高中生物基因

合集下载

高中生物知识点基因检测

高中生物知识点基因检测

高中生物知识点基因检测基因检测是一种分析DNA序列的技术,它可以帮助我们了解个体的遗传信息,预测遗传病的风险,以及对某些疾病进行个性化治疗。

以下是高中生物中关于基因检测的一些重要知识点:1. 基因检测的定义:基因检测是通过实验室方法分析DNA序列,以识别或预测个体的遗传特征或疾病风险。

2. 基因检测的方法:常见的基因检测方法包括聚合酶链反应(PCR)、基因测序、基因芯片等。

3. 基因检测的应用:- 遗传病筛查:检测个体是否携带某些遗传病的基因突变。

- 个性化医疗:根据个体的基因型来选择合适的药物和治疗方案。

- 亲子鉴定:通过比较DNA序列来确定亲子关系。

- 法医学:在犯罪现场通过DNA分析来识别嫌疑人。

4. 基因检测的伦理问题:基因检测可能涉及到隐私保护、数据安全和歧视问题。

例如,个人的遗传信息可能被滥用,导致就业或保险方面的歧视。

5. 基因检测的准确性:虽然基因检测技术已经相当成熟,但仍存在一定的误差率。

此外,某些疾病的发生不仅仅取决于遗传因素,还受到环境因素的影响。

6. 基因检测的局限性:基因检测不能预测所有的疾病风险,也不能提供治疗建议。

它只是提供了一种风险评估的工具。

7. 基因检测的未来发展:随着科技的进步,基因检测的成本正在降低,精度在提高,应用范围也在不断扩大。

8. 基因检测与遗传咨询:进行基因检测后,通常需要遗传咨询师的帮助来解释检测结果,提供进一步的指导和建议。

9. 基因检测的法律和政策:不同国家和地区对于基因检测有不同的法律法规,以保护个人隐私和防止基因歧视。

10. 基因检测的社会影响:基因检测的普及可能会改变我们对健康、疾病和身份的认识,对社会价值观和伦理观念产生深远的影响。

通过了解基因检测的相关知识,学生可以更好地认识到基因科学在现代医学和法律领域中的重要性,以及它对个人和社会可能带来的影响。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程是现代生物技术的核心内容之一,在高中生物学习中占据着重要的地位。

下面我们就来详细总结一下高中生物基因工程的相关知识点。

一、基因工程的概念基因工程,又称为基因拼接技术或 DNA 重组技术,是指按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。

二、基因工程的基本工具1、“分子手术刀”——限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

2、“分子缝合针”——DNA 连接酶根据来源不同,DNA 连接酶分为两类:E·coli DNA 连接酶和T4DNA 连接酶。

E·coli DNA 连接酶只能将双链 DNA 片段互补的黏性末端之间的磷酸二酯键连接起来,而 T4DNA 连接酶既可以连接黏性末端,又可以连接平末端,但连接平末端的效率相对较低。

3、“分子运输车”——载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。

作为载体,需要具备以下条件:(1)能够在受体细胞中稳定保存并自我复制。

(2)具有一个或多个限制酶切点,以便与外源基因连接。

(3)具有标记基因,便于进行筛选。

三、基因工程的基本操作程序1、目的基因的获取(1)从基因文库中获取基因文库包括基因组文库和部分基因文库(如 cDNA 文库)。

(2)利用 PCR 技术扩增目的基因PCR 是一项在生物体外复制特定 DNA 片段的核酸合成技术。

(3)通过化学方法人工合成如果基因比较小,核苷酸序列又已知,可以通过 DNA 合成仪用化学方法直接人工合成。

2、基因表达载体的构建(基因工程的核心)目的基因、启动子、终止子、标记基因等组成基因表达载体。

启动子是 RNA 聚合酶识别和结合的部位,驱动基因转录出 mRNA;终止子终止转录;标记基因用于鉴别和筛选含有目的基因的细胞。

生物高考知识点基因

生物高考知识点基因

生物高考知识点基因基因是生物高考中的一个重要知识点,它是控制生物遗传特征的基本单位。

本文将从基因的定义、结构和功能以及基因突变等方面进行详细论述。

一、基因的定义基因是生物体内负责遗传信息传递和控制生物特征的DNA序列。

它是由多个核苷酸连续排列而成,每个核苷酸由糖、磷酸和碱基组成。

基因携带着生物体的遗传信息,决定了生物体的性状和特征。

二、基因的结构基因由外显子和内含子组成。

外显子是基因中编码蛋白质的部分,内含子是没有编码功能的DNA序列。

基因通过转录和剪接的过程,将外显子的DNA序列转化为成熟的mRNA,以便进一步翻译合成蛋白质。

三、基因的功能基因的功能主要体现在遗传信息的传递和控制生物特征上。

基因通过遗传物质DNA的复制和遗传物质的组合与分离,实现了遗传信息的传递。

同时,基因还通过编码蛋白质来控制生物体的性状和特征,包括外貌、代谢功能、生理特性等。

四、基因突变基因突变是指在基因序列发生改变的现象。

它可以是基因的点突变、缺失、插入或倒位等。

基因突变可能导致蛋白质结构或功能的改变,进而影响生物体的性状和特征。

一些基因突变还可能导致遗传病的发生。

五、基因工程的应用基因工程是通过技术手段改变基因的结构和功能,以实现特定目的的应用。

基因工程在农业、医学、生物工程等领域有广泛的应用。

例如,转基因作物通过导入外源基因,改变植物的性状和特性,增强其抗病虫害能力。

基因工程还可以用于研究和治疗遗传病。

六、基因与进化基因在生物进化中发挥着重要作用。

通过基因的突变和遗传信息的传递,生物体的基因组发生改变,进而导致了物种的演化和多样性的产生。

基因组的差异使得不同物种适应不同的环境和生活方式。

综上所述,基因是生物高考的重要知识点之一,它是控制生物遗传特征的基本单位。

了解基因的定义、结构和功能对于理解生物体的进化、遗传病的发生以及基因工程的应用具有重要意义。

通过对基因的研究,我们可以更好地认识生物的奥秘,并为人类社会的发展做出贡献。

高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。

- 转录:将分离得到的基因转录成RNA。

- 修饰:对转录后的基因进行修饰,使其更具表达效果。

- 克隆:用适当的载体将修饰过的基因导入目标细胞中。

- 表达:使目标细胞中导入的基因表达。

2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。

- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。

- 自组织培养技术:包括离心、培养基选择、细胞培养等。

- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。

3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。

- 农业育种:通过基因工程技术改良作物品质和产量。

- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。

- 环境污染治理:通过基因工程技术处理污染物。

4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。

- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。

- 技术安全:基因工程技术的安全性需要持续进行研究和维护。

5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。

- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。

高中生物遗传学知识点归纳

高中生物遗传学知识点归纳

高中生物遗传学知识点归纳一、基因的概念及结构1. 基因是指控制遗传性状的遗传物质单位,在染色体上位于特定位置。

2. 基因由DNA分子组成,包括编码区和非编码区。

3. 编码区决定了基因所编码的蛋白质的氨基酸序列,非编码区在转录和调控过程中发挥重要作用。

二、基因的遗传方式1. 纯合子:同一基因的两个等位基因相同。

2. 杂合子:同一基因的两个等位基因不同。

3. 隐性遗传:杂合子的一种情况,表现为隐藏的性状。

4. 显性遗传:杂合子的一种情况,表现为明显的性状。

5. 基因座:基因在染色体上的位置。

6. 纯合子和杂合子的配子组合可以产生不同的基因型。

三、遗传规律1. 孟德尔遗传规律:a. 单因素遗传:一个性状仅由一个基因控制。

b. 随机分离:杂合子在生殖细胞分裂过程中随机分离。

c. 独立分离:不同基因座的遗传是相互独立的。

2. 染色体遗传规律:a. 染色体是基因的携带者,基因位于染色体上。

b. 父母染色体通过染色体交换和随机分离,决定了子代的基因组合。

c. 染色体遗传规律支持了孟德尔遗传规律。

四、基因突变1. 点突变:基因序列中的一个碱基发生变化,可能会导致蛋白质编码发生错误。

2. 缺失突变:基因序列中的一部分缺失,造成蛋白质功能缺失。

3. 插入突变:基因序列中插入了额外的碱基,导致蛋白质编码发生错误。

4. 转座子:可移动的DNA片段,可以插入到基因中引起突变。

5. 染色体重排:染色体的片段发生重组或重排,导致染色体上基因的位置发生改变。

五、性连锁遗传1. 性染色体:决定生物性别的染色体,如人类的X和Y染色体。

2. 雌性为XX,雄性为XY,雄性为XY,因此雌性基因在染色体上有两个拷贝,雄性只有一个。

3. 性连锁遗传:位于性染色体上的基因遗传方式,通常只影响雄性。

4. 雌性携带的性连锁基因会以杂合子的形式传给子女,雄性携带的性连锁基因会以纯合子的形式传给子女。

六、多基因遗传1. 多基因遗传是指一个性状受多个基因的共同作用决定。

高中生物遗传学知识点

高中生物遗传学知识点

高中生物遗传学知识点遗传学是生物学中的一个重要分支,它关注的是生物基因的特殊传递方式以及相关遗传信息的表达。

在高中生物中,遗传学是一个非常重要的内容,对于学生们来说掌握遗传学知识是十分关键的。

下面将为大家介绍高中生物遗传学知识点。

1. 基因的定义和结构基因是生命的遗传信息单位,由 DNA 组成。

基因位于染色体上,可以通过遗传传递到下一代,控制着生物的性状和特征。

基因通常分为两个等位基因,一种来自父亲,一种来自母亲。

基因由外显子和内含子组成,其中外显子是编码蛋白质的区域,而内含子则没有编码功能。

2. 遗传物质的复制与分离DNA 是生命的重要基础,通过 DNA 复制来维持生命的传递。

DNA 复制是指在细胞分裂过程中对 DNA 分子进行完全复制,从而确保遗传信息的传递和维持。

在有丝分裂中,DNA 复制发生在 S 期,DNA 长链通过半保留复制的方式产生两个完整并且相同的 DNA 分子。

遗传物质分离是指在有丝分裂或减数分裂中,已复制 DNA 分子分裂成为两个或四个完整的 DNA 分子的过程。

在该过程中,每个子细胞都获得了一个完整的染色体组,这些染色体组对应着来自母亲和父亲的等位基因。

3. 孟德尔遗传学规律孟德尔遗传学规律又称为孟德尔现象,是指在对植物杂交的研究中发现了一些重要的遗传规律。

孟德尔规律包括了分离规律、配合规律和统一规律。

分离规律指的是等位基因(如红色和白色)在杂合状态下随机分离,成为孟德尔遗传规律的基础。

配合规律是指两个或多个基因以固定的比例同时遗传。

统一规律是指一个种类的基因控制某个性状的方式,可能是在同一染色体上,也可能是在不同的染色体上。

4. 遗传变异遗传变异是指个体之间相对较大的遗传差异,包括基因突变、染色体重排、染色体核型变异等。

其中基因突变是最常见的一种遗传变异。

基因突变是指在基因序列中某个碱基发生的改变,影响了基因的结构和功能。

5. 遗传产物遗传产物包括基因表达产物和遗传变异产物。

高中生物的基因问题教案

高中生物的基因问题教案

高中生物的基因问题教案
目标:让学生了解基因及基因问题的基础知识,掌握基本术语和概念。

教学内容:
1. 什么是基因?
- 基因是细胞中控制遗传特质的遗传物质。

- 基因由DNA分子组成,位于染色体上。

2. 基因问题的种类
- 点突变:一种单个核苷酸的改变,可能导致氨基酸序列的改变。

- 缺失突变:某个核苷酸被删除,导致氨基酸序列改变。

- 插入突变:某个额外的核苷酸被插入,导致氨基酸序列改变。

3. 基因问题的影响
- 可能导致遗传疾病的发生,如囊性纤维化、唐氏综合征等。

- 可能导致个体在生长发育、生理功能等方面出现异常。

教学活动:
1. 观察实验:利用模型DNA链,演示突变对氨基酸序列的影响。

2. 讨论分组:学生分组探讨不同基因问题的例子,并讨论其可能的影响。

3. 案例分析:学生通过阅读案例,分析基因问题对患者的影响和可能的治疗方法。

评估方式:
1. 小测验:简答题和选择题,考察学生对基因问题的理解。

2. 实验报告:要求学生写一份实验报告,描述突变对氨基酸序列的影响。

扩展阅读:
1. 《基因突变与遗传疾病》,深入探讨基因问题对健康的影响。

2. 《基因编辑技术的应用》,介绍人类利用基因编辑技术来修复基因问题的方法。

高中生物讲解基因教案及反思

高中生物讲解基因教案及反思

高中生物讲解基因教案及反思
一、基因概念
1. 基因的定义:基因是携带遗传信息的DNA分子片段,是生物体遗传信息的基本单位。

2. 基因的特点:基因决定了生物体的遗传特征,包括形态特征、生理特征等。

二、基因结构
1. 基因由DNA分子组成,是由不同碱基组成的密码子序列构成的。

2. 基因的结构包括启动子、编码区和终止子等部分。

三、基因功能
1. 基因编码蛋白质,决定了蛋白质的合成和功能。

2. 基因还参与调控生物体的生长发育、代谢等生命活动。

四、基因突变及影响
1. 基因突变是指基因序列发生突变,导致基因的功能发生改变。

2. 基因突变可能导致生物体的遗传病、形态特征异常等现象。

反思范本:
本节课通过简明扼要地讲解了基因的概念、结构、功能以及基因突变的影响,引导同学们进一步了解生物遗传学的基本知识。

但在教学过程中,可能存在以下不足之处:
1. 缺乏足够的案例分析:在课堂教学中,应该结合生物学实例,具体分析基因对生物体特征的影响,使抽象的基因概念更加具体化。

2. 缺乏实验演示:通过实验演示,可以生动展示基因突变对生物体的影响,让同学们更直观地理解基因的重要性。

3. 缺乏互动环节:在课堂教学中,可以设置问题答题、小组讨论等互动环节,促进同学们的思考和交流,提高教学效果。

在今后的教学中,我们应该注意丰富教学内容,提高教学形式,激发同学们对生物学的兴趣,提高他们的学习效果。

【参考课程反思】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中生物必修2《遗传与进化》人类是怎样认识基因的存在的?遗传因子的发现基因在哪里?基因与染色体的关系基因是什么?基因的本质基因是怎样行使功能的?基因的表达基因在传递过程中怎样变化?基因突变与其他变异人类如何利用生物的基因?从杂交育种到基因工程生物进化历程中基因频率是如何变化的?现代生物进化理论主线一:以基因的本质为重点的染色体、DNA、基因、遗传信息、遗传密码、性状间关系的综合;主线二:以分离规律为重点的核基因传递规律及其应用的综合;主线三:以基因突变、染色体变异和自然选择为重点的进化变异规律及其应用的综合。

第一章 遗传因子的发现二、杂交实验(一) 1956----1864------18721.选材:豌豆 自花传粉、闭花受粉 纯种性状易区分且稳定 真实遗传2.过程:人工异花传粉 一对相对性状的 正交P (亲本) 互交 反交F 1(子一代) 纯合子、杂合子F 2(子二代) 分离比为3:13.解释①性状由遗传因子决定。

(区分大小写) ②因子成对存在。

③配子只含每对因子中的一个。

④配子的结合是随机的。

4.验证 测交 F 1是否产生两种比例为1:1的配子5.分离定律在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。

1. 亲组合重组合2.自由组合定律控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合四、孟德尔遗传定律史记①1866年发表 ②1900年再发现③1909年约翰逊将遗传因子更名为“基因” 基因型、表现型、等位基因体现在 △基因型是性状表现的内在因素,而表现型则是基因型的表现形式。

表现型=基因型+环境条件。

五、小结1.第二章 基因与染色体的关系依据:基因与染色体行为的平行关系减数分裂与受精作用基因在染色体上 证据:果蝇杂交(白眼) 伴性遗传:色盲与抗V D 佝偻病现代解释:遗传因子为一对同源染色体上的一对等位基因一、减数分裂1.进行有性生殖的生物在产生成熟生殖细胞时,进行的染色体数目减半的细胞分裂。

在减数分裂过程中,染色体只复制一次,而细胞分裂两次。

减数分裂的结果是,成熟生殖细胞中的染色体数目比原始生殖细胞的减少一半。

2.过程染色体 同源染色体联会成 着丝点分裂精原 复制 初级四分体(交叉互换)次级 单体分开 精 变形 精细胞 精母 精母 细胞 子染色体 2N 2N N 2N N NDNA 2C 4C 4C 2C 2C C C3.同源染色体① 形状(着丝点位置)和大小(长度)相同,分别来自父方与母方的②一对同源染色体是一个四分体,含有两条染色体,四条染色单体③区别:同源与非同源染色体;姐妹与非姐妹染色单体④交叉互换4.判断分裂图象 奇数 减Ⅱ或生殖细胞散乱中央分极染色体 不 有丝有 配对 前 中 后 偶数 同源染色体 有 减Ⅰ 期 期 期无 减Ⅱ二、萨顿假说1.内容:基因在染色体上 (染色体是基因的载体)2.依据:基因与染色体行为存在着明显的平行关系。

①在杂交中保持完整和独立性 ②成对存在③一个来自父方,一个来自母方 ④形成配子时自由组合3.证据: 果蝇的限性遗传①一条染色体上有许多个基因;②基因在染色体上呈线性排列。

4.现代解释孟德尔遗传定律①分离定律:等位基因随同源染色体的分开独立地遗传给后代。

②自由组合定律:非同源染色体上的非等位基因自由组合。

四、遗传图的判断 致病基因检索表A 1 图中有隔代遗传现象……………………………隐性基因B 1 与性别无关(男女发病几率相等) ………… 常染色体B 2 与性别有关C 1男性都为患者……………………………Y 染色体C 2男多于女…………………………………X 染色体A 2 图中无隔代遗传现象(代代发生)……………… 显性基因D 1与性别无关………………………………… 常染色体D 2与性别有关E 1男性均为患者……………………………Y 染色体E2女多于男(约为男患者2倍) ……………X染色体第三章基因的本质基因是有遗传效应的DNA片段;基因的是控制生物性状的最基本单位;双螺旋本质其中四种脱氧核苷酸的排列顺序代表的遗传信息。

半保留 DNA的复制一、DNA是主要的遗传物质1.肺炎双球菌转化实验(1)体内转化 1928年英国格里菲思①活R,无毒活小鼠②活S,有毒死小鼠;分离出活S③△杀死的S,无毒活小鼠④活R + △杀死的S,无毒死小鼠;分离出活S转化因子是什么?(2)体外转化 1944年美国艾弗里多糖或蛋白质型活S DNA + R型培养基型 + S型DNA水解物型转化因子是DNA。

2.噬菌体侵染细菌实验 1952年赫尔希、蔡明电镜观察和同位素示踪32P标记DNA35S标记蛋白质DNA具有连续性,是遗传物质。

3.烟草花叶病毒实验RNA也是遗传物质。

二、DNA的分子结构1.核酸核苷酸核苷含氮碱基:A、T、G、C、U磷酸戊糖:核糖、脱氧核糖2.1950年鲍林 1951年威尔金斯 + 富兰克林 1952年查哥夫3.DNA的结构①(右手)双螺旋②骨架③配对:A = T/UG = C4.特点①稳定性:脱氧核糖与磷酸交替排列的顺序稳定不变②多样性:碱基对的排列顺序各异③特异性:每个DNA 都有自己特点的碱基对排列顺序5.计算1.在两条互补链中C T GA ++的比例互为倒数关系。

2.在整个DNA 分子中,嘌呤碱基之和=嘧啶碱基之和。

3.整个DNA 分子中,C G TA ++与分子内每一条链上的该比例相同。

三、DNA 的复制1.场所:细胞核; 时间:细胞分裂间期。

2.特点:① 边解旋边复制 ②半保留复制3.基本条件:① 模板:开始解旋的DNA 分子的两条单链;② 原料:是游离在核液中的脱氧核苷酸;③ 能量:是通过水解ATP 提供;④ 酶:酶是指一个酶系统,不仅仅是指一种解旋酶。

4.意义:将遗传信息从亲代传给子代,从而保持遗传信息的连续性。

四、基因是有遗传效应的DNA 片段基因是DNA 片段,是不连续分布在DNA 上,是由碱基序列将其分隔开;它能控制性状,具有特定的遗传效应。

△原核细胞和真核细胞基因结构①联系:编码区+非编码区②区别 原核:编码区是连续的、不间隔的。

真核:编码区可分为外显子和内含子,故是间隔的、不连续的。

第四章 基因的表达控制 mRNA 蛋白质的DNA 蛋白质结构 性状 影响 环境 酶的合成 控制代谢中心法则一、基因指导蛋白质的合成1.转录(1)在细胞核中,以DNA 双链中的一条为摸板合成mRNA 的过程。

(2) ① 信使(mRN A ),将基因中的遗传信息传递到蛋白质上,是链状的;RNA ② 转运RNA (tRNA ),三叶草结构,识别遗传密码和运载特定的氨基酸;(单链) ③ 核糖体RNA (rRNA ),是核糖体中的RNA 。

(3)过程 (场所、摸板、条件、原料、产物、去向等)2.翻译(1)在细胞质的核糖体上,氨基酸以mRNA 为摸板合成具有一定氨基酸顺序的蛋白质的过程。

(2)实质:将mRNA 中的碱基序列翻译成蛋白质的氨基酸序列。

(3)(64个)密码子:mRNA 上决定一个氨基酸的3个相邻碱基。

其中AUG ,这是起始密码;UAG 、UAA 、AGA 为终止密码。

(4)遗传信息① 狭:基因中控制遗传性状的脱氧核苷酸顺序。

②广:子代从亲代获得的控制遗传性状的讯号,以染色体上DNA 的脱氧核苷酸顺序为代表。

③ 中心法则:(5)翻译过程三、基因对性状的控制1. DNA RNA蛋白质(性状) 脱氧核苷酸序列 核糖核苷酸序列 氨基酸序列遗传信息 2.基因、蛋白质和性状的关系(1)基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状,如白化病等。

(2)基因还能通过控制蛋白质的结构直接控制生物体的性状,如镰刀型细胞贫血等。

第五章 基因突变及其他变异不可遗传的变异 基因突变 物、化、生 诱变育种可遗传的 基因重组 杂交育种染色体变异 多倍体、单倍体育种一、基因突变1.定义:DNA 分子中发生碱基对的替换、增添和缺失而引起的基因结构的改变。

2. 时间:有丝分裂间期或减数第一次分裂间期的DNA 复制时3.外因:物理、化学、生物因素 内因:可变性4.特点:①普遍性 ②随机,无方向性 ③频率低 ④有害性5.意义:①产生新基因 ②变异的根本来源 ③进化的原始材料6.实例:镰刀型细胞贫血二、基因重组1.在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。

2. 时间:减数第一次分裂前期或后期2.意义:①产生新的基因型 ②生物变异的来源之一 ③对进化有意义三、染色体变异1. 缺失 1917年 猫叫综合症 果蝇的缺刻翅GAA结构的变异重复 1919年果蝇的棒状翅易位 1923年慢性粒细胞白血病倒位数目结构的变异:个别染色体;染色体组的增加与减少2.染色体组细胞中的一组非同源染色体,在形态和功能上各不相同,携带着控制生物生长发育、遗传和变异的全部遗传信息的染色体。

如:人的为22常+X或22常+Y△染色体组型(核型),是指某一种生物体细胞种全部染色体的数目、大小和形态特征;如:人的核型:46、XX或XY3.一倍体雌性配子二倍体单倍体直接发育合子生物体多单倍体多倍体(秋水仙素)四、人类遗传病1.常染色体性染色体隐性基因镰刀型贫血、白化病、先天聋哑红绿色盲单基因遗传病显性基因多指、并指、软骨发育不全抗V D佝偻病多基因遗传病:原发性高血压、冠心病、哮喘病、青少年糖尿病染色体异常:21三体综合症2.危害婚前检测与预防遗传咨询监测与预防产前诊断:羊水、B超、孕妇血细胞检查、基因诊断3.人类基因组计划(HGP):人体DNA所携带的全部遗传信息①提出:1986年美国的生物学家杜尔贝利②主要内容:绘制人类基因组四张图:遗传图、物理图、序列图、转录图③1990年10月启动④1999年7月中国参与,解读3号染色体短臂上3000万个碱基,占1%。

⑤2000年6月20日,初步完成工作草图⑥2001年2月,草图公开发表⑥2003年圆满完成△直系血亲是指从自己算起向上推数三代和向下推数三代;,△旁系血亲是指与(外)祖父母同源而生的、除直系亲属以外的其他亲属。

△基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的。

△基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。

第六章育种方法单倍体选择育种杂交育种多倍体转基因提取目的基因目的基因与运载体结合将目的基因导入受体细胞 :大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和细胞等目的基因的检测与表达 :受体细胞表现出特定的性状第七章 进化论拉马克 : 用进废退、获得性遗传达尔文 : 适者生存,不适者淘汰(自然选择学说)基本单位:种群实质:基因频率的改变原材料:突变与重组现代进化理论 形成物种 决定方向:自然选择必要条件:隔离生物多样性:基因、物种、生态系统协同论(残酷竞争VS 协同进化) 中性学说(偶然VS 必然)补充 间断平衡(渐进VS 突进) 灾变论(渐灭VS 突灭)一、生物进化研究生物界历史发展的一般规律,如① 生物界的产生与发展:生命、物种、人类起源② 进化机制与理论:遗传、变异、方向、速率③ 进化与环境的关系 ④二、现代进化理论的由来1.神创论 + 2. 法国 拉马克 1809 ①生物由古老生物进化而来的 ②由低等到高等逐渐进化的3.英国 达尔文 1859年《物种起源》自然选择学说过度繁殖与群体的恒定性 + 有限的生活条件 生存斗争 + 遗传和变异 自然选择即适者生存 + 获得性遗传新类型生物 4.现代进化理论:以自然选择学说为核心内容三、现代进化理论的内容突变 等位基因 有性生殖 基因重组 不定向变异 选择 微小有利变异多次选择、遗传积累 显著有利变异 基因频率的改变 新物种 定向进化基本观点:种群是生物进化的基本单位,生物进化的实质是种群基因频率的改变。

相关文档
最新文档