大学物理习题解答3第三章热力学
大学物理化学 第三章 多组分系统热力学习指导及习题解答

RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
第五版物理化学第三章习题答案-图文

第五版物理化学第三章习题答案-图文以下是为大家整理的第五版物理化学第三章习题答案-图文的相关范文,本文关键词为第五,物理化学,第三章,习题,答案,图文,第三章,热力学,第,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
第三章热力学第二定律3.1卡诺热机在(1)热机效率;(2)当向环境作功。
解:卡诺热机的效率为时,系统从高温热源吸收的热及向低温热源放出的热的高温热源和的低温热源间工作。
求根据定义3.2卡诺热机在(1)热机效率;(2)当从高温热源吸热解:(1)由卡诺循环的热机效率得出时,系统对环境作的功的高温热源和的低温热源间工作,求:及向低温热源放出的热(2)3.3卡诺热机在(1)热机效率;(2)当向低温热源放热解:(1)时,系统从高温热源吸热及对环境所作的功。
的高温热源和的低温热源间工作,求1(2)3.4试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功wr等于不可逆热机作出的功-w。
假设不可逆热机的热机效率大于卡诺热机效率证:(反证法)设ηir>ηr不可逆热机从高温热源吸热则,向低温热源放热,对环境作功,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
逆向卡诺热机从环境得功则从低温热源吸热向高温热源放热若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
23.5高温热源温度低温热源,求此过程。
,低温热源温度,今有120KJ的热直接从高温热源传给解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于情况下,当热机从高温热源吸热(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率解:设热机向低温热源放热。
物理化学第三章课后答案完整版

物理化学第三章课后答案完整版第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。
求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的⾼温热源和的低温热源间⼯作,求:(1)热机效率;(2)当从⾼温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的⾼温热源和的低温热源间⼯作,求(1)热机效率;(2)当向低温热源放热时,系统从⾼温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在⾼温热源和低温热源间⼯作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率⼤于卡诺热机效率,其结果必然是有热量从低温热源流向⾼温热源,⽽违反势热⼒学第⼆定律的克劳修斯说法。
证:(反证法)设 r ir ηη>不可逆热机从⾼温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向⾼温热源放热则若使逆向卡诺热机向⾼温热源放出的热不可逆热机从⾼温热源吸收的热相等,即总的结果是:得⾃单⼀低温热源的热,变成了环境作功,违背了热⼒学第⼆定律的开尔⽂说法,同样也就违背了克劳修斯说法。
3.5 ⾼温热源温度,低温热源温度,今有120KJ的热直接从⾼温热源传给低温热源,求此过程。
解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。
求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。
3.7 已知⽔的⽐定压热容。
今有1 kg,10℃的⽔经下列三种不同过程加热成100 ℃的⽔,求过程的。
(1)系统与100℃的热源接触。
《大学物理简明教程》第三章课后习题答案

(6)氮气分子为双原子分子,有 5 个自由度。所以氮气分子的平均动能为
3.7 1 mol 氧气贮于一氧气瓶中, 温度为 27℃。 如果把它视为刚性双原子分子的理想气体,
能又称为内动能即理想气体的内能。若运输氧气瓶的运输车正以 10m/s 的速率行驶,这些氧气 分子的内能又是多少?
解: (1)刚性双原子分子有 5 个自由度,所以氧气分子的平均动能为
后
答
2ε t 2 × 0.1 × 1.60 × 10 −19 = = 773( K ) 3k 3 × 1.38 × 10 − 23
5
3.6 容器内储有氮气, 其温度为 27 o C , 压强为 1.013×10 Pa。 把氮气看作刚性理想气体,
平动能; (5 )氮气分子的平均转动动能; (6)氮气分子的平均动能。 (摩尔气体常量
解:当水银滴在正中不动时, N 2 和 O2 的压强和体积都相等,即
3
后
−1
3.2 技术上真空度常用 Toor(托)表示, 它代表 1mmHg 水银柱高的压强, 有 1atm = 760 托。
答
如果 T1 < T2 ,也有同样的结果。
案
3 −1
C1T1 + C 2T2 C1 + C 2
网
p N 2 = pO2 , V N 2 = VO2
o
后
答
快” (电热丝)加热。已知在通电使水从 25 o C 升高到 75 o C 的过程中,
案
网
图 3-32 习题 3.13 用图
课
o
Q = cm∆T = 4.2 × 10 3 × 1 × (75 − 25) = 2.1 × 10 5 ( J )
设水从周围环境吸收的热量为 Q ′ ,根据能量守恒定律有
大学物理习题解答3第三章热力学

第三章热力学本章提要1.准静态过程系统连续经过的每个中间态都无限接近平衡态的一种理想过程。
准静态过程可以用状态图上的曲线表示。
2.内能系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为(,)E E V T=内能是态函数。
3.功功是过程量。
微分形式:VpA dd=积分形式:⎰=21dV VV pA4.热量两个物体之间或物体内各局部之间由于温度不同而交换的热运动能量。
热量也是过程量。
5.热力学第一定律热力学第一定律的数学表达式:Q E A=∆+热力学第一定律的微分表达式:d d dQ E A=+由热力学第一定律可知,第一类永动机是不可能造成的。
6.理想气体的热功转换〔1〕等体过程:d 0A = 热量增量为m m (d )d d V V MQ E C T μ,,==或m 21m 21V ,V ,MQ E E C (T T )μ=-=-〔2〕等压过程: 热量增量为(d )d d d d p Q E A E p V =+=+因m 21()V ME C T T μ∆,-=212121()()V V MA p V p V V R T T μd ==-=-⎰那么)()(21212T T R MT T R i M Q P -+-=μμ 〔3〕等温过程:d 0E =热量增量为(d )d d V Q A p V ==因2121d ln V T V V MV MA RT RT V V μμ==⎰那么2112lnln T T V pMM Q A RT RT V p μμ=== 〔4〕绝热过程:d 0Q = 根据热力学第一定路可得d d 0E A +=那么m d d d d V ,MA p V E C Tμ==-=-或221121m ()d d V V V ,V V MA E E p V C T μ=--==-⎰⎰)(112211V p V p A --=γ 在绝热过程中理想气体的p 、V 、T 三个状态参量之间满足如下关系:常量=γpV常量=-1γTV 常量=--γγT p 17.热容量等体摩尔热容量:m (d )d d d V V Q EC T T,== 等压摩尔热容量:m (d )d d d d d p p Q E VC p TT T,==+ 对于理想气体,假设分子自由度为i ,那么m 2V ,i C R = m 22P,i C R +=迈耶公式:m m p,V ,C C R =+比热容比:m m22p,V ,C i C γ+==8.焓在等压过程中,由热力学第一定律可得2121()()P Q E p V E E V V =∆+∆=-+-由于12P P P ==,上式可写为222111()()P Q E p V E pV =+-+ 如果令H E pV =+21P Q H H H =-=∆焓是一个态函数。
《大学物理》热力学基础练习题及答案解析

《大学物理》热力学基础练习题及答案解析一、简答题:1、什么是准静态过程?答案:一热力学系统开始时处于某一平衡态,经过一系列状态变化后到达另一平衡态,若中间过程进行是无限缓慢的,每一个中间态都可近似看作是平衡态,那么系统的这个状态变化的过程称为准静态过程。
2、从增加内能来说,做功和热传递是等效的。
但又如何理解它们在本质上的差别呢?答:做功是机械能转换为热能,热传递是热能的传递而不是不同能量的转换。
3、一系统能否吸收热量,仅使其内能变化? 一系统能否吸收热量,而不使其内能变化?答:可以吸热仅使其内能变化,只要不对外做功。
比如加热固体,吸收的热量全部转换为内能升高温度;不能吸热使内能不变,否则违反了热力学第二定律。
4、有人认为:“在任意的绝热过程中,只要系统与外界之间没有热量传递,系统的温度就不会改变。
”此说法对吗? 为什么?答:不对。
对外做功,则内能减少,温度降低。
5、分别在Vp-图、Tp-图上,画出等体、等压、等温和绝热过程的曲线。
V-图和T6、 比较摩尔定体热容和摩尔定压热容的异同。
答案:相同点:都表示1摩尔气体温度升高1摄氏度时气体所吸收的热量。
不同点:摩尔定体热容是1摩尔气体,在体积不变的过程中,温度升高1摄氏度时气体所吸收的热量。
摩尔定压热容是1摩尔气体,在压强不变的过程中,温度升高1摄氏度时气体所吸收的热量。
两者之间的关系为R C C v p +=7、什么是可逆过程与不可逆过程答案:可逆过程:在系统状态变化过程中,如果逆过程能重复正过程的每一状态,而且不引起其它变化;不可逆过程:在系统状态变化过程中,如果逆过程能不重复正过程的每一状态,或者重复正过程时必然引起其它变化。
8、简述热力学第二定律的两种表述。
答案:开尔文表述:不可能制成一种循环工作的热机,它只从单一热源吸收热量,并使其全部变为有用功而不引起其他变化。
克劳修斯表述:热量不可能自动地由低温物体传向高温物体而不引起其他变化。
9、什么是第一类永动机与第二类永动机?答案:违背热力学第一定律(即能量转化与守恒定律)的叫第一类永动机,不违背热力学第一定律但违背热力学第二定律的叫第二类永动机。
大学物理化学核心教程第二版(沈文霞)课后参考答案第3章教材

第三章 热力学第二定律一.基本要求1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。
2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。
3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。
4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。
5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ∆∆∆和G ∆的计算。
6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的r m H ∆,r m S ∆和r m G ∆,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。
7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d G 的表示式计算温度和压力对Gibbs 自由能的影响。
二.把握学习要点的建议自发过程的共同特征是不可逆性,是单向的。
自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。
但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。
例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。
不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。
又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。
自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。
例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。
大学物理下册习题及答案

大学物理下册习题及答案热力学(一)一、选择题:1、如图所示,当汽缸中的活塞迅速向外移动从而使汽缸膨胀时,气体所经历的过程(A)是平衡过程,它能用P—V图上的一条曲线表示.(B)不是平衡过程,但它能用P—V图上的一条曲线表示.(C)不是平衡过程,它不能用P—V图上的一条曲线表示.(D)是平衡过程,但它不能用P—V图上的一条曲线表示. [ ]2、在下列各种说法中,哪些是正确的? [ ](1)热平衡就是无摩擦的、平衡力作用的过程.(2)热平衡过程一定是可逆过程.(3)热平衡过程是无限多个连续变化的平衡态的连接.(4)热平衡过程在P—V图上可用一连续曲线表示.(A)(1)、(2)(B)(3)、(4)(C)(2)、(3)、(4)(D)(1)、(2)、(3)、(4)3、设有下列过程: [ ](1)用活塞缓慢的压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2)用缓慢地旋转的叶片使绝热容器中的水温上升.(3)冰溶解为水.(4)一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是逆过程的为(A)(1)、(2)、(4)(B)(1)、(2)、(3)(C)(1)、(3)、(4)(D)(1)、(4)4、关于可逆过程和不可逆过程的判断: [ ](1)可逆热力学过程一定是准静态过程.(2)准静态过程一定是可逆过程.(3)不可逆过程就是不能向相反方向进行的过程.(4)凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A)(1)、(2)、(3)(B)(1)、(2)、(4)(C)(2)、(4)(D)(1)、(4)5、在下列说法中,哪些是正确的? [ ](1)可逆过程一定是平衡过程.(2)平衡过程一定是可逆的.(3)不可逆过程一定是非平衡过程.(4)非平衡过程一定是不可逆的.(A)(1)、(4)(B)(2)、(3)(C)(1)、(2)、(3)、(4)(D)(1)、(3)6、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态[ ](A)一定都是平衡态.(B)不一定都是平衡态.(C)前者一定是平衡态,后者一定不是平衡态.(D)后者一定是平衡态,前者一定不是平衡态.7、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程 [ ](A)一定都是平衡过程.(B)不一定是平衡过程.(C)前者是平衡态,后者不是平衡态.(D)后者是平衡态,前者不是平衡态.8、一定量的理想气体,开始时处于压强,体积,温度分别为P1、V1、T1,的平衡态,后来变到压强、体积、温度分别为P2、V2、T2的终态.若已知V2 > V1, 且T2 = T1 , 则以下各种说法正确的是: [ ](A)不论经历的是什么过程,气体对外净做的功一定为正值.(B)不论经历的是什么过程,气体从外界净吸的热一定为正值.(C)若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D)如果不给定气体所经历的是什么过程,则气体在过程中对外净做功和外界净吸热的正负皆无法判断.二、填空题:1、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的.2、设在某一过程P中,系统由状态A变为状态B,如果______________________________________________________,则过程P为可逆过程;如果______________________________________________________则过程P为不可逆过程.3、同一种理想气体的定压摩尔热容C p大于定容摩尔热容C v,其原因是_____________________________________________________________________.4、将热量Q传给一定量的理想气体,(1)若气体的体积不变,则热量转化为________________________________.(2)若气体的温度不变,则热量转化为________________________________.(3)若气体的压强不变,则热量转化为________________________________.5、常温常压下,一定量的某种理想气体(可视为刚性分子自由度为i),在等压过程中吸热为Q,对外作功为A,内能增加为ΔE,则A / Q = ____________. ΔE / Q = _____________.6、3 mol的理想气体开始时处在压强P1 = 6 at m、温度T1 = 500K的平衡态.经过一个等温过程,压强变为P2 = 3 atm.该气体在等温过程中吸收的热量为Q = _____________J.(摩尔气体常量R = 8.31 J•mol-1•K-1)7、2 mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,若该过程为准静态过程,气体吸收的热量为_________;若为不平衡过程,气体吸收的热量为___________.8、卡诺制冷机,其低温热源温度为T2 = 300 K,高温热源温度为T1 = 450 K,每一循环从低温热源吸收Q2 = 400 J.已知该制冷机的制冷系数为1212TTTAQw-==(式中A为外界对系统作的功),则每一循环中外界必须作功A = _________.三、计算题:1、有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm ,温度为27˚C,若经过一绝热过程,使其压强增加到16 atm .试求:(1)气体内能的增量;(2)在该过程中气体所作的功;(3)终态时,气体的分子数密度.(1 atm = 1.013×105 Pa,玻耳滋曼常数k = 1.38×10-23J•K-1摩尔气体常量R=8.31J•mol-1•K-1)2、如图所示,a b c d a为1 mol单原子分子理想气体的循环过程,求:(1)气体循环一次,在吸热过程中从外界共吸收的热量;(2)气体循环一次对外做的净功;(3)证明Ta Tc = T b T d.3、一气缸内盛有一定量的单原子理想气体.若绝热压缩使其容积减半,问气体分子的平均速率为原来的几倍?热力学(二)1、理想气体向真空作绝热膨胀. [ ](A)膨胀后,温度不变,压强减小.(B)膨胀后,温度降低,压强减小.(C)膨胀后,温度升高,压强减小.(D)膨胀后,温度不变,压强不变.2、氦、氮、水蒸气(均视为理想气体),它们的摩尔数相同,初始状态相同,若使他们在体积不变情况下吸收相等的热量,则 [ ](A)它们的温度升高相同,压强增加相同.(B)它们的温度升高相同,压强增加不相同.(C)它们的温度升高不相同,压强增加不相同.(D)它们的温度升高不相同,压强增加相同.3、一个绝热容器,用质量可忽略的绝热板分成体积相等的两部分.两边分别装入质量相等、温度相同的H2和O2.开始时绝热板P固定.然后释放之,板P将发生移动(绝热板与容器壁之间不漏气且摩擦可以忽略不计),在达到新的平衡位置后,若比较两边温度的高低,则结果是:[ ](A)H2比O2温度高.(B)O2比H2温度高.(C)两边温度相等且等于原来的温度.(D)两边温度相等但比原来的温度降低了.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为Po,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是[ ](A)Po (B)Po/2 (C)2 r / Po (D)Po/2 r ( r = Cp / Cv )5、1 mol理想气体从P-V图上初态a分别经历如图所示的(1)或(2)过程到达末态b.已知Ta < Tb,则这两过程中气体吸收的热量Q1和Q2的关系是 [ ](A)Q1 > Q2 > 0 (B)Q2 > Q1 > 0 (C)Q2 < Q1 < 0(D)Q1 < Q2 < 0 (E)Q1 = Q2 > 06、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子理想气体),它们的温度和压强都相等,现将5 J的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 [ ](A)6 J (B)5 J(C)3 J (D)2 J7、一定量的理想气体经历acb过程时吸热200 J.则经历acbda过程时,吸热为(A)–1200 J (B)–1000 J(C)–700 J (D)1000 J [ ]8、对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比A / Q等于 [ ](A)1 / 3 (B)1 / 4(C)2 / 5 (D)2 / 79、如果卡诺热机的循环曲线所包围的面积从图中的a b c d a增大为a b’c’d a,那么循环ab cda与a b’c’da所作的净功和热机效率变化情况是: [ ](A)净功增大,效率提高. (B)净功增大,效率降低.(C)净功和效率都不变. (D)净功增大,效率不变.一、填空题:1、如图所示,已知图中画不同斜线的两部分分别为S1和S2,那么(1)如果气体的膨胀过程为a—1—b,则气体对外做功A= ;(2)如果气体进行a—2—b—1—a的循环过程,则它对外做功A =2、已知1 mol的某种理想气体(可视为刚性分子),在等压过程中温度上升1 K,内能增加了20.78 J,则气体对外做功为__________,气体吸收热量为__________.3、刚性双原子分子的理想气体在等压下膨胀所作的功为A,则传递给气体的热量为___ ____________.4、热力学第二定律的克劳修斯叙述是:_________________________________________;开尔文叙述是____________________________________________.5、从统计的意义来解释:不可逆过程实质上是一个________________________________________的转变过程.一切实际过程都向着____________________________________________的方向进行.6、由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边是真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度_________(升高、降低或不变),气体的熵___________(增加、减小或不变).二、计算题:1、一定量的单原子分子理想气体,从A态出发经等压过程膨胀到B态,又经绝热过程膨胀到C态,如图所示.试求这全过程中气体对外所作的功,内能的增量以及吸收的热量.2、如果一定量的理想气体,其体积和压强依照V = a / 的规律变化,其中a为已知常数.试求:(1)气体从体积V1膨胀到V2所作的功;(2)体积为V1时的温度T1与体积为V2时的温度T2之比.3、一卡诺热机(可逆的),当高温热源的温度为127°C、低温热源温度为27°C时,其每次循环对外作净功8000 J.今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功10000 J.若两个卡诺循环都工作在相同的两条绝缘线之间,试求:(1)第二个循环热机的效率;(2)第二个循环的高温热源的温度.4、一定量的刚性双原子分子的理想气体,处于压强P1= 10 atm、温度T1 = 500K的平衡态,后经历一绝热过程达到压强P2 = 5 atm、温度为T2的平衡态.求T2.热力学(三)一、选择题1、设高温热源的热力学温度是低温热源的热力学温度的n倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A) n倍 (B) n–1倍(C) 倍 (D) 倍 [ ]2、一定量理想气体经历的循环过程用V-T曲线表示如题2图,在此循环过程中,气体从外界吸热的过程是(A) A→B (B) B→C(C) C→A (D) B→C和C→A [ ]3、所列题3图分别表示某人设想的理想气体的四个循环过程,请选出其中一个在物理上可能实现的循环过程的图的标号. [ ]V P (A)P (B)绝热绝热C B 等温等容等容O V O 等温 VP 等压(C)P (D)A 等温绝热绝热绝热绝热O T O V O V题图题3图4、理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分),分割为S1和S2,则二者的大小关系是(A) S1 > S2 (B) S1 = S2(C) S1 < S2 (D) 无法确定 [ ]PS2 S1V.对此说法,有如下几种评论,哪种是正确的?(A) 不违反热力学第一定律,但违反热力学第二定律.(B) 不违反热力学第二定律,但违反热力学第一定律.(C) 不违反热力学第一定律,也不违反热力学第二定律.(D) 违反热力学第一定律,也违反热力学第二定律. [ ]6、一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后(A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ]7、一定量的理想气体向真空作绝热自由膨胀,体积由V1增至V2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加. [ ]8、给定理想气体,从标准状态 (P0,V0,T0)开始作绝热膨胀,体积增大到3倍,膨胀后温度T、压强P与标准状态时T0、P0之关系为 (γ为比热比) [ ](A) T = ( ) r T0 ; P = ( ) r-1 P0. (B) T = ( ) r-1 T0 ; P = ( ) r P0.(C) T = ( ) -r T0 ; P = ( ) r-1 P0. (D) T = ( ) r-1 T0 ; P = ( ) -r P0.一、填空题:1、在P-V图上(1) 系统的某一平衡态用来表示;(2) 系统的某一平衡过程用来表示;(3) 系统的某一平衡循环过程用来表示.2、P-V图上的一点,代表;P-V图上任意一条曲线,表示;3、一定量的理想气体,从P-V图上状态A出发,分别经历等压、等温、绝热三种过程,由体积V1膨胀到体积V2,试画出这三种过程的P—V图曲线,在上述三种过程中:(1)气体对外作功最大的是过程;(2) 气体吸热最多的是过程;V2( 均视为刚性分子的理想气体),它们的质量比为m1:m2E1:E2 = ,如果它们分别在等压过程中吸收了相同的热量,则它们对外作功之比为A1:A2 = .(各量下角标1表示氢气,2表示氦气)5、质量为2.5 g的氢气和氦气的混合气体,盛于某密闭的气缸里 ( 氢气和氦气均视为刚性分子的理想气体),若保持气缸的体积不变,测得此混合气体的温度每升高1K,需要吸收的热量等于2.25 R ( R为摩尔气体常量).由此可知,该混合气体中有氢气 g,氦气 g;若保持气缸内的压强不变,要使该混合气体的温度升高1K,则该气体吸收的热量为 . (氢气的M mol = 2×10 -3 kg,氦气的M mol = 4×10 -3 kg)6、一定量理想气体,从A状态 (2P1,V1) 经历如图所示的直线过程变到B状态 (P1,2V1),则AB过程中系统作功A = ;内能改变△E = .第6题图第7题图7、如图所示,理想气体从状态A出发经ABCDA循环过程,回到初态A点,则循环过程中气体净吸的热量Q = .8、有一卡诺热机,用29kg空气为工作物质,工作在27℃的高温热源与–73℃的低温热源之间,此热机的效率η= .若在等温膨胀的过程中气缸体积增大2.718倍,则此热机每一循环所作的功为 .(空气的摩尔质量为29×10-3kg·mol-1)二、计算题:1、一定量的某种理想气体,开始时处于压强、体积、温度分别为P0 = 1.2×106 P0,V0 = 8.31×10-3m3,T0 = 300K的初态,后经过一等容过程,温度升高到T1 = 450 K,再经过一等温过程,压强降到P = P0的末态.已知该理想气体的等压摩尔热容与等容摩尔热容之比C P/C V=5/3,求:(1)该理想气体的等压摩尔热容C P和等容量摩尔热容C V.(2)气体从始态变到末态的全过程中从外界吸收的热量.2、某理想气体在P-V图上等温线与绝热线相交于A点,如图,已知A点的压强P1=2×105P0,体积V1 = 0.5×10-3 m3,而且A点处等温线斜率与绝热线斜率之比为0.714,现使气体从A点绝热膨胀至B点,其体积V2 = 1×10-3 m3,求(1) B 点处的压强;(2) 在此过程中气体对外作的功.3、1 mol单原子分子的理想气体,经历如图所示的可逆循环,联结AC两点的曲线III的方程为P = P0 V2 / V20,A点的温度为T0.(1)试以T0,R表示I、II、III过程中气体吸收的热量.(2)求此循环的效率.(提示:循环效率的定义式η= 1– Q2 / Q1, Q1循环中气体吸收的热量,Q2为循环中气体放出的热量).气体动理论 (一)一、选择题:1、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为P1和P2,则两者的大小关系是:(A) P1 > P2 (B) P1 < P2(C) P1 = P2 (D) 不确定的. [ ]2、若理想气体的体积为V,压强为P,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A) PV / m . (B) PV/(KT).(C) PV / (RT). (D) PV/(mT). [ ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1kg某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气质量为:[ ](A) 1 / 16 kg (B) 0.8 kg(C) 1.6 kg (D) 3.2 kg4、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态,A种气体的分子数密度为n1,它产生的压强为P1,B种气体的分子数密度为2 n1,C种气体的分子数密度为3 n1,则混合气体的压强P为(A) 3 P1 (B) 4 P1(C) 5 P1 (D) 6 P1 [ ]5、一定量某理想气体按PV2 = 恒量的规律膨胀,则膨胀后理想气体温度(A) 将升高 (B) 将降低(C) 不变 (D)升高还是降低,不能确定 [ ]6、如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气,当温度相同时,水银滴静止于细管中央,试问此时这两种气体的密度哪个大?(A)氧气的密度大. (B)氢气的密度大.(C)密度一样大. (D)无法判断. [ ]一、填空题:1、对一定质量的理想气体进行等温压缩,若初始时每立方米体积内气体分子数为1.96×1024,当压强升高到初值的两倍时,每立方米体积内气体分子数应为 .2、在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) .3、某理想气体在温度为27℃和压强为1.0×10-2 atm情况下,密度为11.3 g / m3,则这气体的摩尔质量M= .(摩尔气体常量R = 8.31 J·mol-1·K-1)mol4、在定压下加热一定量的理想气体,若使其温度升高1K时,它的体积增加了0.005倍,则气体原来的温度是 .5、下面给出理想气体状态方程的几种微分形式,指出它们各表示什么过程.(1) p d V = (M / M mol) R d T表示过程.(2) V d p = (M / M mol) R d T表示过程.(3) p d V + V d p = 0 表示过程.6、氢分子的质量3.3×10 –24 g,如果每秒有1023个氢分子沿着与容器器壁的法线成45°角的方向以105cm·s-1的速率撞击在2.0 cm 2 面积上(碰撞是完全弹性的),则此氢气的压强为 .7、一气体分子的质量可以根据该气体的定容比热容来计算,氩气的定容比热容Cv = 0.314 kJ·kg-1·K-1,则氩原子的质量m = .(1 k c a l = 4.18×103 J)8、分子物理是研究的学科,它应用的基本方法是方法.9、解释下列分子运动论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:;二、计算题:1、黄绿光的波长是5000 Å (1 Å =10-10m),理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻耳兹曼常量k = 1.38×10 -23J·K-1)2、两个相同的容器装有氢气,以一细玻璃管相连通,管中用一滴水银作活塞,如图所示,当左边容器的温度为0℃,而右边容器的温度为20℃时,水银滴刚好在管的中央,试问,当左边容器温度由0℃增到5℃,而右边容器温度由20℃增到30℃时,水银滴是否会移动?如何移动?3、假设地球大气层由同种分子构成,且充满整个空间,并设各处温度T相等.试根据玻璃尔兹曼分布律计算大气层分子的平均重力势能εp.(已知积分公式 X n e -ax d x = n !/ a n+1)热力学(一) (答案)一、 1.C 2.B 3.D 4.D 5.A 6.B 7.B 8.D二、 1.物体作宏观位移,分子之间的相互作用.2.能使系统进行逆向变化,回复状态,而且周围一切都回复原状.系统不能回复到初;态;或者系统回复到初态时,周围并不能回复原状.3.在等压升温过程中,气体要膨胀而作功,所以要比气体等体升温过程多吸收一部分热量.4.(1)气体的内能,(2)气体对外所做的功,(3)气体的内能和对外所做的功5.2/i+2,i/i+2 6.8.64×103 7.7.48×103 J ,7.48×103 J8.200J热力学(二)答案一、1.A 2.C 3.B 4.B 5.A 6.C 7.B 8.D 9.D二、1.S1+S2,-S1 2. 8.31J, 29.09J 3.7A/24、不可能把热量从低温物体自动传到高温物体而不引起外界变化不可能制造出这样循环工作的热机,它只从单一热源吸热来作功,而不放出热量给其他物体,或者说不使外界发生任何变化.5. 从概率较小的状态到概率较大的状态,状态概率增大(或熵增大)6.不变; 增加热力学(三)答案一、1、C 2、A 3、B 4、B 5、C 6、A 7、A 8、D二、1、一个点,一条曲线,一条封闭线 2、(参看1题)3、等压,等压 4、1:2,5:3,5:7 5、1.5,1,3.25R 6、23P 1V 1,0 7、1.62×104J 8、33.3%,831×105J气体动理论(一)答案一、1.C 2. B 3.C 4.D 5.B 6.A二、1、3.92×1024 2、(1)沿空间各方向运动的分子数相等;(2)v x 2=v y 2=v z 23、27.9g/mol4、200K5、等压,等容,等温6、2.33×103 Pa7、6.59×10-26 kg8、物体热现象和热运动规律、统计9、(1)描述物体运动状态的物理量;(2)表征个别分子状况的物理量,如分子大小、质量、速度等;(3)表征大量分子集体特征的物理量,如P 、V 、T 、C 等.气体动理论(二) 答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章热力学本章提要1.准静态过程系统连续经过的每个中间态都无限接近平衡态的一种理想过程。
准静态过程可以用状态图上的曲线表示。
2.内能系统内所有分子热运动动能和分子之间相互作用势能的和,其数学关系式为(,)E E V T=内能是态函数。
3.功功是过程量。
微分形式:VpA dd=积分形式:⎰=21dV VV pA4.热量两个物体之间或物体内各部分之间由于温度不同而交换的热运动能量。
热量也是过程量。
5.热力学第一定律热力学第一定律的数学表达式:Q E A=∆+热力学第一定律的微分表达式:d d dQ E A=+由热力学第一定律可知,第一类永动机是不可能造成的。
6.理想气体的热功转换(1)等体过程:d 0A = 热量增量为m m (d )d d V V MQ E C T μ,,==或m 21m 21V ,V ,MQ E E C (T T )μ=-=-(2)等压过程: 热量增量为(d )d d d d p Q E A E p V =+=+因m 21()V ME C T T μ∆,-=212121()()V V MA p V p V V R T T μd ==-=-⎰则)()(21212T T R MT T R i M Q P -+-=μμ (3)等温过程:d 0E =热量增量为(d )d d V Q A p V ==因2121d ln V T V V MV MA RT RT V V μμ==⎰则2112lnln T T V pMM Q A RT RT V p μμ=== (4)绝热过程:d 0Q = 根据热力学第一定路可得d d 0E A +=则m d d d d V ,MA p V E C T μ==-=-或221121m ()d d V V V ,V V MA E E p V C T μ=--==-⎰⎰)(112211V p V p A --=γ 在绝热过程中理想气体的p 、V 、T 三个状态参量之间满足如下关系:常量=γpV常量=-1γTV 常量=--γγT p 17.热容量等体摩尔热容量:m (d )d d d V V Q EC T T,== 等压摩尔热容量:m (d )d d d d d p p Q E VC p TT T,==+ 对于理想气体,若分子自由度为i ,则m 2V ,i C R = m22P,i C R +=迈耶公式:m m p ,V ,C C R =+比热容比:m m22p,V ,C i C γ+==8.焓在等压过程中,由热力学第一定律可得2121()()P Q E p V E E V V =∆+∆=-+-由于12P P P ==,上式可写为222111()()P Q E p V E p V =+-+如果令H E pV =+21P Q H H H =-=∆焓是一个态函数。
9.循环过程正循环的热机效率1212111Q Q Q Q Q Q A -=-==η 逆循环的致冷系数2122Q Q Q A Q -==ε10.卡诺循环由两个等温过程和两个绝热过程构成的循环。
正循环的效率121T T -=η 逆循环的效率2122122T T T Q Q Q A Q -=-==ε11.热力学第二定律开尔文表述:不可能制成一种循环动作的热机,只从单一热源吸收热量,使之全部转变为有用的功,而其他物体不发生任何变化。
克劳修斯表述:热量不可能自动地从低温物体传向高温物体,而不引起其他的变化。
统计意义:一个不受外界影响的孤立系统,其内部所发生的过程总是由热力学概率小的宏观状态向热力学概率大的宏观状态进行,即从有序向无序的状态发展。
12.克劳修斯熵克劳修斯熵表达式⎰=-2112d TQS S 熵增加原理:在孤立系统内,当热力学系统从一个平衡态到达另一个平衡态时,它的熵永远不减少。
如果过程不可逆,系统的熵增加;如果过程可逆,系统的熵不变。
13.玻耳兹曼熵玻耳兹曼熵表达式ln S k Ω=熵的微观本质:熵的多少是系统微观状态数目多寡的标志。
思考题3-1 (1)热平衡态与热平衡有何不同?(2)热平衡与力学中的平衡有何不同?答:(1)一个孤立系统的各种宏观性质(如温度、压强、密度等)在长时间内不发生任何变化,这样的状态称为热平衡态。
平衡态时的特征:①从宏观上看,系统内部各处的密度不变,温度不变,压强不变。
②从微观上看,还存在大量微观粒子的无规则热运动,但这种热运动不会改变系统的宏观性质。
③对于非孤立系统,可以把系统与外界合起来看作一个复合的孤立系统,根据孤立系统的概念来推断复合系统是否处于平衡态。
热平衡指两个处于平衡态的系统通过透热壁的相互热接触,经过足够长的时间后,两个系统的宏观性质将保持不变,都处于新平衡态。
这种新平衡态可以与原来系统各自的平衡态不同,也可以相同。
热平衡的特征:①处于热平衡的两个系统都处于平衡态,这时每个系统都具有平衡态时的宏观特征(温度、密度、压强均匀)及微观特征,但两个系统的宏观特征除了温度都一样外,一般来说是不一样的。
②热平衡要通过两个处于平衡态的系统的相互热接触实现,这两个系统形成新的孤立系统,这个孤立系统也处于平衡态,这个处于平衡态的孤立系统可以由几个部分组成,各部分的密度、压强可以相同,也可以不同。
(2)力学中的平衡是指几个力作用在一个物体上,合力为零,或力矩的代数和为零,这时物体处于匀速直线运动状态或匀速转动状态。
3-2 在热力学中为什么要引入准静态过程的概念?答:系统从一个平衡态过渡到另一个平衡态的过程中,如果任一个中间状态都可看作是平衡状态,这个过程就叫准静态过程。
准静态过程是一种理想过程,引入这一概念,就可以利用系统处于平衡态时的性质(如压强、温度、体积在平衡态时所满足的理想气体状态方程)来研究系统状态发生变化时的规律。
在许多情况下,可以近似地把实际过程当作准静态过程来处理。
3-3 关于热容量的以下说法是否正确?(1)热容量是物质含有热量多少的量度;(2)热容量是与过程有关的量;(3)热容量不可能是负值。
答:(1)不正确,热容量指的是在一定过程中,物体温度升高或降低一度时所吸收或放出的热量。
(2)正确。
(3)正确。
3-4 在本书中所讨论的理想气体热功转换的四个过程中,哪些地方应用了热力学第一定律?在这四个过程中,哪一个过程的热功转换效率最大?答:等体过程中:(d )d V Q E =等压过程中:(d )d d d d p Q E A E p V =+=+等温过程中:(d )d d T T Q A p V ==绝热过程中:d d 0E A +=这些都是应用了热力学第一定律,其中等温过程的热功转化效率最大,为100%。
3-5 如图3-1所示,系统从初状态A 等压膨胀到B 态,从B 态等体增压到C 态,再从C 态压缩回到A 态,试确定每一过程中Q A E 、、的正负。
答:A →B 过程,0>Q ,0>E ,0>AB →C 过程,0>Q ,0>∆E ,0=A C →A 过程,0<Q ,0<∆E ,0<A3-6 理想气体从状态000A p V T (、、)开始,分别经过等压过程、等温过程、绝热过程,使体积膨胀到1V ,如图3-2所示。
在哪种情况下Q A E 、、最大,那种情况下Q A E 、、最小?答:由于过程做功的大小等于曲线下面积大小,图3-1PP 1)VT 0) T 2)01故由图可知,等压过程做功值A 最大,绝热过程A 值最小。
由热力学第一定律知,等压过程吸热P P P Q E A =∆+,等温过程热T T Q A =,因为P T A A >,所以P T Q Q >,故等压过程吸热最多;绝热过程中0Q =,Q 值最小。
从数值大小来看,绝热过程E ∆为负值,为最小;等压过程为正值,E ∆最大。
从绝对值大小看,等温过程中0E ∆=,为最小;而等压过程E ∆最大,分析如下:等压过程:p p p A E Q +∆=又p m V p T c E ∆=∆,μ,p m p p T c Q ∆=,μ且R i c m V 2,=,R i c m p 22,+= ∴p p T R iE ∆⋅=∆2μ,p p T R A ∆=μ其中i 为气体分子自由度,由自由度定义可知,2≥i∴p p A E ≥∆而绝热过程中Q Q A E =∆由于Q p A A >,得Q p E E ∆>∆3-7 讨论理想气体在下述过程中E T A Q 、、和的正负:(1)等体过程,压强减小;(2)等压压缩;(3)绝热膨胀;(4)图3-3(a)所示过程a-b-c ;(5)图3-3(b)所示过程a-b-c 和a-b ’-c 。
答:设A值以系统向外做功为正,外界对系统做功为负。
Q 值以系统从外界吸热为正,系统向外界放热为负。
(1) 0<∆E ,0<∆T ,0=A ,0<Q (2) 0<∆E ,0<∆T ,0<A ,0<Q (3) 0<∆E ,0<∆T ,0>A ,0=Q(4) 0=∆E,0=∆T ,0<A ,0<Q(5) abc 过程:0>∆E ,0>∆T ,0<A ,0>Qab'c 过程:0>∆E ,0>∆T ,0<A ,0<Q3-8 两条绝热线和一条等温线是否可以构成一个循环?为什么? 答:不能。
如图3-4所示,等温线Ⅲ与Ⅰ和Ⅱ两绝热线相交,构成一个循环。
这个循环只有一个单一热源,它把吸收的热量全变成功,即%100=η,并使周围环境没有变化,这是违背热力学第二定律的,所以不可能构成这样一个循环。
3-9 一个热机以卡诺循环的方式作功。
如图3-5所示,如果体积增大,此曲线所包围的面积也增大,所作的净功如何变化?热机效率又如何变化?答:如体积增大,热机所做净功将增大,增大的功等于将bb ′c ′c 部分积分所得;体积增大,效率仍相同,因211T T η=-,高低温热源温度不变,η也就不变。
3-10 有两个可逆热机使用不同热源,分别作卡诺循环abcd ′a 和图3-3POP(a)(b)VP P 图3-4a ′b ′c ′d ′a ′,在p -V 图上,它们的循环曲线所包围的面积相等,但形状不同,如图3-6所示。
它们吸热和放热的差值是否相等,对外所作的净功是否相同?效率是否相同?答:设a-b 过程温度为T 1,a ′-b ′过程温度为T 1′,c ′-d ′过程温度为T 2设c ′处状态参数为(p 3′,V 3′,T 2), c 处状态参数为(p 3,V 3,T 2), d ′处状态参数为(p 4,V 4,T 2)因为两循环曲线所包围的面积相等,所以其所做净功相等。
由图3-6可知,c-d ′过程与c ′-d ′过程在同一等温线上,故c-d ′过程放热3224υlnV Q RT V = c ′-d ′过程放热4322ln V V RT Q '='υ又由于V 3′>V 3,故Q 2′>Q 2,所以,两过程放热的差值不等,a ′b ′c ′d ′a ′过程放热多。