培优(三)三角函数
中考数学培优 易错 难题(含解析)之锐角三角函数含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10cos B =. (1)求AB 的长度; (2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.【答案】(1) 10AB;(2) 10AD AE ⋅=;(3)证明见解析.【解析】 【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=13,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,∵AB=AC ,AF ⊥BC ,∴BF=CF=12BC=1, 在RtΔAFB 中,BF=1,∴AB=10cos 10BF B == (2)连接DG ,∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°,又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE ,∴AD•AE=AF•AG ,连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG ,∵22AB BF -=3, ∴FG=13,∴AD•AE=AF•AG=AF•(AF+FG )=3×103=10; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,∵∠ADB=∠ACB=∠ABC ,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,∴∠ADC=∠ADN ,∵AD=AD ,CD=ND ,∴△ADC ≌△ADN ,∴AC=AN ,∵AB=AC ,∴AB=AN , ∵AH ⊥BN ,∴BH=HN=HD+CD.【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.2.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径∴90BDC ∠=︒∴90BDA ∠=︒∵OA OB =∴OD OB OA ==∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠即:EBO EDO ∠=∠∵CB x ⊥轴∴90EBO ∠=︒∴90EDO ∠=︒∴直线OD 为E 的切线.(2)①如图1,当F 位于AB 上时:∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x == 1504333131OF =-= 即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时:∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x ==∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+ 解得:25x = ∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M ,∵BC 是直径∴90CGB CBF ∠=∠=︒∴~CBF CGB ∆∆∴8BG MG MG CF BC ==∵MG≤半径4=∴41882 BG MGCF=≤=∴BGCF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.4.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C(0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.(1)求证:AE=CE(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=34,DE=394时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.【答案】(1)详见解析;(2)详见解析;(3)4013 NL【解析】【分析】(1)由直径所对的圆周角是直角,得∠ADC=90°,由切线长定理得EA=ED,再由等角的余角相等,得到∠C=∠EDC,进而得证结论.(2)由同角的余角相等,得到∠BAD=∠C,再通过等量代换,角的加减进而得证结论.(3)先由条件得到AB=26,设HM=FM=a,GH=HF=2a,BH=43a,再由相交弦定理得到GH•HF=BH•AH,从而求出FH,BH,AH,再由角的关系得到△HFL∽△HAF,从而求出HL,AL,BL,FL,再由相交弦定理得到LN•LF=AL•BL,进而求出LN的长.【详解】解:(1)证明:如图1中,连接AD.∵AB是直径,∴∠ADB=∠ADC=90°,∵EA、ED是⊙O的切线,∴EA=ED,∴∠EAD=∠EDA,∵∠C+∠EAD=90°,∠EDC+∠EDA=90°,∴∠C=∠EDC,∴ED=EC,∴AE=EC.(2)证明:如图2中,连接AD.∵AC是切线,AB是直径,∴∠BAC=∠ADB=90°,∴∠BAD+∠CAD=90°,∠CAD+∠C=90°,∴∠BAD=∠C,∵∠EDC=∠C,∴∠BAD=∠EDC,∵∠DBF=∠DAF,∴∠FBM+∠FAB=∠FBM+∠DAF=∠BAD,∴∠FAB+∠FBM=∠EDC.(3)解:如图3中,由(1)可知,DE=AE=EC,∵DE=394,∴AC=392,∵tan∠ABC=34=ACAB,∴39 32 4AB ,∴AB=26,∵GH=FH,HM=FN,设HM=FM=a,GH=HF=2a,BH=43a,∵GH•HF=BH•AH,∴4a2=43a(26﹣43a),∴a=6,∴FH=12,BH=8,AH=18,∵GH=HF,∴AB⊥GF,∴∠AHG=90°,∵∠NFH+∠CAF=∠AHG,∴∠NFH+∠CAF=90°,∵∠NFH+∠HLF=90°,∴∠HLF=∠CAF,∵AC∥FG,∴∠CAF=∠AFH,∴∠HLF=∠AFH,∵∠FHL=∠AHF,∴△HFL∽△HAF,∴FH2=HL•HA,∴122=HL•18,∴HL=8,∴AL=10,BL=16,FL=∵LN•LF=AL•BL,∴LN=10•16,∴LN=13.【点睛】本题考查了圆的综合问题,涉及到的知识有:切线的性质;切线长定理;圆周角定理;相交弦定理;相似三角形性质与判定等,熟练掌握圆的相关性质是解题关键.6.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣6,0),点C在y轴正半轴上,且cos B=35,动点P从点C出发,以每秒一个单位长度的速度向D点移动(P点到达D点时停止运动),移动时间为t秒,过点P作平行于y轴的直线l与菱形的其它边交于点Q.(1)求点D坐标;(2)求△OPQ的面积S关于t的函数关系式,并求出S的最大值;(3)在直线l移动过程中,是否存在t值,使S=320ABCDS菱形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.7.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°.(1)求A 、B 之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB =-73.2 (米).…6分 (2) 此车制速度v==18.3米/秒8.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标;(2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18).【解析】【分析】(1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC 5CE =2,则CH 5解;(3)分点F在y轴负半轴和在y轴正半轴两种情况,分别求解即可.【详解】(1)y=12x﹣3,令y=0,则x=6,令x=0,则y=﹣3,则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,将点B坐标代入抛物线y=﹣14x2+bx﹣3得:0=﹣14×36+6b﹣3,解得:b=2,故抛物线的表达式为:y=﹣14x2+2x﹣3,令y=0,则x=6或2,即点A(2,0),则点D(4,1);(2)过点E作EH⊥BC交于点H,C、D的坐标分别为:(0,﹣3)、(4,1),直线CD的表达式为:y=x﹣3,则点E(3,0),tan∠OBC=3162OCOB==,则sin∠OBC5,则EH=EB•sin∠OBC5CE=2CH5则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=5∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF225=15,GF CG故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.9.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=330=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;21.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°, ∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA =2162x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∴216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 解得x =4(负根已经舍弃),∴AB =2∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=212﹣98,AF =22AE EF+=158,AH =22AE EH+=30,∵∠CFG=∠AFH ,∠FCG=∠AHF ,∴△CFG∽△HFA ,∴GF CGAF AH=,∴2192815308-=,∴CG=270﹣330,∴30CG+9=421.故答案为421.【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.10.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)(参考数据:,,,,,,)【答案】(1)560000(2)565.6【解析】试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.试题解析:(1)过点作交的延长线于点,在中,,所以米.所以(平方米).(2)连接,过点作,垂足为点,则.因为是中点,所以米,且为中点,米,所以米.所以米,由勾股定理得,米.答:、间的距离为米.考点:解直角三角形。
三角函数培优专练题及参考答案(精品)

三角函数培优专练题类型一:三角函数最值与值域【例1】【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1cos 223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 类型二:三角函数图象与性质的综合应用【例2-1】【解析】解法一:(Ⅰ)5555()2cos (sin cos )4444f ππππ=+ 2cos (sin cos )444πππ=---2= (Ⅱ)因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++. 所以22T ππ==. 由222,242k x k k Z πππππ-≤+≤+∈, 得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.解法二:因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++(Ⅰ)511()112444f πππ=+=+=. (Ⅱ)22T ππ==. 由222,242k x k k Z πππππ-≤+≤+∈, 得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.【例2-2】【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,∥a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x = 又[0,]x π∈,所以56x π=.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[0,]x π∈,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值- 【例2-3】【解析】(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 22f x x x x ωωω=--3cos 22x x ωω=-13(sin )2x x ωω=)3x πω=- 由题设知()06f π=, 所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<,所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-, 当123x ππ-=-, 即4x π=-时,()g x 取得最小值32-. 类型三:三角函数的实际应用【例3】【解析】(Ⅰ)因为1()10sin )102sin()12212123f t t t t ππππ--+--+, 又240<≤t ,所以373123ππππ<+≤t ,1)312sin(1≤+≤-ππt , 当2=t 时,1)312sin(=+ππt ;当14=t 时,1)312sin(-=+ππt ; 于是)(t f 在)24,0[上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ︒,最低温度为8C ︒,最大温差为4C ︒(Ⅱ)依题意,当11)(>t f 时实验室需要降温. 由(Ⅰ)得)312sin(210)(ππ+-=t t f ,所以11)312sin(210>+-ππt ,即1sin()1232t ππ+<-, 又240<≤t ,因此61131267ππππ<+<t ,即1810<<t ,故在10时至18时实验室需要降温.类型四:已知边角关系利用正余弦定理解三角形【解析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==△的面积1sin 2S ac B ==. (2)30A C +=︒,sin sin(30)A C C C ∴+=︒-+1cos sin(30)22C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒,3045,15C C ∴+︒=︒∴=︒.类型五:利用正弦定理、余弦定理解平面图形【例5】【解析】(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠, 2DC =BC ∴=5=.巩固练习1.【解析】(Ⅰ)因为()sin cos )22f x x x =--sin()42x π=+- 所以()f x 的最小正周期为2π.(Ⅱ)因为0x π-≤≤,所以3444x πππ-≤+≤. 当42x ππ+=-,即34x π=-时,()f x 取得最小值.所以()f x 在区间[],0π-上的最小值为3()142f π-=--. 2.解:(1)由题意得f (x )=-2sin 2x +23sin x cos x , =3sin 2x +cos 2x -1=2sin ⎝⎛⎭⎪⎫2x +π6-1, 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z), 得k π-π3≤x ≤k π+π6(k ∈Z).∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z). (2)由(1)和条件可得f (C )=2sin ⎝⎛⎭⎪⎫2C +π6-1=1, 则sin ⎝⎛⎭⎪⎫2C +π6=1. ∵角C 是三角形内角,∴2C +π6=π2,即C =π6. ∴cos C =b 2+a 2-c 22ab =32, 又c =1,ab =23,∴a 2+12a 2=7,解得a 2=3或a 2=4, ∴a =3或2,b =2或3,∵a >b ,∴a =2,b = 3.。
【中考冲刺】初三数学培优专题 12 三角函数(含答案)(难)

三角函数阅读与思考三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的重要体现,解三角函数相关问题时应注意以下两点:1.理解同角三角函数间的关系. (1)平方关系:1cos sin 22=+αα; (2)商数关系:αααcos sin tan =,αααsin cos cot =; (3)倒数关系:1cot tan =⋅αα.2.善于解直角三角形.从直角三角形中的已知元素推求其未知的一些元素的过程叫作解直角三角形.解直角三角形, 关键是合理选用边角关系,它包括勾股定理、直角三角形的两个锐角互余及锐角三角函数的概念.许多几何计算问题都可归结为解直角三角形,常见的基本图形有:例题与求解【例1】在△ABC 中,BC =1992,AC =1993,AB =19931992+,则=C A cos sin .(河北省竞赛试题)解题思路:通过计算,寻找BC 2,AC 2,AB 2之间的关系,判断三角形形状,看能否直接用三角函数的定义解题.【例2】某片绿地形状如图所示,其中∠A =600,AB ⊥BC ,AD ⊥CD ,AB =200m ,CD =100m . 求AD ,BC 的长.(精确到1m ,732.13≈)图2图1F EAE AABCDDC BDC B解题思路:本题的解题关键是构造直角三角形,构造的原则是不能破坏∠A ,所以连结AC 不行.延长AD 和BC 交于一点E (如图1),这样既构造出了直角三角形,又保全了特殊角∠A ;或过点D 作矩形ABEF (如图2)来求解.【例3】如图,已知正方形ABCD 中,E 为BC 上一点.将正方形折叠起来,使点A 和点E 重合,折痕为MN .若31tan =∠AEN ,DC +CE =10. (1)求△ANE 的面积; (2)求ENB ∠sin 的值.解题思路:将31tan =∠AEN 与DC +CE =10结合起来,可求出相关线段的长,为解题铺平道路.【例4】如图,客轮沿折线A —B —C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A —B —C 上的某点E 处.已知AB =BC =200海里,∠ABC =900,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)(南京市中考试题)解题思路:对于(2),过D 作DF ⊥CB 于F ,设DE =x ,建立关于x 的方程.【例5】若直角三角形的两个锐角A ,B 的正弦是方程02=++q px x 的两个根. (1)那么,实数p ,q 应满足哪些条件?(2)如果p ,q 满足这些条件,方程02=++q px x 的两个根是否等于直角三角形的两个锐角A ,B 的正弦?(江苏省竞赛试题)解题思路:解本例的关键是建立严密约束条件下的含不等式、等式的混合组,需综合运用一元二次方程,三角函数的知识与方法. C【例6】设a ,b ,c 是直角三角形的三边,c 为斜边,整数n≥3.求证:nn n c b a <+.(福建省竞赛试题)解题思路:由直角三角形的边可以转化为三角函数正余弦来解.其不等关系可以利用正弦、余弦的有界性来证明.能力训练A 级1.如图,D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC 于E .若BD =8,43sin =∠CBD ,则AE = .2.已知00900≤≤α,则ααsin sin 45+-=y 的最大值是 ,最小值是 .(上海市理科实验班招生考试试题)3.如图,在△ABC 中,∠C =900,∠BAC =300,BC =1,D 为BC 边上的一点,ADC ∠tan 是方程 2)1(5)1(322=+-+xx x x 的一个较大的根,则CD = . 东第5题图第1题图第3题图BACAO4.已知△ABC 的两边长a =3,c =5,且第三边长b 为关于x 的一元二次方程042=+-m x x 的两个正整数根之一,则A sin 的值为 . (哈尔滨中考试题) 5.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东600距离500m 处,那么水塔所在的位置到公路的距离AB 是( ) A .250mB .3250mC .33500mD .2250m6.如图,在△ABC 中,∠C =900,∠ABC =300,D 是AC 的中点,则DBC ∠cot 的值是( ) A .3B .32C .23D .43 (大连市中考试题)7.一渔船上的渔民在A 处看见灯塔M 在北偏东600方向,这艘渔船以28海里/时的速度向正东航行.半小时后到B 处,在B 处看见灯塔M 在北偏东150方向,此时灯塔M 与渔船的距离是( ) (黄冈市中考试题) A .27海里B .214海里C .7海里D .14海里8.如图,四边形ABCD 中,∠A =600,∠B =∠D =900,AD =8,AB =7,则BC +CD 等于( ) A .36B .35C .34D .33第7题图第6题图第8题图东北BA OA9.如图是某品牌太阳能热水器的实物图和横断面示意图.已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB =150厘米,∠BAC =300,另一根辅助支架DE =76厘米,∠CED =600. (1)求垂直支架CD 的长度(结果保留根号);(2)求水箱半径OD 的长度(结果保留三位有效数字,参考数据:73.13,41.12≈≈).(扬州市中考试题)图2图1A10.若α为锐角,求证:4cos sin 1cos 1sin 1>⋅++αααα. (宁波市竞赛试题)11.如图,已知AB =CD =1,∠ABC =900, ∠CBD =300,求AC 的长.(加拿大数学奥林匹克竞赛试题)12.如图,在△ABC 中,∠ACB =900,CD ⊥AB 于点D ,CD =1.若AD ,BD 的长是关于x 的方程 02=++q px x 的两根,且2tan tan =-B A ,求p ,q 的值并解此二次方程.ABDCB 级1.若0300<<θ,且31sin +=km θ(k 为常数,k <0),则m 的取值范围是 . 2.设00450<<α,1673cos sin =⋅αα,则=αsin . (武汉市选拔赛试题) 3.已知在△ABC 中,∠A ,∠B 是锐角,且2tan ,135sin ==B A ,AB =29cm ,则△ABC 的面积等于 . (“祖冲之杯”邀请赛试题)4.如图,在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则有=∠ABM tan . (全国初中数学联赛试题) 5.如图,在Rt △ABC 中,∠C =900, ∠CAB =300,AD 平分∠CAB ,则CDACCD AB -的值为( ) A .3B .33C .33-D .326-(湖北省选拔赛试题)第4题图第5题图NBAB AMD6.如图,在梯形ABCD 中,AD//BC ,AD ⊥CD ,BC =CD =2AD ,E 是CD 上一点,∠ABE =450,则AEB ∠tan 的值等于( ) (天津市竞赛试题) A .23B .2C .25D .3 7.如图,在等腰Rt △ABC 中,∠C =900, ∠CBD =300,则DCAD=( ) A .33 B .22 C .12- D .13-(山东省竞赛试题)第7题图第6题图BA BDE8.如图是一座人行天桥的引桥部分的示意图,上桥通道是由两段互相平行并且与地面成370角的楼梯AD ,BE 和一段水平天台DE 构成.已知天桥高度BC =4. 8米,引桥水平跨度AC =8米. (1)求水平天台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比.(参考数据:取75.037tan ,80.037cos ,60.037sin 0===) (长沙市中考试题)NA9.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且c =35.若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实数根的平方和为6,求△ABC 的面积.(武汉市中考试题)10.如图,EFGH 是正方形ABCD 的内接四边形,两条对角线EG 和FH 所夹的锐角为θ,且BEG ∠与CFH ∠都是锐角.已知,,l FH k EG ==四边形EFGH 的面积为S . (1)求证:klS2sin =θ; (2)试用S l k ,,来表示正方形ABCD 的面积.(全国初中数学联赛试题)EGHF11.如图,在直角梯形ABCD 中,AD//BC ,∠A =900,BC =CD =10,54sin C . (1) 求梯形ABCD 的面积;(2)点E ,F 分别是BC ,CD 上的动点,点E 从点B 出发向点C 运动,点F 从点C 出发向点D 运动.若两点均以每秒1个单位的速度同时出发,连接EF ,求△EFC 面积的最大值,并说明此时E ,F 的位置.(济宁市中考试题)BCADEF12.如图,甲楼楼高16米,乙楼坐落在甲楼的正北面.已知当冬至中午12时太阳光线与水平面的夹角为300,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好落在乙楼上,那么两楼的距离应当是多少?(山东省竞赛试题)三角函数例1 AC 2-BC 2=(1993+1992)(1993-1992)=1993+1992=AB 2,∴AC 2=AB 2+BC 2,得∠B =90°,故原式=(19921993)2.例2 AD =227m ,BC =146m . 解法一:延长AD ,BC 交于点E ,如图1. 在Rt △ABE 中,AB =200m ,∠A =60°,∴BE =AB ·tanA =200 3 (m ),AE =AB cos 60°=2000.5=400(m ). 在Rt △CDE 中,CD =100m . ∠E =90°-∠A =30°,∴CE =2CD=200(m . ∵cot ∠E =DECD ,DE =CD ·cot 30°=100 3 (m ),∴AD=AE -DE =400-1003≈227(m ),BC =BE -CE =2003-200≈146(m ). 解法二:如图2,过点D 作矩形ABEF . 设AD =x . 在Rt △AFD 中,∠DAF =90°-60°=30°,∴DF =12AD =12x ,AF =32x ,在Rt △CED中,∠CDE =30°,∴CE =12CD =50(m ),DE =32CD =503(m ),∵DE +DF =AB . ∴503+12x =200,解得x =400-100 3. ∴AD =400-1003≈227(m ). ∵BC +CE =AF ,∴BC =AF -CE =32(400-1003)-50=2003-200≈146(m ).例3 ⑴103 ⑵35 提示:tan ∠AEN =tan ∠EAB =EBAB.例4 ⑴设DE =x (海里),则客轮从A 点出发到相遇之处E 点的距离为2x 海里. 若2x <200,则x <100,即DE <12AB ,而从D 点出发,货轮到相遇点E 处的最短距离是100海里,所以x ≥100,即2x ≥200,故相遇处E 点应在CB 上,选B . ⑵设货轮从出发点D 到两船相遇处E 共航行了x 海里,如图,过D 作DF ⊥CB 于F ,连DE ,则DE =x ,AB +BE =2x ,DF=100,EF =300-2x ,由x 2=1002+(300-2x )2,得x =200-10063(海里).例5 ⑴p ,q 应满足以下条件:⎩⎪⎨⎪⎧△=p 2-4q ≥0sinA +sinB =-p sinA ·sinB =q0<sinA <10<sinB <1sin 2A +cos 2A =1. 由此推得⎩⎨⎧p <00<q ≤12p 2-2q =1 ,⑵先设方程x 2+px +q =0的两个根为α,β,若α,β满足⎩⎪⎨⎪⎧p 2-4q ≥0 ①0<α<1,0<β<1②α2+β2=1 ③,则α,β必定是直角三角形的两个锐角的正弦;若α,β不满足条件①②③式中任何一个,则结论是否定的.例6 设α为直角三角形一锐角,则sinα=a c ,cosα=bc . ∵0<sinα<1,0<cosα<1∴当n ≥3时,sin n α<sin 2α,a bA 级1. 9 2. 5 1 提示:用换元法. 3. 43-213 4. 116 5. A 6.B 7. A 8. B 9. ⑴在Rt △DCE 中,∠CED =60°,DE =76. ∵sin ∠CED =DC DE,∴DC =DE ·sin ∠CED =383(厘米). 故垂直支架CD 的长度为383厘米.⑵设水箱半径OD =x 厘米,则OC =(383+x )厘米,AO =(150+x )厘米. ∵Rt △OAC 中,∠BAC =30°,∴AO =2OC ,即150+x =2(383+x ),解得x =150-763≈18. 52≈18. 5(厘米). 故水箱半径OD 的长度为18. 5厘米.10. (1sinα-1)+(1cosα-1)+(1sinαcosα-2)=1-sinαsinα+1-cosαcosα+1-2si nαcosαsinαcosα,∵0<sinα<1,0<cosα<1,于是有1- sinα>0,1- cosα>0,∴1-sinαsinα+1-cosαcosα+(sinα-cosα)2sinαcosα>0,即1sinα+1cosα+1sinαcosα>4. 11. 过C 作CE ∥AB 交BD 于E ,设AC =x ,则CB =21x -,CE =BC ·tan ∠CBE =213x -. 由△DCE ∽△DAB ,得CD CE AD AB =,即21113x x -=+,化简得(x +2)(x 3-2)=0,解得x =32,即AC =32. 12. P =-22,q =1,x 1,2=21±. 提示:tan A -tan B =()CD CD CD BD AD AD BD AD BD -=-⋅. B 级1. 1163m k k <<-2. 743. 145cm 24. 13提示:延长MN 交BC 的延长线于T ,设MB 的中点为O ,连接TO ,则△BAM ∽△TOB . 5. B 6. D 7. D8. (1)如图,延长线段BE ,与AC 相交于点F ,∴DE =AF ,∠BFC =∠A =37°. 在Rt △BCF 中,tan ∠BFC =BF CF ,∴CF = 4.8 6.4tan 370.75BC ==︒(米),∴DE =AF =AC -CF =8-6. 4=1. 6(米). 故水平平台DE 的长度为1. 6米. (2)延长线段DE ,交BC 于点G . ∵DG ∥AC ,∴∠BGM =∠C =90°,∴四边形MNCG 是矩形,∴CG =MN =3(米). ∵BC =4. 8(米),∴BG =BC -CG =1. 8(米). ∵DG ∥AC ,∴ 1.834.88BE BG BF CB ===,∴53EF BE =,而AD =EF ,故53AD BE =.9. 18 提示:222a b c +=,3sin 5A =. 10. 提示:(1)S =S △EFG +S △FGH =1sin 2EG FH θ⋅. (2)过E ,F ,G ,H 分别作正方形ABCD 的垂线,得矩形PQRT . 设ABCD 的边长为a ,PQ =b ,QR =c ,则22b k a =-,22c l a =-. 由S △AEH =S △THE ,S △BEF =S △PEF ,S △GFC =S △QFG ,S △DGH =S △RGH ,得S ABCD第8题图+S PQRT =2S EFGH ,∴a 2+bc =2S ,即22a S =. ∴222222(4)4k l S a k l S +-=-,由(1)知22sin S kl S θ=>,∴2224k l kl S +≥>. 故22222244k l S a k l S -=+-. 11. (1)S 梯形ABCD =56. (2)E ,F 分别是BC ,DC 的中点,设运动时间为x 秒,则S △EFC =22224(5)1055x x x -+=--+,当x =5时,S △EFC 面积最大,最大值为10. 12. (1)折冬天太阳最低时,甲楼最高处A 点的影子落在乙楼的C 处,那么图中CD 的长度就是甲楼的影子在乙楼上的高度. 设CE ⊥AB 于点E ,则∠AEC =90°,∠ACE =30°,EC =20米,∴AE =EC tan ∠ACE =20tan30°≈11. 6(米),CD =EB =AB -AE =4. 4(米).(2)设点A 的影子落在地面上某点C ,则∠ACB =30°,AB =16米,∴BC =AB cot30°≈27. 7(米),故要使甲楼的影子不影响乙楼,那么乙楼距离甲楼至少要27. 7米.。
高三数学精准培优专题练习6:三角函数

培优点六 三角函数1.求三角函数值 例1:已知π3π044βα<<<<,π3cos 45α⎛⎫-= ⎪⎝⎭,3π5sin 413β⎛⎫+= ⎪⎝⎭,求()sin αβ+的值. 【答案】5665【解析】∵3πππ442αββα⎛⎫+=+--- ⎪⎝⎭, ()3ππ3πsin sin πcos π44244αββαβα⎛⎫⎛⎫⎛⎫⎛⎫∴+=+---=-+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3ππ3ππ=cos cos sin sin 4444βαβα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∵π3π044βα<<<<,ππ024α∴-<-<,3π3ππ44β<+<,π4sin 45α⎛⎫∴-=- ⎪⎝⎭,3π12cos 413β⎛⎫+=- ⎪⎝⎭,()1234556sin 13551365αβ⎛⎫∴+=--⋅-⋅=⎪⎝⎭.2.三角函数的值域与最值例2:已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦的值域.【答案】(1)πT =,对称轴方程:()ππ32k x k =+∈Z ;(2)⎡⎤⎢⎥⎣⎦. 【解析】(1)()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1cos 2222x x x x x x ⎫=+⎪⎪⎝⎭⎝⎭221cos22sin cos 2x x x x =++-11cos22cos22cos222x x x x x =--πsin 26x ⎛⎫=- ⎪⎝⎭πT ∴= 对称轴方程:()ππππ2π6232k x k x k -=+⇒=+∈Z . (2)()πsin 26f x x ⎛⎫=- ⎪⎝⎭,∵ππ,122x ⎡⎤∈-⎢⎥⎣⎦,ππ5π2,636x ⎡⎤∴-∈-⎢⎥⎣⎦,()πsin 26f x x ⎡⎤⎛⎫∴=-∈⎢⎥ ⎪⎝⎭⎣⎦.3.三角函数的性质例3:函数()2cos 2f x x x =+( ) A .在ππ,36⎛⎫-- ⎪⎝⎭上单调递减B .在ππ,63⎛⎫⎪⎝⎭上单调递增C .在π,06⎛⎫- ⎪⎝⎭上单调递减D .在π0,6⎛⎫⎪⎝⎭上单调递增【答案】D【解析】()1π2cos 222cos 22sin 226f x x x x x x ⎫⎛⎫=+=+=+⎪ ⎪⎪⎝⎭⎝⎭, 单调递增区间:()πππππ2π22πππ26236k x k k x k k -+≤+≤+⇒-+≤≤+∈Z单调递减区间:()ππ3ππ2π2π22πππ26263k x k k x k k +≤+≤+⇒+≤≤+∈Z ∴符合条件的只有D .一、单选题1.若π1sin 63α⎛⎫-= ⎪⎝⎭,则2πcos 23α⎛⎫+⎪⎝⎭的值为( ) A .13-B .79-C .13D .79对点增分集训【答案】B【解析】由题得2ππππcos 2=cos π2cos 2cos23336αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+--=--=-- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2π1712sin 12699α⎡⎤⎛⎫⎛⎫=---=--⨯=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故答案为B .2.函数()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭的一个单调递增区间是( )A .ππ,63⎡⎤-⎢⎥⎣⎦B .π5π,36⎡⎤⎢⎥⎣⎦C .ππ,36⎡⎤-⎢⎥⎣⎦D .π2π,63⎡⎤⎢⎥⎣⎦【答案】B【解析】∵()π2sin 26f x x ⎛⎫=-+ ⎪⎝⎭,∴()π2sin 26f x x ⎛⎫=-- ⎪⎝⎭,令ππ3π2π22π,262k x k k +≤-≤+∈Z ,得π5πππ,36k x k k +≤≤+∈Z . 取0k =,得函数()f x 的一个单调递增区间是π5π,36⎡⎤⎢⎥⎣⎦.故选B .3.已知1tan 4tan θθ+=,则2πcos 4θ⎛⎫+= ⎪⎝⎭( )A .15B .14C .13D .12【答案】B【解析】由1tan 4tan θθ+=,得sin cos 4cos sin θθθθ+=,即22sin cos 4sin cos θθθθ+=, ∴1sin cos 4θθ=,∴2π1cos 2π1sin 212sin cos 2cos 4222θθθθθ⎛⎫++ ⎪--⎛⎫⎝⎭+=== ⎪⎝⎭ 1121424-⨯==,故选B . 4.关于函数()()π3sin 213f x x x ⎛⎫=-+∈ ⎪⎝⎭R ,下列命题正确的是( )A .由()()121f x f x ==可得12x x -是π的整数倍B .()y f x =的表达式可改写成()π3cos 216f x x ⎛⎫=++ ⎪⎝⎭C .()y f x =的图象关于点3π,14⎛⎫⎪⎝⎭对称D .()y f x =的图象关于直线π12x =-对称 【答案】D【解析】函数()()π3sin 213f x x x ⎛⎫=-+∈ ⎪⎝⎭R ,周期为2ππ2T ==,对于A :由()()121f x f x ==,可能1x 与2x 关于其中一条对称轴是对称的,此时12x x -不是π的整数倍,故错误对于B :由诱导公式,πππ5π3sin 213cos 213cos 213236x x x ⎡⎤⎛⎫⎛⎫⎛⎫-+=--+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故错误对于C :令3π4x =,可得3π3ππ153sin 213144322f ⎛⎫⎛⎫⎛⎫=⨯-+=⨯--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故错误,对于D :当π12x =-时,可得πππ3sin 113121263f ⎛⎫⎛⎫-=--+=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,()f x 的图象关于直线π12x =-对称,故选D . 5.函数()2πππcos 2sin sin 555f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭的最大值是( )A .1B .πsin5 C .π2sin 5D【答案】A【解析】由题意可知:2πππππππcos cos cos cos sin sin 5555555x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 则:()2πππππππcos 2sin sin cos cos sin sin cos 5555555f x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以函数的最大值为1.本题选择A 选项.6.函数()()sin 0y x ωϕω=+>的部分图象如图所示,则ω,ϕ的值分别可以是( )A .1,π3B .1,2π3-C .2,2π3 D .2,π3-【答案】D【解析】由图可知,该三角函数的周期4πππ33T =-=,所以2π2Tω==, 则()sin 2y x ϕ=+,因为ππ32f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,所以该三角函数的一条对称轴为ππ5π32212x +==, 将5π,112⎛⎫⎪⎝⎭代入()sin 2y x ϕ=+,可解得π3ϕ=-,所以选D .7.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π4x =-和π4x =分别是函数()f x 取得零点和最小值点横坐标,且()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调,则ω的最大值是( )A .3B .5C .7D .9【答案】B【解析】∵()()πsin 0,2f x x ωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,π4x =-和π4x =分别是函数()f x 取得零点和最小值点的横坐标,∴ππ4424kT T ⎛⎫--=+ ⎪⎝⎭,即()π2124k T k +=∈Z . 又∵2πT ω=,0ω>,∴()21k k ω=+∈*N ,又∵()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调,∴ππ24122T ⎛⎫--≤ ⎪⎝⎭,又∵2πT ω=∴8ω≤,当3k =,7ω=时,()()sin 7f x x ϕ=+,由π4x =是函数()f x 最小值点横坐标知π4ϕ=-, 此时,()f x 在ππ,1228x ⎛⎫∈-- ⎪⎝⎭递减,ππ,2824x ⎛⎫∈- ⎪⎝⎭递增,不满足()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调,故舍去;当2k =,5ω=时,()()sin 5f x x ϕ=+由π4x =是函数()f x 最小值点横坐标知π4ϕ=, 此时()f x 在ππ,1224⎛⎫- ⎪⎝⎭单调递增,故5ω=.故选B .8.已知函数()cos sin f x x x =⋅,给出下列四个说法:2014π3f ⎛⎫= ⎪⎝⎭①②函数()f x 的周期为π; ()f x ③在区间ππ,44⎡⎤-⎢⎥⎣⎦上单调递增;()f x ④的图象关于点π,02⎛⎫- ⎪⎝⎭中心对称其中正确说法的序号是( ) A .②③ B .①③ C .①④ D .①③④【答案】B【解析】()()()πcos πsin πcos sin f x x x x x +=++=-,所以函数()f x 的周期不为π,②错,()()()πcos 2πsin 2πcos sin f x x x x x +=++=,周期为2πT =.2014π4πππ=cos sin 3333f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,①对. 当ππ,44x ⎡⎤∈-⎢⎥⎣⎦时,()1cos sin sin 22f x x x x ==,ππ2,22x ⎡⎤∈-⎢⎥⎣⎦,所以()f x 在ππ,44⎡⎤-⎢⎥⎣⎦上单调递增.③对.π13π1,4242f f⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,所以④错.即①③对,填①③.故选B . 9.已知0ω>,函数()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭在π,π2⎛⎫ ⎪⎝⎭上单调递减,则ω的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .(]0,2C .15,24⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦【答案】C【解析】∵π,π,02x ω⎛⎫∈> ⎪⎝⎭,π1πππ,π4244x ωωω⎛⎫∴+∈++ ⎪⎝⎭,∵函数()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭在π,π2⎛⎫ ⎪⎝⎭上单调递减,∴周期2ππT ω=≥,解得2ω≤,∵()πsin 4f x x ω⎛⎫=+ ⎪⎝⎭的减区间满足:ππ3π2π2π,242k x k k ω+<+<+∈Z ,∴取0k =,得1πππ242 π3ππ42ωω⎧⎪⎪⎨+≥+⎪⎪⎩≤,解之得1524ω≤≤,即ω的取值范围是15,24⎡⎤⎢⎥⎣⎦,故选C .10.同时具有性质:①()f x 最小正周期是π;②()f x 图象关于直线π3x =对称;③()f x 在ππ,63⎡⎤-⎢⎥⎣⎦上是增函数的一个函数是( ) A .πsin 23x y ⎛⎫=+ ⎪⎝⎭B .πsin 26y x ⎛⎫=- ⎪⎝⎭C .πcos 23y x ⎛⎫=+ ⎪⎝⎭D .πsin 23y x ⎛⎫=+ ⎪⎝⎭【答案】B【解析】函数πsin 26x y ⎛⎫=+ ⎪⎝⎭的最小正周期为2π4π12T ==,不满足①,排除A ; 函数πsin 26y x ⎛⎫=- ⎪⎝⎭的最小正周期为2ππ2T ==,满足①,π3x =时,2ππsin 136y ⎛⎫=-=⎪⎝⎭取得最大值,π3x ∴=是πsin 26y x ⎛⎫=- ⎪⎝⎭的一条对称轴,满足②;又ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,πππ2,622x ⎡⎤-∈-⎢⎥⎣⎦,πsin 26y x ⎛⎫=- ⎪⎝⎭单调递增,满足③,B 满足题意;函数πcos 23y x ⎛⎫=+ ⎪⎝⎭在ππ,63x ⎡⎤∈-⎢⎥⎣⎦,即[]π20,π3x +∈时单调递减,不满足③,排除C ;π3x =时,2ππ1sin 362y ⎛⎫=+=⎪⎝⎭不是最值,π3x ∴=不是πsin 26y x ⎛⎫=+ ⎪⎝⎭的一条对称轴,不满足②,排除D ,故选B .11.关于函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭的图像或性质的说法中,正确的个数为( )①函数()f x 的图像关于直线8π3x =对称; ②将函数()f x 的图像向右平移π3个单位所得图像的函数为1π2sin 23y x ⎛⎫=+ ⎪⎝⎭;③函数()f x 在区间π5π,33⎛⎫- ⎪⎝⎭上单调递增;④若()f x a =,则1πcos 233a x ⎛⎫-= ⎪⎝⎭.A .1B .2C .3D .4【答案】A【解析】①令()1πππ262x k k +=+∈Z ,解得()2π2π3x k k =+∈Z ,当1k =时,则8π3x =,故正确②将函数()f x 的图像向右平移π3个单位得:1ππ12sin 2sin 2362y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,故错误③令()π1ππ2π2π2262k x k k -+<+<+∈Z ,解得()4π2π4π4π33k x k k -+<<+∈Z ,故错误④若()f x a =,即1π2sin 26x a ⎛⎫+= ⎪⎝⎭,则1ππ1πcos sin 23223x x ⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦61πsin 22a x ⎛⎫=+= ⎪⎝⎭,故错误故选A .12.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图象关于直线π3x =对称,它的最小正周期为π,则函数()f x 图象的一个对称中心是( )A .π,012⎛⎫- ⎪⎝⎭B .π,13⎛⎫ ⎪⎝⎭C .5π,012⎛⎫ ⎪⎝⎭D .π,012⎛⎫ ⎪⎝⎭【答案】D 【解析】由2ππω=,解得2ω=,可得()()sin 2f x A x ϕ=+,再由函数图象关于直线π3x =对称,故π2πsin 33f A A ϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭,故可取π6ϕ=-,故函数()πsin 26f x A x ⎛⎫=- ⎪⎝⎭,令π2π,6x k k -=∈Z ,可得ππ,212k x k =+∈Z ,故函数的对称中心ππ,0212k k ⎛⎫+∈ ⎪⎝⎭Z ,, 令0k =可得函数()f x 图象的对称中心是π,012⎛⎫⎪⎝⎭,故选D .二、填空题13.函数πcos 24y x ⎛⎫=+ ⎪⎝⎭的单调递减区间是_________.【答案】π3ππ,π88k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z【解析】由π2π22ππ4k x k ≤+≤+,即π3πππ88k x k -≤≤+,k ∈Z , 故函数的单调减区间为π3ππ,π88k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z ,故答案为π3ππ,π88k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z .14.已知()0,πα∈,且3cos 5α=,则πtan 4α⎛⎫-= ⎪⎝⎭_________________.【答案】17【解析】∵()0,πα∈,且35cos α=,4sin 5α∴==,4tan 3α=, 41πtan 113tan 441tan 713ααα--⎛⎫-=== ⎪+⎝⎭+,故答案为17.15.函数()sin 22f x x x =-在π0,2x ⎛⎫∈ ⎪⎝⎭的值域为_________.【答案】(⎤⎦【解析】()sin 22f x x x =-,∵π0,2x ⎛⎫∈ ⎪⎝⎭,()20,πx ∴∈,ππ2π2,333x ⎛⎫-∈- ⎪⎝⎭,πsin 23x ⎛⎤⎛⎫-∈ ⎥ ⎪ ⎝⎭⎝⎦, ()(f x ⎤∈⎦,故答案为(⎤⎦. 16.关于()()π4sin 2,3f x x x ⎛⎫+∈ ⎪⎝⎭R =,有下列命题①由()()120f x f x ==可得12x x -是π的整数倍;②()y f x =的表达式可改写成π4cos 26y x ⎛⎫=- ⎪⎝⎭;③()y f x =图象关于π,06⎛⎫- ⎪⎝⎭对称;④()y f x =图象关于π6x =-对称.其中正确命题的序号为________(将你认为正确的都填上). 【答案】②③【解析】对于①,()()π4sin 2,3f x x x ⎛⎫+∈ ⎪⎝⎭R =的周期等于π,而函数的两个相邻的零点间的距离等于π2,故由()()120f x f x ==可得12x x -必是π2的整数倍,故错误 对于②,由诱导公式可得,函数()πππ4sin 24sin 2326f x x x ⎡⎤⎛⎫⎛⎫=+=--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ππ4cos 24cos 266x x ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,故②正确 对于③,由于π6x =-时,函数()4sin 00f x ==,故()y f x =的图象关于点π,06⎛⎫- ⎪⎝⎭对称,故正确 对于④,()ππ2π32x k k +=+∈Z ,解得()ππ122k x k =+∈Z ,即π6x =-不是对称轴,故错误 综上所述,其中正确命题的序号为②③三、解答题17.已知()π2sin 2cos26f x x a x ⎛⎫=++ ⎪⎝⎭()a ∈R ,其图象在π3x =取得最大值. (1)求函数()f x 的解析式;(2)当π0,3α⎛⎫∈ ⎪⎝⎭,且()65f α=,求sin2α值.【答案】()π2sin 26f x x ⎛⎫=- ⎪⎝⎭;(2. 【解析】(1)()πππ2sin 2cos 22sin 2cos 2cos 2sin cos 2666f x x a x x x a x ⎛⎫=++=++ ⎪⎝⎭ ()21cos 2x a x =++,由在π3x =取得最大值,()π2π2π1cos 333f a ⎛⎫=++= ⎪⎝⎭ ()220a ∴+=,即2a =-,经检验符合题意 ()πcos22sin 26f x x x x ⎛⎫∴=-=- ⎪⎝⎭.(2)由π0,3α⎛⎫∈ ⎪⎝⎭,πππ2,662α⎛⎫⎛⎫∴-∈- ⎪ ⎪⎝⎭⎝⎭, 又()π62sin 265f αα⎛⎫=-= ⎪⎝⎭,π3sin 265α⎛⎫∴-= ⎪⎝⎭,得ππ20,62α⎛⎫⎛⎫-∈ ⎪ ⎪⎝⎭⎝⎭,π4cos 265α⎛⎫∴-= ⎪⎝⎭, ππππππsin2sin 2+sin 2cos cos 2sin 666666αααα⎡⎤⎛⎫⎛⎫⎛⎫∴=-=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=+⨯=.18.已知函数()()2πsin sin 02f x x x x ωωωω⎛⎫=++> ⎪⎝⎭ 的最小正周期为π.(1)求ω的值;(2)求函数()f x 在区间2π0,3⎡⎤⎢⎥⎣⎦上的取值范围. 【答案】(1)1ω=;(2)30,2⎡⎤⎢⎥⎣⎦.【解析】(1)()1cos211π1cos2sin 222262x f x x x x x ωωωωω-⎛⎫=+=-+=-+ ⎪⎝⎭, 因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=解得1ω=. (2)由(1)得()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭, 因为2π03x ≤≤,所以ππ7π2666x -≤-≤,所以1πsin 2126x ⎛⎫-≤-≤ ⎪⎝⎭. 因此π130sin 2622x ⎛⎫≤-+≤ ⎪⎝⎭,即()f x 的取值范围为30,2⎡⎤⎢⎥⎣⎦.。
第4讲三角函数江西省赣州市厚德外国语学校2021年强基计划拔尖人才选拔培优数学讲义

一. 两角和、差的三角公式:1.正弦:sin()sin cos cos sin A B A B A B ±=±2.余弦:cos()cos cos sin sin A B A B A B ±=3.正切:tan tan tan()1tan tan A BA B A B±±=二.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
212(1)sin ,sin()2(1)cos ,n n n n n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数, 212(1)cos ,cos()2(1)sin ,n n n n n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数三.二倍角公式:1.余弦:2222cos 2cos sin 2cos 112sin ααααα=-=-=-2.正弦:sin 22sin cos ααα=、 (3)正切:22tan tan 21tan ααα=-四.辅助角公式:22sin cos )(tan )ba b a b aαααϕϕ+=++=►注意:sin cos A x B x C +=有实数解222A B C ⇔+≥ 五.半角公式(万能公式):1cos sin22αα-= , 1cos cos 22αα+= 1cos 1cos sin tan21cos sin 1cos ααααααα--===++ 1cos 1cos sin cot21cos sin 1cos ααααααα++===--六.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径) 七.余弦定理:2222cos a b c bc A =+- 2222cos b c a ca B =+-2222cos c a b ab C =+-八.三角形面积公式:111sin sin sin 222S ab C bc A ca B ===三角这一章的特点是公式多,除了高考要求一些基本知识点和公式之外,自主招生考试中还有一些需要进一步拓展的公式及结论,归纳如下: 一.三倍角公式: 3sin 33sin 4sin ααα=-,2cos34cos 3cos ααα=- 001sin sin(60)sin(60)sin 34αααα+-=001cos cos(60)cos(60)cos34αααα+-=,00tan tan(60)tan(60)ααα+⋅-tan3α=。
特殊角的三角函数值(专项培优训练)—2023-2024学年九年级数学上册培优题型(沪教新版)(解析)

特殊角的三角函数值(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.57一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•薛城区期末)已知α为锐角,且sin(α﹣10°)=,则α等于()A.70°B.60°C.50°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.2.(2分)(2022秋•云州区期末)已知∠α为锐角,且sinα=,则∠α=()A.30°B.45°C.60°D.90°解:∵∠α为锐角,且sinα=,∴∠α=60°,故选:C.3.(2分)(2022秋•裕华区校级期末)已知α为锐角,且,则α等于()A.70°B.60°C.40°D.30°解:∵sin(α﹣10°)=,∴α﹣10°=60°,∴α=70°.故选:A.4.(2分)(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是()A.15°B.45°C.30°D.60°解:在Rt△ABC中,∠C=90°,∵tanB===,∴∠B=60°,故选:D.5.(2分)(2023•南开区二模)下列三角函数中,结果为的是()A.cos30°B.tan30°C.sin60°D.cos60°解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.6.(2分)(2022秋•香坊区校级月考)已知α为锐角,,则α的度数为()A.30°B.45°C.60°D.75°解:∵α为锐角,tan(90°﹣α)=,∴90°﹣α=30°,∴α=60°.故选:C.7.(2分)(2015•杭州模拟)在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1 D.解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=c,在Rt△ADC中,DC2=AC2﹣AD2,∴(a﹣)2=b2﹣c2,即a2+c2=b2+ac,∴.故选:C.8.(2分)(2022秋•沛县月考)在△ABC中,∠A、∠B都是锐角,sin A=,cos B=,此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解:∵sinA=,cosB=,∴∠A=30°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=120°,∴△ABC是钝角三角形,故选:C.9.(2分)(2021秋•潍坊期末)sin45°的倒数是()A.B.C.D.1解:∵sin45°=,而的倒数为,∴sin45°的倒数是.故选:B.10.(2分)(2022•和平区三模)已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°解:∵sinA=,∴∠A=60°.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•船营区校级期末)已知α是锐角,,则α=°.解:∵,∴tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°,故答案为:30.12.(2分)(2022秋•郑州期末)若sin(x+15°)=,则锐角x=°.解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.13.(2分)(2022秋•镇海区期末)已知α为锐角,且tan(α﹣10°)=,则锐角α的度数是.解:∵α为锐角,且tan(α﹣10°)=,∴α﹣10°=30°,则α=40°.故答案为:40°.14.(2分)(2022秋•永定区期末)△ABC中,∠A,∠B都是锐角,若cos A=,tan B=1,则∠C=.解:∵cosA=,tanB=1,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故答案为:105°.15.(2分)(2022秋•泰山区期末)若cos(α﹣10°)=,则∠α的角度数为.解:∵cos(α﹣10°)=,∴α﹣10°=60°,则α=70°.故答案为:70°.16.(2分)(2023•东阿县校级开学)△ABC中,∠A、∠B都是锐角,且sin A=sin B=,则△ABC是三角形.解:由△ABC中,∠A、∠B都是锐角,且sinA=sinB=,得∠A=∠B=30°,故答案为:钝角.17.(2分)(2022秋•浦东新区校级月考)已知α为锐角,tanα=2cos60°,那么α=度.解:∵,∴,∵α为锐角,∴α=45°,故答案为:45.18.(2分)(2021秋•道外区校级月考)在Rt△ABC中,∠C=90°,若c=2,tan A=,则a=.解:∵∠C=90°,tanA==,设BC=a=x,则AC=b=2x,∴AB===2,∴x=,∴a=.故答案为:.19.(2分)(2018•新乡二模)计算:(﹣)2﹣2cos60°=;解:(﹣)2﹣2cos60°=﹣2×=﹣1=﹣.故答案为:﹣.20.(2017•奉化市自主招生)已知△ABC的内角满足|tan A﹣3|+=0,则∠C=度.(2分)解:由题意,得,解得∠A=60°,∠B=45°,∠C=180°﹣∠A﹣∠B=75°,故答案为与:75.三.解答题(共8小题,满分60分)21.(6分)(2023春•未央区校级月考)cos60°﹣2sin245°+3tan230°﹣sin30°.解:cos60°﹣2sin245°+3tan230°﹣sin30°====0.22.(6分)(2023•涡阳县模拟)(1)计算:2cos245°﹣1+tan30°tan60°;(2).解:(1)2cos245°﹣1+tan30°tan60°==1﹣1+1=1.(2),去分母,得x+1>6(x﹣1)﹣8.去括号,得x+1>6x﹣6﹣8.移项,得x﹣6x>﹣6﹣8﹣1.合并同类项,得﹣5x>﹣15.x的系数化为1,得x<3.∴这个不等式的解为x<3.23.(8分)(2022秋•镇海区期末)(1)计算:.(2)已知,求的值.解:(1)原式=×﹣×+1=1.5﹣1+1=1.5;(2)∵,∴5(x﹣2y)=2(x+y),5x﹣10y=2x+2y,3x=12y,∴==4.24.(8分)(2022秋•广陵区校级期末)计算:(1)tan60°cos30°﹣3sin245°;(2).解:(1)tan60°cos30°﹣3sin245°=×﹣3×()2=﹣3×=﹣=0;(2)2cos45°﹣tan30°cos30°+sin260°===.25.(8分)(2022秋•鄞州区期末)(1)计算:sin60°•tan60°﹣2tan245°;(2)实数x,y满足(x+1):3=(y+2):6,求的值.解:(1)原式=×﹣2×12=﹣2=﹣;(2)∵(x+1):3=(y+2):6,∴3(y+2)=6(x+1),即y=2x,∴=2.26.(8分)(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.27.(8分)(2021•顺城区一模)求下列各式的值.(1)sin45°•cos45°+tan60°•sin60°(2).解:(1)原式=×+×=+=2;(2)原式=﹣12+×()2﹣=﹣1+﹣=﹣.28.(8分)(2022秋•长安区月考)计算:.解:===。
锐角三角函数培优讲义33113
讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
备战中考数学锐角三角函数(大题培优)及答案
-X 锐角三角函数真题与模拟题分类汇编(难题易错题)1. 如图,山坡上有一棵树AB,树底部B 点到山脚C 点的距离BC 为6jj 米,山坡的坡角 为30。
・小宁在山脚的平地F 处测量这棵树的髙,点C 到测角仪EF 的水平距离CF=I 米,【解析】解:・・・底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30。
・CF=I 米, ・•・ DC=9+l=10 米, /. GE=IO 米, •・・ Z AEG=45∖・•・ AG=EG=I0 米, 在直角三角形BGF 中,BG=GF ∙tan20o=10×0.36=3.6 米, ・•・ AB=AG-BG=IO-3.6=6.4 米, 答:树髙约为6.4米首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直 角三角形BGF 中即可求得BG 的长,从而求得树高2. 如图,等腰AABC 中,AB=AC, ZBAC=36。
,BC=I l 点 D 在边 AC 上且 BD 平分ZABC, 设 CD=×.(1) 求证:△ ABC- ∆ BCD : (2) 求X 的值:(3) 求 cos36o-cos72°的值.DC=BC ∙cos30o==6√3×√3 2【答案】6.4米 (参考【答案】⑴证明见解析:(2) 土JE : (3) 7近+ X.216【解析】试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线 求出ZDBC 的度数,得到Z DBC=Z A,再由ZC 为公共角,利用两对角相等的三角形相似得 到三角形ABC 与三角形BCD 相似:(2) 根据(1)结论得到AD=BD=BC,根据AD+DC 表示出AC,由(1)两三角形相似得比 例求岀X 的值即可;(3) 过B 作BE 垂直于AC,交AC 于点E,在直角三角形ABE 和直角三角形BCE 中,利用 锐角三角函数左义求出∞s360与cos72o的值,代入原式计算即可得到结果. 试题解析:(1) T 等腰AABC 中,AB=AC, Z BAC=36o, ・•・ Z ABC=Z C=72% ••・BD 平分Z ABC, ••・ Z ABD=Z CBD=36% ∙/ Z CBD=Z A=36% Ze=Z C, ・•・△ ABC - A BCD ; (2) V Z A=Z ABD=36∖ .∙. AD=BDf ∙.∙ BD=BC, ・•・ AD=BD=CD=I, 设 CD=x,则有 AB=AC=×+l, •・• △ ABc - △ BCD,AB BC _x+l 1整理得:×2+×-l=0, ≡=E 舍去2(3) IiB 作BE 丄AC,交AC 于点E,BD = CD, i 1~Γ = 7:.E 为 CD 中点,即 DE=CE=二4BC 14√5+l -l + √5 _£2 ,2・等腰三角形的性质:3•黄金分割;4•解直角三角 3. 如图,在AABC 中,ZABC=90\以AB 的中点0为圆心,OA 为半径的圆交AC 于点 D, E 是BC 的中点,连接DE, OE.(1) 判断DE 与OO 的位置关系,并说明理由: (2) 求证:BC 2=2CD ∙0E:3 14 (3) 若COSZBAD = —,BE = -,求 OE 的长.53【答案】(1)DE 为Oo 的切线,理由见解析:(2)证明见解析:(3) OE=^-・6【解析】试题分析:(1)连接0D, BD,由直径所对的圆周角是直角得到ZADB 为直角,可得岀 ∆BCD 为宜角三角形,E 为斜边Be 的中点,由直角三角形斜边上的中线等于斜边的一半,I +Ξ!±√ΣZIAE4在 Rt ∆ ABE 中,COSA=COS36°=——一 分 AB√5+l4在 Rt ∆ BCE 中,COSC=COS72°= EC土逅+ 1 2 _i+7? 4 -1 + \/5 9则 cos36o-cos72°= =4 4【考点】1.相似三角形的判左与性质; 形・得到CE=DE f从而得Z C=Z CDE,再由OA=OD.得Z A=Z ADO l由Rt∆ ABC中两锐角互余,从而可得ZADO与ZCDE互余,可得出ZODE为直角,即DE垂直于半径0D,可得岀 DE为C)O的切线:(2)由已知可得OE是AABC的中位线,从而有AC=20E,再由ZC=ZC, Z ABC=Z BDC, 可得AABO ABDC,根据相似三角形的对应边的比相等,即可证得:(3)在直角AABC中,利用勾股左理求得AC的长,根据三角形中位线左理OE的长即可求得. 试题解析:(i) DE为C)O的切线,理由如下:连接0D, BD,∙.∙ AB为C)O的直径,・•・ Z ADB=90%在Rt∆ BDC中,E为斜边BC的中点,1 ∙∙∙ CE=DE=BE=-BC,2・•・ Z C=Z CDE,•・・ OA=OD,・•・ Z A=Z ADO,T Z ABC=90o,・•・ Z C+Z A=90o,・•・ Z ADO+Z CDE=90∖・•・ Z ODE=90∖.∙. DE丄OD,又OD为圆的半径,.∙. DE为C)O的切线;(2)∙.∙E是BC的中点,O点是AB的中点,.∙. OE ⅛Δ ABC的中位线,・•・ AC=20EtT Z C=Z C t Z ABC=Z BDC,••・△ ABC- BDC,BC AC Un 7・•・——=——,即BC2=AC∙CD.CD BC:.BC2=2CD∙OE;3(3)解:∙.∙ COSZ BAD= τ,BC 4.∙. SinZ BAC= = —»AC 5]斗28又TBE=*, E是BC的中点,即BC=学,3 335.∙. AC=—•3又・・• AC=20E,135.・・ OE=-AC=—.2 6考点:1、切线的判泄:2、相似三角形的判定与性质:3、三角函数4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5 分)已知:如图,AB是半圆0的直径,弦CDlIAB ,动点P、Q分别在线段OC、CD上,且DQ = OP . AP的延长线与射线O0相交于点E、与弦CD相交于点F (点F与(1)求证:AP = OQ.(2)求y关于X的函数关系式,并写出它的定义域:(3)当PE是直角三角形时,求线段OP的长.【答案】(1)证明见解析;(2) y=3・「-6()工+ 30()(巴<牙<]0);(S)OP = EX13【解析】【分析】(1)IiE明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP = DQ,联结OD后还有OA = DO ,再结合要证明的结论AP = OQ ,则可肯泄需证明三角形全等,寻找已知对应边的夹角,即ZPoA = ZQD O即可:(2)根据APFC-ΔΛ4O,将而积转化为相似三角形对应边之比的平方来求;(3)分4成三种情况讨论,充分利用已知条件CoSZAOC = -.以及(1)(2)中已证的结论,注意要对不符合(2)中泄义域的答案舍去.【详解】2,(1) 联结 OD, ∙.∙ OC = OD,∙∙. Z0CD = Z(9DC,∙.∙ CDlIAB.:.ZOCD = ZCOA,.∙. ZPOA = ZQDO.在SAOP 和'ODQ 中,OP = DQ {ZPOA = ZQDO,OA = DO ∙. SAOP^ ^ODQ t •・ AP = OQ.(2)作PH 丄04,交OA 于H ,4.∙ COSZAoC =—,443m UoP 卡,Pr ,・ SMoP =丄 Ao ・ PH = 3x .2・• CDIIAB, ∙. APFCs MA0、Jy=3√-60A÷300t 当F 与点D 重合时,・・ CD = 2OC ∙CoS ZOCD = 2×10×⅛ = 16.51⅛Γ护解得"罟3X 2-60X + 300 z 50 InX・•・ y = --------- ( VX<10):X13(3) ①当ZOPE = 90 时,ZOPA = 90 ,4・・・ OP = OA cOSZAOC = ∖0×- = S;CC- - -- -IQ 25 ②当 ZPOE = 90」时, CoS ZQCO CoS ZAOC 4 25 25 7 ・・・ OP = DQ = CD-CQ = CD-- =16- — = -2 2 2OC 10•・•一VOPVlO,137・•・OP = -(舍去):2③当APEO = 90 时,V CDIIAB ,・・・ ZAOQ = ZDQO ,∙.∙ SAOP里'ODQ,:.ZDQO = ZAPO ,・•・ ZAOQ = ZAPO,∙∙∙ ZAEO = ZAOP = 90 ,此时弦CD不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8・5.如图,已知二次函数y = [x'+bΛ∙ + c的图象经过点A (-3, 6),并与X轴交于点8 (- 1,0)和点C,顶点为点P.(1)求这个二次函数解析式;(2)设D为X轴上一点,满足Z DPC=Z BAC,求点D的坐标;(3)作直线&P,在抛物线的对称轴上是否存在一点M,在直线AP±是否存在点Λ/,使AM+M∕V 的值最小?若存在,求出M、N的坐标:若不存在,请说明理由.【答案】(1)点C坐标为(3, 0),点P (1, -2) : (2)点P (7, 0): ⑶点N (・5 5【解析】【分析】(1)将点A、B坐标代入二次函数表达式,即可求解:1I BH O «</2 1 J (2)利用SΔ ABC= —×AC×BH= —×BC×yA> 求出 Sina= = 一= —= ♦则 tana=—, 在2 2 AB2√10√5 2MD X 1Δ PMD 中,tana= --- = ---- ,即可求解;PM x + 2√2 2(3>作点A关于对称轴的对称点A,(5, 6),过点A,作AN丄AP分别交对称轴与点M、交AP于点N,此时AM+MN最小,即可求解.13 故:抛物线的表达式为:X=-X 2-X--.22 3令尸0,则X=.或3,令x=0,则y=-— »2故点C 坐标为(3, 0),点P (1, -2):(2)过点3作BH 丄AC 交于点H,过点P 作PG 丄X 轴交于点G,由题意得:AB=2 √10 > ∕AC=6√2 > BC=4, PC=2 √2 »1 1S Δ ABC= — ×AC×BH= — ×BC×VA ^22解得:BH=2BHSina= ------- 2√2 1nιl1=——F = = 一T=,贝IJ tana=—, 由题意得: GC=I=PG.故Z PCB=AS 09延长PC,过点D 作DM 丄PC 交于点M,则 MD=MC=X,八 IMD X 1 ∏.∆ PMD ψ, tanα= = ------ T ==—PM x+2√2 2解得:×=2Λ∕2 ,则 CD=TJX 二4, 故点 P (7, 0):(3)作点A 关于对称轴的对称点A (5, 6),过点A 作AN 丄AP 分别交对称轴与点M 、交AP 于点N,此时AM^M N 最小,【详解】(1)将点人、B 坐标代入二次函数表达式得:.96 = _-3/? + 32 O = - — -/? +C2b = -∖解得: 3C =——2Q 1直线AP表达式中的k值为:—=-2,则直线AN表达式中的k值为丄,-4 2设直线AN的表达式为:y=*χ+b,将点A坐标代入上式并求解得:b=[,21 7故直线AN的表达式为:y=-x÷-...①,2 2当E时,y=4,故点 M (1, 4 ),同理直线AP的表达式为:y=-2x...②,联立①②两个方程并求解得:X=-L714故点N§)・【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,其中(3),利用对称点求解最小值,是此类题目的一般方法.6.如图,正方形ABCD的边长为√2+l.对角线AC、BD相交于点O, AE平分ZBAC分别交 BC、BD 于 E、F,(1)求证:△ ABz △ ACE:(2)求 tanZ BAE 的值;(3)在线段AC上找一点P,使得PE÷PF最小,求出最小值.【答案】(1)证明见解析;(2) tanZ EAB=JJ - 1:(3) PE+PF的最小值为√2 + √2 ∙【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图i中,作EH丄AC于H.首先证明BE=EH=HC,设BE=EH=HC=X,构建方程求出X 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时 PF+PE 的值最小,最小值为线段EH的长:【详解】(1)证明:T四边形ABCD是正方形,・•・ Z ACE = Z ABF=Z CAB=45%••• AE 平分Z CAB,・•・Z EAC = Z BAF = 22.5°,・•・△ ABF- ∆ ACE.(2)解:如图1中,作EH丄AC于H・D C图1∙/ EA 平分Z CAB, EH丄AC, EB丄AB,・•・ BE = EB,•・・ Z HCE = 45o, Z CHE=90%・•・ Z HCE = Z HEC = 45%・•・ HC=EH,・•・ BE = EH = HC,设 BE = HE = HC=x,则 EC=JJx,T BC=√2+1»・•・x+x=匝+1,.∙. X=I t在 Rt∆ ABE 中,∙/ Z ABE=90%BE _ 1 _ ZT・•・ta∩Z EAB = ——=—7=——=72 -I.AB√2 + l(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF÷PE的值最小.•・• AC= √AB 2 3+BC 2=2÷√2 >・•・ OA=OC = OB=丄 AC= $ + 忑,2 2HM = OH+OM =••・PE+PF 的最小值为J2 + √Σ・・ 【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是 学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型・7. 在矩形ABCD 中,AD>AB,点P 是CD 边上的任意一点(不含C, D 两端点),过点P 作PFIl BC,交对角线BD 于点F.2 如图1,将ZkPDF 沿对角线BD 翻折得到ZkQDF, QF 交AD 于点E.求证:Δ DEF 是等 腰三角形; 3如图2,将APDF 绕点D 逆时针方向旋转得到△ P ,DF,连接PC, F ,B.设旋转角为α(0o<a<180o)・,1・•・ OH = OF = OA ∙tanZ OAF = OA ∙tanZ EAB =2 +√2~~2在 Rt ∆ EHM 中,EH=JEM$+ HNf = C(备用图)②如图3,若点P 是CD 的中点,ADFB 能否为直角三角形?如果能,试求出此时 ta∩Z DBF I的值,如果不能,请说明理由・1 /T【答案】(1)证明见解析;(2)①证明见解析:②亍或字. 【解析】【分析】(2)根据翻折的性质以及平行线的性质可知ZDFQ=Z ADF,所以ADEF 是等腰三 角形;(2)①由于PFIl BC,所以△ DPF 〜△ DCB,从而易证厶DPF-厶DCB ;②由于ADFB 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分 类讨论.【详解】(I )由翻折可知:ZDFP=ZDFQ, ・・ PFIl BC, •・ Z DFP=Z ADF t •・ Z DFQ=Z ADF, •・△ DEF 是等腰三角形;(2)①若(TVaVZ BDC,即DF 1在Z BDC 的内部时,・• Z P ,DF Z=Z PDF, •・ Z P ZDF Z- Z F ZDC=Z PDF - Z FDC,•・ Z P ,DC=Z F zDB, 当ZDBF=90。
三角函数与解三角形(培优)
第8讲 三角函数的图象与性质【题型精讲】题型(一)三角函数的定义、诱导公式及同角三角函数的基本关系1.(2021·湖北·高三月考)已知点()5,P m -为角α终边上一点,2αβ=,且1cos 2tan sin 2βββ++=,则m =( )A .2B .2±C .1D .±12.(2021·全国·模拟预测(文))已知点(,P x 是角α终边上一点,且1cos 3α=-,则πcos()6α+等于( )A .BC D3.(2021·河南·高三月考(理))已知sin cos θθ+=tan tan 2πθθ⎛⎫+-=⎪⎝⎭( ) A .97-B .187-C .718 D .794.(2021·黑龙江·哈尔滨三中高三期中(文))设0απ<<,7sin cos 13αα+=,则1tan 1tan αα-+的值为( )A .177B .717C .177-D .717-5.(2021·江苏省镇江中学高三月考)若tan 2θ=-,则()sin cos sin 1sin 2θθθθ+=+( ) A .56-B .52C .52-D .566.(2021·全国·高三月考)已知sin 2sin 026ππαα⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭,则2cos 12cos ααα⋅+=__________.题型(二)三角函数的图象与解析式1.(2021·黑龙江·哈尔滨三中高三月考(理))已知()()()0,0,f x Asin x A ωϕωωπ=+>><的一段图象如图所示,则( )A .()324f x sin x π=+⎛⎫ ⎪⎝⎭B .()f x 的图象的一个对称中心为,08π⎛⎫⎪⎝⎭C .()f x 的单调递增区间是5,,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()f x 的图象向左平移58π个单位后得到的是一个奇函数的图象 2.(2021·安徽·高三开学考试(理))如图是函数()sin()(0,02)f x x ωϕωϕπ=+><<在一个周期内的图象,将()f x 的图象上所有的点向右平行移动4π个单位长度可得()g x 的图象,则()g x =( )A .sin 24x π⎛⎫- ⎪⎝⎭B .cos 24x π⎛⎫- ⎪⎝⎭C .sin 24x π⎛⎫+ ⎪⎝⎭D .cos 24x π⎛⎫+ ⎪⎝⎭3.(2021·全国全国·模拟预测(理))已知函数()sin cos f x x x =-经过变换可得()sin 2cos2g x x x =+,则下列变换正确的是( )A .先将()f x 的图象向右平移2π个单位长度,再将所得图象上所有点的横坐标缩短为原来的12倍B .先将()f x 的图象向右平移2π个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍C .先将()f x 的图象向左平移2π个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍D .先将()f x 的图象向左平移2π个单位长度,再将所得图象上所有点的横坐标缩短为原来的12倍题型(三)三角函数的性质及应用1.(2021·北京十五中高三期中)设函数()21cos cos 2f x x x x =-,则下列结论错误的是( )A .()f x 的一个周期为πB .()y f x =的图象关于直线43x π=对称 C .将函数cos2y x =的图象向左平移6π个单位可以得到函数()f x 的图象 D .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减2.(2021·天津·静海一中高三月考)已知函数()2cos 21f x x x =-+,下列结论中正确的有_______(1)()f x 的图象关于,112π⎛⎫⎪⎝⎭中心对称(2)()f x 在511,1212ππ⎛⎫⎪⎝⎭上单调递减(3)()f x 的图象关于3x π=对称(4)()f x 的最大值为33.(2021·宁夏·平罗中学高三月考(理))已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的部分图象如图所示,()sin(2)g x A x ωϕ=-,给出以下说法:①将()y f x =的图象向左平移34个单位长度可以得到()g x 的图象;②()g x 的图象关于直线x =1对称;③()g x 的图象关于点5(,0)2成中心对称;④()g x 在719(,)44上单调递减.其中所有正确说法的编号是___________【课后精练】一、单选题1.(2021·全国·高三月考(理))玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:cm )如图所示,则该壁画的扇面面积约为( )A .21600cmB .23200cmC .23350cmD .24800cm2.(2021·江西·新余市第一中学模拟预测(文))勒洛三角形是一种特殊三角形,指分别以正三角形的三个顶点为圆心,以其边长为半径作圆弧,由这三段圆弧组成的曲边三角形.勒洛三角形的特点是:在任何方向上都有相同的宽度,即能在距离等于其圆弧半径(等于正三角形的边长)的两条平行线间自由转动,并且始终保持与两直线都接触.机械加工业上利用这个性质,把钻头的横截面做成勒洛三角形的形状,就能在零件上钻出正方形的孔来.如在勒洛三角形ABC 内随机选取一点,则该点位于正三角形ABC 内的概率为( )A B C D 3.(2021·全国·高三专题练习)我国扇文化历史悠久,其中折扇扇面是由两个半径不同的同心圆,按照一定的圆心角被剪而成,如图所示,该扇面的圆心角为23π,AB 长为403π,CD 长为10π,则扇面ABCD 的面积为( )A .1753πB .3503πC .21759πD .23509π4.(2021·江西柴桑·高三月考(理))函数()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭的图象大致形状为( ).A .B .C .D .5.(2021·全国·高三月考)已知函数()()2sin ),2(f x x o πωϕωϕ=+>≤图象相邻两条对称轴间的距离为π,且对任意实数x ,都有()3f x f π⎛⎫≤ ⎪⎝⎭.将函数()y f x =图象向左平移6π个单位长度,得到函数()y g x =的图象,则关于函数()()y f x g x =+描述不正确的是( )A .最小正周期是2πBC .函数在0,3π⎡⎤⎢⎥⎣⎦上单调递增D .图象关于直线4x π=对称6.(2021·全国·高三月考(理))已知(0,)απ∈,且2cos2cos 1αα+=,则tan α=( )A B .53C D 7.(2021·河南·高三月考(文))将函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的图象向左平移6π个单位长度后得到函数()g x 的图象,则函数()cos2y g x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最小值为( )A B .2- C .D .32-第9讲 三角函数中参数ω专题【题型精讲】题型(一)ω的取值范围与单调性相结合1.(2021·甘肃·西北师大附中高三期中)已知0>ω,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭在,32ππ⎛⎫⎪⎝⎭内单调递减,则ω的取值范围是( ) A .13,24⎡⎤⎢⎥⎣⎦B .35,42⎡⎤⎢⎥⎣⎦C .35,44⎡⎤⎢⎥⎣⎦D .15,24⎡⎤⎢⎥⎣⎦2.(2021·全国·高三专题练习)函数()()cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,33ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为( ) A .12B .74C .52D .6题型(二)ω的取值范围与对称性相结合1.(2021·安徽·定远县育才学校高三开学考试(理))已知函数()sin()(0),||2f x x πωϕωϕ=+>≤,4πx =-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5,1836ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A .11B .9C .7D .12.(2021·全国·模拟预测(文))已知函数()2cos2sin 1222xxxf x ωωω=+-(0>ω)的图象向左平移12π个单位长度后得到函数()g x 的图象关于坐标原点对称,则ω的最小值为( ) A .1B .2C .3D .4题型(三)ω的取值范围与三角函数的最值相结合1.(2019·湖南师大附中(理))将函数()()[]()sin 20,0,2f x x ωϕωϕπ=+>∈图象上每点的横坐标变为原来的2倍,得到函数()g x ,函数()g x 的部分图象如图所示,且()g x 在[]0,2π上恰有一个最大值和一个最小值(其中最大值为1,最小值为-1),则ω的取值范围是( )A .713,1212⎛⎤ ⎥⎝⎦B .713,1212⎡⎫⎪⎢⎣⎭C .1117,1212⎡⎫⎪⎢⎣⎭D .1117,1212⎛⎤ ⎥⎝⎦2.(2019·湖南怀化·(理))将函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移32πω个单位长度后得到函数()g x 的图象,若()()()F x f x g x =的图象关于点,03π⎛⎫⎪⎝⎭对称,则ω的最小值为 A .13B .12C .1D .2题型(四)ω的取值范围与三角函数的零点相结合1.(2021·广西桂林·(文))函数()sin (0)g x x ωω=>的图象向左平移5πω个单位长度得到函数()f x ,()f x 在[0,2]π上有且只有5个零点,则ω的取值范围是( ) A .812,55⎫⎛ ⎪⎝⎭B .812,55⎫⎡⎪⎢⎣⎭C .1229,510⎛⎫ ⎪⎝⎭D .1229,510⎡⎫⎪⎢⎣⎭2.(2020·陕西省宝鸡市长岭中学(理))已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是 A .2935,2424⎡⎫⎪⎢⎣⎭B .2935,2424⎡⎤⎢⎥⎣⎦C .2935,2424⎛⎫ ⎪⎝⎭D .2935,2424⎛⎤ ⎥⎝⎦题型(五)ω的取值范围与三角函数的极值相结合1.(2021·四川·石室中学(文))函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在()0,π内有且仅有一个极大值点,则ω的取值范围为( )A .17,33⎛⎤ ⎥⎝⎦B .1,3⎡⎫+∞⎪⎢⎣⎭C .10,3⎛⎤⎥⎝⎦D .110,33⎛⎤ ⎥⎝⎦2.(2019·云南曲靖·(文))已知函数2()2sin cos f x x x x ωωω=-(0>ω)在区间(0,)π内无极值点,则ω的取值范围为 A .110,12⎛⎤ ⎥⎝⎦B .50,24⎛⎤ ⎥⎝⎦C .50,12⎛⎤ ⎥⎝⎦D .511,1212⎡⎤⎢⎥⎣⎦【课后精练】一、单选题1.(2021·全国·模拟预测(理))已知函数()cos x f x x ωω=(0>ω)在ππ,1212⎡⎤-⎢⎥⎣⎦上是单调函数,则ω的最大值是( ) A .2 B .4 C .8 D .102.(2021·四川·泸州老窖天府中学高三月考(文))已知函数()cos()(0)3f x x πωω=+>的一条对称轴为6x π=,一个对称中心为7(,0)24π,则ω有( ) A .最小值4 B .最小值2 C .最大值4D .最大值23.(2021·陕西·高三月考(理))已知函数()()sin 0f x x x ωωω+>的图象关于3x π=对称,则ω的最小值为( )A .1B .12C .2D .324.(2021·全国·)将函数()sin f x x =的图像先向右平移3π个单位,再把所得函数图象横坐标变为原来的1(0)ωω>,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .(0,1]B .20,9⎛⎤ ⎥⎝⎦C .2280,,939⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦D .280,,199⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦5.(2020·安徽·马鞍山二中(理))已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,)22ππ上没有零点,则ω的取值范围是( )A .4(0,]9B .48[,]99C .48(,]99D .8(0,]96.(2020·全国·)将函数44()sin cos f x x x =+的图象向左平移8π个单位长度后,得到()g x 的图象,若函数()y g x ω=在[,]124ππ-上单调递减,则正数ω的最大值为 A .12B .1C .32D .237.(2020·宁夏长庆高级中学(理))若将函数sin 4y x πω⎛⎫=+ ⎪⎝⎭(0>ω)的图象向左平移6π个单位长度后,与函数cos 4y x πω⎛⎫=+ ⎪⎝⎭的图象重合,则ω的最小值为( ) A .1B .32C .2D .38.(2020·全国·)已知函数()()sin 02g x x πωω⎛⎫=+> ⎪⎝⎭,把函数()g x 的图象向右平移2πω得到函数()f x 的图象,函数()f x 在区间22,93ππ⎡⎤⎢⎥⎣⎦上单调递减,在210,39ππ⎡⎤⎢⎥⎣⎦上单调递增,则ω=( ) A .34B .94C .13D .439.(2021·天津滨海新·一模)将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .2280,,939⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .80,9 ⎛⎤ ⎥⎝⎦C .280,,199⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦D .(]0,110.(2021·全国·高三专题练习(理))已知函数()cos f x x x ωω+在0,4π⎛⎫⎪⎝⎭上不单调,在2,33ππ⎛⎫⎪⎝⎭上单调,则实数ω的取值范围为( )A .(]1,2B .5,23⎛⎤ ⎥⎝⎦C .[]1,2D .4,23⎛⎤ ⎥⎝⎦11.(2021·全国·)已知函数()sin (sin cos )(0)ωωωω=+>f x x x x 在区间(0,)π上恰有2个最大值点,则ω的取值范围是( )A .1119,88⎛⎤ ⎥⎝⎦B .1119,88⎡⎫⎪⎢⎣⎭C .1119,44⎡⎫⎪⎢⎣⎭D .1119,44⎛⎤ ⎥⎝⎦12.(2021·全国·(文))已知函数()()cos 0f x x x ωωω->在0,2π⎡⎤⎢⎥⎣⎦内有且仅有1个最大值点和3个零点,则ω的取值范围是( ) A .1316,33⎛⎤ ⎥⎝⎦B .1316,33⎡⎫⎪⎢⎣⎭C .1417,33⎛⎤ ⎥⎝⎦D .1417,33⎡⎫⎪⎢⎣⎭13.(2020·四川省泸县第二中学(文))已知112ω>,函数()πsin 24f x x ω⎛⎫=+ ⎪⎝⎭在区间π3π(,)22内没有最值,则ω的取值范围( ) A .11[,]62B .511,1224⎡⎤⎢⎥⎣⎦C .15,412⎡⎤⎢⎥⎣⎦D .5,112⎡⎤⎢⎥⎣⎦第10讲 三角恒等变换、解三角形【题型精讲】 题型一:三角恒等变换1.(2021·福建宁德·高三期中)已知1sin 33πα⎛⎫+= ⎪⎝⎭,则cos(2)3πα-=( )A .79-B .79C .29-D .292.(2021·全国·高三月考(文))已知1sin 263θπ⎛⎫-= ⎪⎝⎭,则sin 6πθ⎛⎫+= ⎪⎝⎭( )A .79-B .79C .9-D .93.(2021·江西·赣州市赣县第三中学高三期中(文))已知5,36ππα⎛⎫∈ ⎪⎝⎭,且1sin 63πα⎛⎫+= ⎪⎝⎭,则cos 26πα⎛⎫-= ⎪⎝⎭( )A .89-B .CD .89题型二:利用正余弦定理解三角形1.(2021·云南大理·模拟预测(理))已知ABC 中,角,,A B C 所对的边分别为,,a b c ,若22226,3c ab a b C π+=++=,则ABC 的面积为( )A B C .1D 12.(2021·河南·高三月考(文))在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,若2,2,b B C ==则a c +的取值范围为( )A .(B .()4C .(0,D .()3.(2021·江苏省苏州第十中学校高三月考)ABC 中,D 为边BC 的中点,8AB =,17AC =,7.5AD =,则ABC 的面积为___________.4.(2021·全国·高三专题练习)在平面四边形ABCD 中,角75A B C ===︒,2BC =,则AB 的取值范围是__________.题型三:正余弦定理的实际应用1.(2021·湖北·高三月考)如图,在凸四边形ABCD 中,1DA DC ==,AB ,若2B π=,则四边形ABCD 面积的最大值为________.2.(2021·河南·高三月考(文))如图所示,公园直立的路灯杆BC 正前方有棵挺拔的小树NH ,在路灯杆前的点A (BC ,NH ,点A 在同一平面内)处测得路灯顶点B 处和小树顶点N 处的仰角分别为45°和30°.再朝小树正前方行走到点M ,此时M ,N ,B 三点在同一条直线上.在点M 处测得MH =1m ,小树顶点N 处的仰角为60°,则路灯杆BC 的长为___________m .3.(2021·全国·高三月考(文))如图,设ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2b ac =,π3B =,D 是ABC 外一点,3AD =,2CD =,则四边形ABCD 面积的最大值是___________.4.(2021·安徽省舒城中学三模(理))如图,某湖有一半径为1km 的半圆形岸边,现决定在圆心O 处设立一个水文监测中心(大小忽略不计),在其正东方向相距2km 的点A 处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B 以及湖中的点C 处,再分别安装一套监测设备,且90BAC ∠=︒,AB AC =.定义:四边形OACB 及其内部区域为“直接监测覆盖区域”,设AOB θ∠=.则“直接监测覆盖区域”面积的最大值为________.【课后精练】一、单选题1.(2021·新疆·克拉玛依市教育研究所模拟预测(理))中国古代数学家赵爽设计的弦图(如图1)是由四个全等的直角三角形拼成,四个全等的直角三角形也可拼成图2所示的菱形,已知弦图中,大正方形的面积为25,小正方形的面积为1,则图2中菱形的一个锐角的余弦值为( )A .725B .35C .45D .24252.(2021·甘肃·静宁县第一中学二模(文))已知函数()22sin 24f x x x π⎛⎫=+ ⎪⎝⎭.若关于x 的方程()2f x m -=在,42x ππ⎡⎤∈⎢⎥⎣⎦上有解,则实数m 的取值范围是( )A .12⎡⎢⎣B .⎣C .[]0,1D .2⎤⎥⎣⎦3.(2021·全国·高三专题练习)1471年德国数学家米勒向诺德尔教授提出一个问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即视角最大,视角是指由物体两端射出的两条光线在眼球内交叉而成的角),这个问题被称为米勒问题,诺德尔教授给出解答,以悬杆的延长线和水平地面的交点为圆心,悬杆两端点到地面的距离的积的算术平方根为半径在地面上作圆,则圆上的点对悬杆视角最大.米勒问题在实际生活中应用十分广泛.某人观察一座山上的铁塔,塔高90m ,山高160m ,此人站在对塔“最大视角”(忽略人身高)的水平地面位置观察此塔,则此时“最大视角”的正弦值为( )A .12B .941C .1625D .9164.(2021·辽宁·高三月考)人们通常把顶角为36°的等腰三角形称为黄金三角形,因,我们熟悉的五角星就是由5个黄金三角形和1个正五边形组成的,如图,三角形ABC 就是一个黄金三角形,根据以上信息,可得sin54︒=( )A B C D 5.(2021·重庆市第七中学校高三月考)已知13sin()()4444πππϕϕ-=--<<,则cos 2ϕ=( )A .B .78-C .78 D6.(2021·黑龙江·哈尔滨三中高三月考(理))已知ππsin cos 66αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则tan α=( )A .1-B .1C .12D .12- 7.(2021·北京市第十三中学高三期中)从长度分别为1,2,3,4,5的5根细木棒中选择三根围成一个三角形,则最大内角( )A .可能是锐角B .一定是直角C .可能大于23πD .一定小于56π 8.(2021·陕西渭南·高三月考(理))在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若22(32)(54)0a b a c -+-=,则ABC 最小内角的正弦值为( )A .45B .34C .35D 9.(2021·河南·高三月考(理))已知锐角三角形的三边长分别为2,5,m ,则实数m 的取值范围是( )A .()3,7B .C .)D .( 10.(2021·福建·莆田第二十五中学高三月考)数学中处处存在着美,机械学家莱洛发现的莱洛三角形就给人以对称的美感.莱洛三角形的画法∶先画等边三角形ABC ,再分别以点A ,B ,C 为圆心,线段AB 长为半径画圆弧,便得到莱洛三角形(如图所示).若莱洛三角形的周长为2π ,则其面积是( )A .23πB .2π+C .23πD .2π-11.(2021·全国·高三专题练习)旅游区的玻璃栈道、玻璃桥、玻璃景观台等近年来热搜不断,因其惊险刺激的体验备受追捧.某景区顺应趋势,为扩大营收,准备在如图所示的M 山峰和N 山峰间建一座空中玻璃观景桥.已知两座山峰的高度都是300m ,从B 点测得M 点的仰角π4ABM ∠=,N 点的仰角π6CBN ∠=以及cos MBN ∠=间的距离MN =( )A .300m B. C .600m D.12.(2021·辽宁·模拟预测)英国数学家约翰・康威在数学上的成就是全面性的,其中“康威圆定理”是他引以为傲的研究成果之一.定理的内容是:三角形ABC 的三条边长分别为a ,b ,c ,分别延长三边两端,使其距离等于对边的长度,如图所示,所得六点121212,,,,,A C B A C B 仍在一个圆上,这个圆被称为康威圆.现有一边长为2的正三角形,则该三角形生成的康威圆的面积是( )A .9πB .143πC .283πD .323π 二、填空题 13.(2021·广东·湛江二十一中高三月考)若33sin π3sin π44x x ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则2sin 2sin cos 2sin cos 2x x x x x ++=__________. 14.(2021·广西桂林·高三月考(文))下面有四个命题:①函数44sin cos y x x =-的最小正周期是π.②函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象关于直线1112x π=对称;③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π得到3sin 2y x =的图象.其中真命题的序号是___________(写出所有真命题的编号)15.(2021·广东茂名·高三月考)某学生在劳动技术课活动中设计了如图所示的几何图形,其中12O O ,为半圆的圆心,则该图形的面积为_________2cm .16.(2021·全国·高三专题练习)圣·索菲亚教堂坐落于中国黑龙江省,是一座始建于1907年拜占庭风格的东正教教堂,距今已有114年的历史,为哈尔滨的标志性建筑.1996年经国务院批准,被列为第四批全国重点文物保护单位,是每一位到哈尔滨旅游的游客拍照打卡的必到景点之一.其中央主体建筑集球,圆柱,棱柱于一体,极具对称之美,可以让游客从任何角度都能领略它的美,小明同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物AB ,高为)151米,在它们之间的地面上的点M (B 、M 、D 三点共线)处测得楼顶A .教堂顶C 的仰角分别是15和60,在楼顶A 处测得塔顶C 的仰角为30,则小明估算索菲亚教堂的高度为______米.。
三角函数专题能力培优(含答案)
三角函数专题能力培优(含答案)三角函数专题能力培优(含答案)一、正弦函数1. 定义正弦函数是一个周期为 $2\pi$ 的函数,其定义域为实数集。
正弦函数用符号 $\sin x$ 表示,表示角 $x$ 的正弦值。
2. 周期性质正弦函数是一个周期函数,其最小正周期为 $2\pi$。
3. 奇偶性质正弦函数为奇函数,即 $\sin(-x) = -\sin x$。
二、余弦函数1. 定义余弦函数是一个周期为 $2\pi$ 的函数,其定义域为实数集。
余弦函数用符号 $\cos x$ 表示,表示角 $x$ 的余弦值。
2. 周期性质余弦函数是一个周期函数,其最小正周期为 $2\pi$。
3. 奇偶性质余弦函数为偶函数,即 $\cos(-x) = \cos x$。
三、正切函数1. 定义正切函数是一个周期为 $\pi$ 的函数,在定义域内不存在$k\pi+\frac{\pi}{2}(k\in\mathbb{Z})$,即其极限值不存在。
正切函数用符号 $\tan x$ 表示,表示角 $x$ 的正切值。
2. 周期性质正切函数是一个周期函数,其最小正周期为 $\pi$。
3. 奇偶性质正切函数为奇函数,即 $\tan(-x) = -\tan x$。
四、反三角函数1. 定义反正弦函数、反余弦函数和反正切函数的定义如下:- $\arcsin x$ 表示满足 $-\frac{\pi}{2}\leq\arcsin{x}\leq\frac{\pi}{2}$ 且 $\sin\arcsin{x}=x$ 的实数;- $\arccos x$ 表示满足 $0\leq\arccos{x}\leq\pi$ 且$\cos\arccos{x}=x$ 的实数;- $\arctan x$ 表示满足 $-\frac{\pi}{2}<\arctanx<\frac{\pi}{2}$ 且 $\tan\arctan{x}=x$ 的实数。
2. 基本性质反三角函数是三角函数的反函数,其定义域和值域与三角函数相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学培优训练(三)
1.如图4,已知AD 是等腰△ABC 底边上的高,且tan ∠B=4
3
,AC 上有一点E ,满足
AE :CE=2:3则
tan ∠ADE 的值是
第1题图 第2题图 第3题图
2.如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM =1,则tan ∠ADN = .
3.如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为 (用含a 的代数式表示)
4.如图,△ABC 中,cosB =22,sinC =5
3
,则△ABC 的面积是
第4题图 第5题图 第6题图
5.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=
4
3
,则△ABC 的面积为 6.如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)
7.小明在将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在
BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以
求出67.5°的角的正切值是( )
8.如图,已知斜坡AB 长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(请讲下面2小题的结果都精确到0.1米,参考数据:
≈1.732).
(1)若修建的斜坡BE 的坡角(即∠BEF)不大于45°,则平台DE 的长最多为 米; (2)一座建筑物GH 距离坡角A 点27米远(即AG=27米),小明在D 点测得建筑物顶部H 的仰角(即∠HDM)为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米?
9.如图,一架飞机由A 向B 沿水平直线方向飞行,在航线AB 的正下方有两个山头C 、D 。
飞机
在A 处时,测得山头C 、D 在飞机前方,俯角分别为60°和30°。
飞机飞行了6千米到B 处时,往后测得山头C 的俯角为30°,而山头
D
恰好在飞
机的正下方。
求山头
C
、
D 之间的距离。
A B C
D。