恒星的演化过程示意图
1.3 恒星的一生和宇宙的演化

质量与太阳相约的 恒星的演化: (1)主序 星 (2)红巨星 (3) 行星状星云 (位于中
央的核心会冷却成白矮 星)
质量比较大的恒星, 核心的温度可以将氦燃点, 合成更重的元素(如氧和 碳)。这些核聚变的过程并 不太稳定,令恒星产生脉 动,吹出恒星风,将外壳 拋开,又或者核心的温度 无法再合成更重的元素, 成为行星状星云。 失去外壳的核心会冷却下 来并开始变暗,成为白矮 星,并持续冷却及变暗而 成为黑矮星。
大爆炸理论 勒梅特于1931年创建
大爆炸宇宙产生示意图
时刻 (大爆炸 后的)
0.01秒
温度(宇宙 温度下降
到)
10×1011K
密 度(宇宙密 度下降到水密
度的倍数)
宇宙内容物
3.8x109
光子、电子、正电子、中微子、反中微子和少量 质子及中子,它们都处在热平衡中
0.12秒
宇 1.1宙0资料的能力。
情感态度与价值观目标
• 树立科学的宇宙观,以及热爱科学勇于探 索的精神。
重点
• 知道恒星的不同发展阶段。 • 了解大爆炸宇宙论的主要观点。
难点
• 大爆炸宇宙论。 • 恒星的一生演化过程。
一、恒星的一生
恒星是指宇宙中靠核聚变产生的能量 而自身能发热发光的星体。过去天文学家 以为恒星的位置是永恒不变的,以此为名。 但事实上。恒星也会按照一定的轨迹,围 绕着其所属的星系的中心而旋转。
稳定的太阳 光照 安全的运行轨道
特殊天体
日地距离适中
自身物 质条件
体积、质量适中
地球内外温度变化
宇宙的起源假说之一: 起初,宇宙很小,几乎只有不足原子核大小 的一个点,称为“奇点”,但其中包含极大的热能 量,直到最后奇点中容纳不下这样的热量,发生 了大爆炸,通过大爆炸的能量形成了一些基本粒 子,这些粒子在能量的作用下,逐渐形成了宇宙 中的各种物质、能源、空间及时间。 至此,大爆炸宇宙模型成为最有说服力的宇 宙图景理论。
星空 恒星 行星 运动图

白矮星
遗留物会变 成中子星
耗尽能量后就 变成黑矮星
黑洞
黑矮星
中子星
赫罗图
参宿七 超巨星群 北极星 主序 毕宿五 巨星群 半人马A 太阳 天狼B 参宿四
亮度
天狼A
亮度增大
半人马B 白矮星群 50000 20000 10000 6000 5000 3000
行星的运动
太阳
地球带着月球绕发光的太阳运动
恒星的演化过程示意图
恒星的寿命取 决于它的质量
星云的气体和尘埃一 旦紧缩成一颗原恒星 时.一颗恒星就诞生了
恒星的燃料消耗殆尽 时,它就会膨胀变成 巨星或超巨星
巨星或超巨星
原恒星
巨星或超巨星可能爆 炸成为超新星
质量最大的恒星遗留物 会形成黑洞,即使光也 无法从黑洞中逃逸出来
超新星
小型和中等恒 星会变成红巨 星,而后又会 变成白矮星
太阳
卫星 在不同轨道上运动
卫星在不同 轨道上运动
显示轨迹线
隐藏轨迹线
力学 热学 电学 光学 原子 其它 退出
双星的运动
显示轨迹线
隐藏轨迹线
力学 热学 电学 光学 原子 其它 退出
A
三颗同 卫星1 步卫星 互成1200 角就可 以实现 全球通 讯
C
地球Βιβλιοθήκη 卫星2B卫星3
第三章 恒星的演化

(3) He闪 (Helium Flash)
H-R图 恒星攀升到红巨星支的顶 点。
内部 过程
核 心 He 开 始 燃 烧 ( Tc~108 K)
→Tc↑(简并→Rc不变)
→ ε↑ → Tc↑→...
→核心He爆燃 (∆t ~ min, L ~ 1011L⊙)
→电子简并解除
(4) 水平支 (Horizontal Branch)
5M⊙恒星的演化
(3) 高质量(M > ~10M⊙)恒星的演化
观测表现 : O型星→蓝超巨星→黄超巨星→红超巨星→超新星
恒星内部物理过程 :
核心H枯竭→壳层H燃烧 → 核 心 He 燃 烧 → 核 心 He
枯竭
→壳层He和H燃烧 →核心C燃烧→核心C枯
竭
→壳层C、He和H燃烧 →O, Ne, Si燃烧 … →Fe核
胀,表面温度降
τ ≈ 108 y低r 。
(2) 红巨星支 (Red Giant Branch)
H-R图 恒星向右上方攀升成为 红巨星。
内部 过程
He核进一步收缩Rc↓ → Tc↑,核区电子简并 →壳层H 燃烧 L↑ →R↑→T↓ →恒星包层产生对流
→Hayashi Track
τ ≈ 105 yr
Structure of A Red Giant
tn = E/L =η∆Mc2/L
≈ 0.7% 0.1Mc2/L ≈ (1010 yr) (M/M⊙) (L/L⊙)-1
(2) 热时标 (thermal timescale)
恒星辐射自身热能的时间,或光子从恒星内部到 达表面的时间。
tth = (0.5GM2/R)/L ≈ (2×107 yr) (M/M⊙)2 (R/R⊙)−1 (L/L⊙)−1
太阳系的形成和恒星的演化PPT课件(初中科学)

太阳
太阳是太阳系的中心,也是由星云形成的 一颗恒星,恒星真的能永恒吗?
常见的恒星
红巨星
行星状星云
超新星
白矮星
中子星
黑洞
红巨星
红巨星,称它为“红”巨星, 是因为在这恒星迅速膨胀的 同时,它的外表面离中心越 来越远,所以温度将随之而 降低,发出的光也就越来越 偏红。不过,虽然温度降低 了一些,可红巨星的体积是 如此之大,它的光度也变得 很大,极为明亮。肉眼看到 的最亮的星中,许多都是红 巨星。红巨星的体 积很大,它的半径一般比太 阳大100倍。
太阳系是由一块星云收缩形成的,先 形成的是太阳,然后,剩余的星云物质 进一步收缩演变,形成地球等行星。
理论根据:八大行星绕日运行的特征
星云:是由气 体和尘埃物质 组成的巨大云 雾状天体。直 径大多十几光 年
一.原始的太阳星云是一个扁平的、自转的 气体尘埃圆盘。50亿年前原始太阳星云因 万有引力作用而收缩凝聚
思考: 了解了太阳一生的演变之后,你对宇
宙有了什么新认识。
宇宙也像恒星一样,也有产生,成长, 死亡的时候。
1.直径比太阳大数十倍、亮度比太阳大得多的 红色恒星是( B )
A.超新星 B.红巨星 C.白矮星 D.黑洞
2.有关黑洞的描述,正确的是( C ) A.黑洞是宇宙空间中某些黑色区域,这里什么 物质也没有 B.黑洞不是恒星 C.黑洞的密度非常大 D.黑洞不断地向外面抛射着物质
讨论:这些恒星和太阳有什么不同?
红巨星:表面温度比太阳低,但体积比太阳大, 亮度比太阳高。
行星状星云:质量体积比太阳大,但亮度较暗。 超新星:亮光相当于10亿颗太阳 白矮星、中子星、黑洞:体积小、亮度低,但质
量大、密度极高。
二、恒星的演变
恒星演化

§2.2 主序星的演化
1. 恒星演化的基本原理
恒星在一生的演化中总是试图处于稳定状态 (流体静力学平衡和热平衡)。当恒星无法产生足 够多的能量时,它们就无法维持热平衡和流体静力 学平衡,于是开始演化。 恒星的一生就是一部和引力斗争的历史!
Russell-Vogt 原理
如果恒星处于流体静力学平衡和热平衡, 而且它的能量来自内部的核反应,它们的结 构和演化就完全唯一地由初始质量和化学丰 度决定。
部分天体的视星等
绝对星等M (absolute magnitude)
天体位于10 pc 距离处的视星等,它实际上反映了天体 的光度。 对同一颗恒星: F10/Fd = (10/d ) -2 M-m =-2.5 log(F10/Fd) = 5-5 log d (pc) 对不同的恒星: M1-M2 =-2.5 log (L1/L2) M-M⊙=-2.5 log (L/L⊙) 其中L⊙= 3.86×1033 ergs-1, M⊙= 4.75m 距离模数 (distance modulus) :m-M d=10(m-M+5)/5
恒星演化时标
(1) 核时标 (nuclear timescale)
恒星辐射由核心区(约1/10质量)核反应产生的所 有能量的时间。
tn = E/L =η△Mc2/L
≈ 0.7% 0.1Mc2/L
≈ (1010 yr) (M/M⊙) (L/L⊙)-1
(2) 热时标 (thermal timescale)
恒星辐射自身热能的时间,或光子从恒星 内部到达表面的时间。 tth = (0.5GM2/R)/L
≈ (2×107yr) (M/M⊙)2 (R/R⊙)-1 (L/L⊙)-1
(3) 动力学时标 (dynamical timescale)
天文基础知识

星系旳哈勃分类
椭圆星系
外形呈正圆形或椭圆形, 中心亮,边沿渐暗。
旋涡星系
外形呈旋涡构造,有明显旳 关键,有几条旋臂。
不规则星系
外形没有明显旳关键和旋 臂,呈不规则旳形状。
椭圆星系
按星系椭圆旳扁 率从小到大分别 用E0-E7表达
M89E0室女座
M49E4室女座
NGC205E6仙女座
脉冲星和中子星
脉冲星
周期性发出强 烈旳脉冲辐射
中子星 由中子构成旳恒星
脉冲星实际上是具有强磁 场旳、迅速自转旳中子星。
恒星旳演化
恒星由星云(气体和尘埃)凝聚而来。
原恒星阶段
星云在引力作用下,不断收缩,逐渐 汇集成团,形成比较密集旳气体球。
主序星阶段
开始核反应,发射可见光。恒星旳特 点取决于恒星旳质量。
疏散星团 球状星团
北斗七星
金牛座中旳双星
(两星彼此相距45天文单位)
疏散星团
球状星团
•形态不规则
•包括几十至二、 三千颗恒星
•很轻易用望远 镜区别
•球形或扁球形
•包括1~1000万 颗恒星
•星团中央十分 巨密蟹集座疏散星团
武仙座球状星团,250 万金颗牛恒座星昴,星2.团5万光年
半人马座球状星团 人马座球状星团
太阳质量测定:
mV2/R = J = F=GMm/R2 M=RV2/G
重力加速度:
g=F/m=GM/R2
(二) 太阳旳热能、温度和热源 太阳热能
❖ 太阳常数:8.16J/(cm2·min); ❖ 平均距离,太阳直射,大气界外; ❖ 太阳辐射总量:3.826 ×1026J/s; ❖ 地球所得:1.74 ×1017J/s(占22亿分之一)。
恒星的演变
(4) 水平支 (horizontal branch) H-R图:恒星向左下方移动至 水平支 内部过程: 核心He (壳层H)燃烧 →Rc↑ →Tc↓ →R↓ →T↑
(5) 渐进巨星支 (asymptotic giant branch) H-R图:恒星向右上方再次 攀升成为红超巨星 内部过程: 核心He枯竭(CO核) →R c↓ →Tc↑ →壳层He和H燃烧 →L↑ R↑ T↓
A Massive Star at The End of Its Life
核坍缩与超新星爆发
核心核反应停止 R c↓Tc↑ Fe核光致离解 4He光致离解 e- + p → n + νe 能量损失→ Pe↓ R c↓→Tc↑ 星核坍缩 当ρc =ρnu,核坍缩停止 →激波反弹 →壳层抛射 →II型超新星爆发 →中子星
产物:
膨胀气壳(超新星遗迹)+ 致 密天体(中子星或黑洞)
SN 1998aq in the galaxy NGC 3982
历史超新星
爆发时间 (AD) 光度极大星等 185 ? -8 393 -1 837 ? 1006 1054 1181 1572 1604 1680 1987 -8 ? -10 -5 -1 -4 -3 5? +2.9 发现者 中国天文学家 中国天文学家 中国天文学家 中/阿天文学家 中/日天文学家 中/日天文学家 Tycho Brahe Kepler John lamsteed Ian Shelton 遗迹 RCW 86 IC 443 SN 1006 Crab Nebula 3C 58 Tycho Kepler Cas A SN 1987A
第三章 恒星的演化
§3.1 主序星的演化 §3.2 恒星主序后的演化 §3.3 恒星演化的观测证据
恒星和星系(黑白) 给力推荐!
猎户座红巨星
太阳的未来
太阳成为红巨星后的地球景观
恒星演化示意图
二、星系
星系是由大量恒星和 星云构成的天体系统 。 星系命名
星系分类
银河系
河外星系
宇宙的起源与演化
复习与链接(四)
星系命名
按所在星座命名
仙女座星系
星云星团新总表(New General Catalogue)简 称为NGC,共收录7840 个星云、星团和星系。 后面的数字是天体在该 表中的编号。
牛郎星:16光年
织女星:26光年
北极星:682光年
恒星的发光和光谱
发光条件
质量 发展阶段
光谱型 O B
A F G K M
颜色 蓝 蓝白
白 黄白 黄 橙 红
温度(K) 3~5万 2万
1万 7500 6000 4500 3000
光谱型
不同光谱型的 差别主要在于星光 颜色,而星光的颜 色代表着恒星温度 的高低。
巨星、超巨星、白矮星
• 赫罗图
赫兹普龙 罗素 光 度 大
超巨星
主 星 序
光度-温度坐标图
恒星类型
小 温度 高 低
不同的恒星类型
• 主序星 恒星的光度随温度的升高而增大
巨星 温度较低,但光度较同温度的 主序星大,说明该星体积很大
超巨星 温度高低不一,但光度都 较大,说明其体积均很大 温度很高,但光度较小, 白矮星 说明其体积小
视向速度和切向速度
V切
自行
V视 地球
北 斗 七 星 的 自 行
10 万 年 前
现 在
10 万 年 后
恒星的距离
• 距离的测定 ——周年视差法 天文学上的距离单位
1A.U=1.496×108KM 1L.Y=9.5 ×1012KM
人教版高中地理选修1《第一章 宇宙 第三节 恒星的一生和宇宙的演化》_1
第一章 第三节 恒星的一生和宇宙的演化1.恒星的光谱型用过酒精灯的同学会发现火焰的颜色是蓝色,焰心的颜色是红色。
加热化学物品的时候,老师会要求你把试管的底部靠近蓝色的火焰,因为那里最热。
可见物体在燃烧时发出的光可以反映物体当时的温度。
夜空中的恒星也呈现各种的颜色,有红色、白色、蓝色等等。
通过观察这些色彩(天文学上称之为恒星的光谱型)我们便可以了解恒星的表面温度了。
2.恒星的大小、质量和寿命恒星之中,超巨星的体积最大。
其半径可以达到几百到几千倍的太阳半径。
例如参宿四的半径是太阳半径的370倍。
心宿二的半径是太阳的230倍。
白矮星比太阳更小,如天狼星的伴星的半径只有1/333太阳半径。
中子星的半径仅有15千米左右。
已知质量最大的恒星是R136a1,大约是太阳的265倍。
心宿二的质量是太阳的50倍,大角星是太阳的10倍。
从统计来看,大多数恒星的质量是太阳质量的0.5到5倍。
恒星的寿命取决于质量,质量越大寿命越短。
参宿七的质量是太阳的10倍,寿命约2000万年。
太阳的寿命约为100亿年(现在大约已过了45亿年,所以太图4.2 恒星演化各阶段的示意图 3.原恒星和主序星猎户座大星云内有着数量极其丰富的星际物质,许多恒星在星云中诞生了。
天文学家告诉我们,假如一颗星能够积累起0.08倍太阳质量的物质,那么它的表4-1 恒星的光谱型内部就可以产生“氢聚变为氦”的核聚变,成为恒星。
生命初期的恒星被称为“原恒星”。
若原恒星将它周围附近的星际物质吸收干净后,原恒星就晋级为“主序星”了。
说起主序星,我们有必要介绍一个概念——赫罗图。
赫罗图是丹麦天文学家赫茨普龙及由美国天文学家罗素分别于1911年和1913年各自独立提出的。
后来的研究发现,这张图是研究恒星演化的重要工具,因此把这样一张图以当时两位天文学家的名字来命名,称为赫罗图。
赫罗图是恒星的光谱类型与光度的关系图,赫罗图的纵轴是光度(或绝对星等),横轴是光谱类型(或恒星的表面温度),从左向右递减。
第三章 恒星的演化
2.较高质量 (M > ~2M⊙) 恒星的演化 (20.4, 21.221.3) (1) 与低质量恒星演化的主要区别 恒星内部的H燃烧通过CNO循环进行,内部温度更高, 辐射压对维持恒星的力学平衡起更大的作用,主序寿 命更短。 He核不再是简并的,C和更重元素的燃烧可以进行。 核心区核反应产生的能量主要以对流的方式向外传递。
第三章 恒星的演化
§3.1 主序星的演化 §3.2 恒星主序后的演化 §3.3 恒星演化的观测证据 §3.4 密近双星的演化
§3.1 主序星的演化
(20.1)
1. 恒星演化的基本原理
恒星在一生的演化中总是试图处于稳定状态(流体 静力学平衡和热平衡)。当恒星无法产生足够多的能量 时,它们就无法维持热平衡和流体静力学平衡,于是开 始演化。
L ~ M 2.5-4, R ~ M 0.5-1
主序星的演化
(1) 零龄主序 (zero age main-sequence star, ZAMS) 刚刚开始核心H燃烧的恒星,在H-R图上占据主序 带的最左侧。 (2) 演化时标 ——核反应 (4 1H→4He +γ) 时标 tn=η△Mc2/L ≈(1010 yr) (M/M⊙) (L/L⊙)-1 ≈(1010 yr) (M/M⊙)-2.5 for M > M⊙ or (1010 yr) (M/M⊙)-2 for M < M⊙
(4) 特大质量恒星的演化
星风引起的质量损失和恒星 演化。 高光度恒星通常有很强的星 风~10-6-10-4 M⊙yr-1 如沃尔夫-拉叶(WR)星。 演化过程 O型星→蓝超巨星→(红超巨 星)→WR星→Ib/Ic型超新星 + 中子星/黑洞
小结:
不同质量恒星的演化结局
恒星初始质量 (M⊙) < 0.01 0.01 < M < 0.08 0.08 < M < 0.25 0.25 < M < 8 8 < M < 12 12 < M < 40 M > 40 演化结局 行星 褐矮星 He白矮星 CO白矮星? ONeMg白矮星? 超新星→中子星? 超新星→黑洞?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒星的演化过程示意图
恒星的寿命取 决于它的质量
星云的气体和尘埃一 旦紧缩成一颗原恒星 时.一颗恒星就诞生了
恒星的燃料消耗殆尽 时,它就会膨胀变成 巨星或超巨星
巨星或超巨星
原恒星
巨星或超巨星可能爆 炸成为超新星
质量最大的恒星遗留物 会形成黑洞,即使光也 无法从黑洞中逃逸出来
超新星
小型和中等恒 星会变成红巨 星,而后又会 变成白矮星
白矮星
遗留物会变 成中子星
耗尽能量后就 变成黑矮星
黑洞
黑矮