信息和数据。

在测绘技术中,数字图像分析常用于地物分类、地形测量等方面。

数字图像分析的方法很多,其中最常见的是基于灰度级的图像分割和基于纹理信息的图像分类。

图像分割是将图像分成不同的区域或目标的过程。

它可以通过阈值分割、边缘检测等方法实现。

在测绘技术中,图像分割可以用于提取地物的边界和轮廓,从而实现自动地物识别和分类。

图像分类是将图像中的像元分为不同类别的过程。

它常用于地物的自动分类和识别。

基于纹理信息的图像分类是一种常见的方法,它可以通过提取和分析图像的纹理特征来实现地物的分类和识别。

三、应用案例数字图像处理和数字图像分析在测绘技术中有着广泛的应用。

下面将介绍几个典型的应用案例,以展示其在测绘技术中的作用。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

如何进行数字图像处理与分析

如何进行数字图像处理与分析

如何进行数字图像处理与分析数字图像处理与分析是图像处理领域的一个重要分支,它通过对图像进行一系列的算法和技术处理,提取图像中的有用信息,并进一步分析和应用这些信息。

数字图像处理与分析在多个领域具有广泛的应用,如医学影像、遥感图像、安防监控等。

本文将从图像获取、预处理、特征提取和图像分割等方面探讨如何进行数字图像处理与分析。

一、图像获取与预处理图像获取是数字图像处理与分析的第一步,采集到的图像质量将直接影响后续处理的结果。

通常,我们可以使用数字相机、扫描仪等设备获取图像,并将其转化为数字形式。

在图像预处理阶段,我们需要对采集到的图像进行去噪、增强、均衡等处理操作,以提高图像的质量和视觉识别的准确性。

例如,可以利用滤波算法去除图像中的噪声,使用直方图均衡化技术增强图像的对比度。

二、特征提取与描述特征提取是数字图像处理与分析的核心环节之一,它通过对图像进行处理,提取出图像中的关键特征,用于后续的分析和应用。

常用的特征包括边缘、纹理、形状等。

在边缘提取方面,我们可以使用Canny算法、Sobel算法等经典的边缘检测算法,识别图像中的边缘信息,为后续的对象识别和分割奠定基础。

对于纹理特征,我们可以使用局部二值模式(LBP)、灰度共生矩阵(GLCM)等方法,提取图像中不同区域的纹理信息,如纹理方向、纹理粗糙度等,用于纹理分类和纹理合成等应用领域。

形状特征大多应用于物体识别和目标跟踪等领域。

在形状特征提取中,我们可以利用边界轮廓信息、投影直方图等方法,描述物体的形状信息,并与已有的形状模板进行匹配和识别。

三、图像分割与识别图像分割是将图像划分为若干个具有独立意义的区域的过程。

分割可以基于不同的特征进行,如基于灰度、颜色、纹理等。

在基于灰度的分割中,常用的方法包括阈值分割、基于水平线的分割、区域生长等。

阈值分割是最简单的分割方法之一,通过设定灰度阈值,将图像分为不同的区域。

而区域生长算法则是根据像素之间的相似度,将相邻像素进行合并,从而得到若干个连通区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频域乘以系数
exp
j2
x0 N

– 中轴变换
2 形状分析
• 寻找物体中满足以下条件的点及其参数:
• 以该点为圆心,存在一个包含在物体内的圆盘且与物体的边界相切与 两点。该点参数就是圆盘的半径。
数字图像处理
图像测量和形状分析
物体测量和形状分析
• 一、尺寸测量 • 二、形状分析 • 三、纹理分析 • 四、曲线和表面拟合 • 要点总结
1 尺寸测量
– 目的
• 当分割出物体后,进一步测量物体的尺寸和几何特征,以进行图像识 别和分类。
– 主要物体的尺寸属性
• 面积 • 周长 • 长度和宽度 • 物体的综合光密度
2 形状分析
– 通过一类物体的形状将它从其他物体中分离出来。
• 2.1 矩形度
– 矩形拟合因子
R AO AR • Ao是物体的面积, AR是物体外接矩形的面积 • R反应物体对其外接矩形的填充程度 • 对矩形物体R取最大值1,对纤细物体R取较小值,
对圆形物体R取值为π/4。
2 形状分析
– 长宽比
2 形状分析
K(p)=1/r(p)
p
r(p)
Start Point
• 单位边界长度的平均能量
E 1
P
K

p
2
dp
P0
对于固定面积值,圆具有最小边界能量
Eo


2
P
2


1 R2
2 形状分析
– 利用物体内1点到N 最近边界点的平均距离
d N i1 xi
g

A
• 显然对于二值函数,零阶矩等于物体的面积

• 中心矩M是00以质心为原点f 进x行, 计y 算dxdy

j
k
jk x x y y f x, y dxdy
x M10 , y M 01
M 00
M 00
面积:A Na Nb 2 1
1 尺寸测量
3
2
1
4
0
5
6
7
边界方向码
– Ne走偶步的数目,No走奇步的数目; – Na物体包含的像素数目(包括边界上的像素); – Nb边界上的像素数目;
• 为什么要多减去一个像素? • 因为总假定物体是凸的,包含了4个角。
– 多边形遍历法
1 尺寸测量
• 1.1 面积和周长
– 面积和边界关系:边界像素是全部还是部分包含在 物体中?或物体的实际边界是由边界像素的中心还 是外边缘构成?
– 像素计数法:统计边界内部以及边界上像素的数目 即面积。周长是外边界的长度。缺点:包含了边界 像素。
– 多边形测量法:将物体边界定义为以各边界像素中 心为周顶长点:的p 多 N边e 形 。2No
......
2 形状分析
• 2.4 形状描述子
– 微分链码
• 微分链码反映了边b界的曲率,峰值处显示了凹凸性
c
a
2
0
0
ef
d
g
6 4 2
a b c def g
• 通过傅立叶展3开的2三次1 谐波与四次谐波幅边值界链比码区分三角形和四边形。
4
0
56 7
a b c d ef g 微分链码
2 形状分析
– 最小外接矩形法(MER)
• 以等间隔使物体在90°范围内旋转,每次旋转后用 一个水平的外接矩形拟合其边界。记录下最小面积 外接矩形的参数,旋转角度即物体主轴方向。
1 尺寸测量
– 矩(moments)计算方法
• 参见下一小节。
• 1.3 综合和平均光密度
– 综合光密度等价于面积乘以物体内部的平均灰度级。
– 傅立叶描述子
p 起点
B(p)=x(p)+jy(p) 起点
• 对周期函极 数坐进标行边离界函散数傅立叶变换复,数保边界留函频数域中低频部分的少数级项称 为傅立叶描述子。
2 形状分析
• 傅立叶描述子的缺点时对于位置、大小、方向的依赖性,因此需要做 进一步处理。
• 首先:将大小规格化。将F(u)所有系数被F(0)除后作为描述子; • 其次:物体旋转θ 角,根据傅立叶性质,频域乘以常数ejθ; • 最后:傅立叶描述子域起点相关,根据傅立叶性质空域中起点移动x0,
时保持不变。 • 这些矩的幅值及其组合反映了物体的形状并可以用于模式识别。
1 20 02
2 20 02 2 4121 3 30 312 2 321 03 2 4 30 12 2 21 03 2
2 形状分析
• 规格化中心矩
jk

jk r
00
,r

jk 2
• 中心矩具有位置无关性
• 主轴 • 使二阶中心矩
变得最小11 的旋转角θ ,称为物体的主轴。
tan 2 211 20 02
2 形状分析
• 不变矩 • 相对于主轴计算并用面积规范化的中心矩,在物体放大、平移、旋转

ydx
1 Nb
1 Nb
A 2 i1 xi yi1 yi yi xi1 xi 2 i1 xi yi1 yi xi1
• 相应周长等于多边形各边长之和。
1 尺寸测量
• 1.2 长度和宽度
– 简单物体的长度和宽度测量
• 对于水平和垂直物体,通过计算物体像素的最大/ 最小行/列号测量。
2
d


N3
N i1
xi
2

• xi是物体内第i个点与其最近边界点的距离 • 对于圆和规则多边形,等价于周长平方与面积比。
2 形状分析
• 2.3 不变矩
– 矩的定义
• 对于二M元jk有界函数f(xx,yi )y,j 其f (xj,+yk)dx阶d矩y 是 j, k 0,1, 2,
1 尺寸测量
x2y2
x1y1
dA
x0y0
y1 y2
0
x1
x2
dA


1 2
x2
y2

1 2

x2

x1

y2

y1

dA 1 2
x1 y2 x2 y1
A 1 Nb 2 i1
xi yi1 xi1 yi
1 尺寸测量
A

1 2
Ñ
xdy
AW L
• 等于外接矩形MER的宽与长的比值 • 这个特征可以将纤细物体与方形或圆形物体区分开来。
2 形状分析
• 2.2 圆形度
– 圆形度指标在物体为圆形形状时取最小值。 – 周长平方与C面积P比2 A
• 对于圆形物体C取最小值4 π ,而越复杂物体C取值越大。
– 边界能量
• 普通物体的曲率可以通过链码求出
相关文档
最新文档