锂空气电池的研究发展及应用
锂-空气电池

为了减少气体扩散对电池性能的影响, Williford等设计了一种双重相互连通的孔隙系统 (一边有催化剂,另一边无催化剂)提高氧气传 输到空气电极内部的几率,从而提高锂空气电池 的效率。 通过上述对多孔碳空气电极的研究表明,孔容 (孔隙率)是决定多孔碳空气电机性能非常重要 的参数。一般而言,在反应比表面积充足的情况 下,碳材料的孔容越大,储存锂氧化物的空间就 越大,其容量也就越高。
4.2催化剂的效率
催化剂的催化效果不仅与其自身化学性质有关, 而且与其物理性质有关。
应用在空气电极上的催化剂种类较多,主要有以
下四种类:(1)多孔碳材料;(2)金属氧化物材料;(3) 贵金属及合金;(4)金属菁化合物。
对空气中催化剂的选择一方面要考虑催化剂的价
格,能够满足大规模商业化的应用;另一方面要 考虑催化剂的催化性能,能够满足答功率电化学 反应的要求。
主要内容: 1、锂-空气电池材料的主要问题 2、锂电极的保护 3、电解质材料 4、锂空气电极材料
1、锂-空气电池材料的主要问题
目前,锂-空气电池的研究还处于初始阶段,其 实际比能量还远远达不到其理论值,比功率较低、 循环性能也较差。目前制约其发展和应用的因素 有很多,以锂-空气电池为例,在电池材料方面主 要有:
图五为放电时间与孔隙结构之间的关系,其中 电极厚度为0.070cm,氧气分压为1.0atm,电流 密度为0.5mA.cm-2,电池总放电时间为56h。
Mirzaeian等采用碳酸钠催化剂与碳气凝胶复合作 为空气电极,研究了多孔碳的结构,孔隙率,孔径 以及比表面积对电池放电容量的影响。结果表明, 在孔容(2.195cm3.g-1)和孔径(14.23nm)时, 具有较高的放电容量(1290mAh.g-1,放电电流密 度20mA.cm-2)。 在相同厚度的空气电极中,碳的装载量与孔容是影 响电池放电容量的两个重要参数。在一定程度范围 内,随着碳装载量的增加,放电容量会有所提高。 Hayashi等研究了不同种类的碳材料作为空气电极 时电池的电化学性能。高的碳材料比表面积对应大 的放电容量。
锂空气电池的研发与应用前景

锂空气电池的研发与应用前景锂空气电池是一种新型的高能量密度电池,其优秀的性能引起了人们的广泛关注。
相比传统的锂离子电池,锂空气电池具有更高的能量密度、更低的成本以及更长的使用寿命,因此在未来的能源存储和汽车动力领域有着广阔的应用前景。
一、锂空气电池的原理和构成锂空气电池是一种利用空气中的氧气与锂反应产生电能的电池。
其基本原理是在正极(空气电极)上引入氧气,使锂质负极上的锂与氧气反应生成锂氧化物,在此过程中释放出一定的电能。
锂空气电池的主要构成部分包括锂质负极、空气电极和隔膜等。
其中,锂质负极通常采用金属锂或锂合金,而空气电极则通常采用碳纤维等导电材料,以增大反应表面积和导电性能。
二、锂空气电池的优点相比传统的锂离子电池,锂空气电池具有以下优点:1. 更高的能量密度。
由于锂空气电池利用空气作为氧化剂,因此其能量密度可以达到每千克能够存储3500 Wh以上,是锂离子电池的5-10倍,这有利于提高电池的续航能力。
2. 更低的成本。
由于锂空气电池的正极不需要添加昂贵的氧化物或氟化物,因此其制造成本较低。
3. 更长的使用寿命。
锂空气电池的正极材料是空气,因此其使用寿命可以达到更长。
三、锂空气电池在能源存储领域的应用前景锂空气电池具有高能量密度、低成本和长使用寿命等优点,因此在能源存储领域具有广阔的应用前景。
一方面,锂空气电池可以用于电网储能,将太阳能和风能等可再生能源储存在电池中,以备用电力需要。
另一方面,锂空气电池还可以用于独立电源,如航空、航天等领域,以便在没有外部能源供应的情况下提供足够的电能。
四、锂空气电池在汽车动力领域的应用前景锂空气电池在汽车动力领域也有着重要的应用前景。
相比传统的锂离子电池,锂空气电池具有更高的能量密度,因此可以大幅提高电动汽车的续航能力。
同时,锂空气电池的制造成本较低,将有望降低电动汽车制造和购买成本,提高电动汽车市场占有率。
由于锂空气电池在汽车动力领域的应用较为复杂,目前仍需要进一步的研发和优化。
铝—空气电池研究现状及应用前景

收稿日期:2018-06-09 基金项目:国家自然科学基金项目(21706195);贵州省科技基础研究计划项目(黔科合基础 2016-1149);贵州省教育厅普通 高等学校科技拔尖人才项目(黔教合 KY字 2016-105) 作者简介:郭 雷(1987—),男,河南商丘人,博士,教授,主要应用电化学方面的研究。
(2)
正极空气电极通常由气体扩散层、活性催化层和集流体三
部分组成,其反应通常为: O2+2H2O+4e- =4OH- 碱性介质中放电总反应为: 4Al+3O2+4OH- =4AlO2- +2H2O 中性介质中的放电总反应为:
(3) (4)
4Al+3O2 +6H2O=4Al(OH)3
(5)
图 1给出了中性盐介质中铝空气电池的工作机理示意图。
图 1 中性盐介质中铝空气电池工作原理示意图
2 铝—空气电池的特性
铝空气电池的负极活性材料是含量丰富的金属铝,正极活 性物质是空气中 的 氧 气,正 极 容 量 可 视 无 限 大,而 且 铝 空 气 电 池的废弃产物可 进 行 回 收 循 环 利 用,这 大 大 降 低 了 电 池 成 本。 铝空气电池的负电极是铝金属材料,在使用的过程中可以不断 地更换,因此铝空 气 电 池 寿 命 的 比 一 般 的 电 池 寿 命 要 长,一 般 能够达到 3~4年的时间。铝空气电池具有质量轻的特点,同 样能量的铝空气电池总质量仅为铅酸蓄电池质量的 12%,可以 很好的运动到汽车行业中,能很好的减少车身重量[3]。
ResearchandApplicationProspectsofAluminum -airBatteries
GuoLei,WuMin,HeJiancheng,WangMaolan,LiChangzhen,XuChen
锂空气电池概述与发展 2014170089

剑桥大学突破锂空气电池瓶颈, 一次充电可开650公里
• 和目前的可充电电池中盛行的锂离子技术相比, 锂空气电池理论上拥有巨大的优势——其能量密 度可能要高10倍——以至于全球的研究人员都在 开展锂空气电池的研究。 • 剑桥大学的刘韬博士在接受新华社记者采访时介 绍说,近20年来,锂-空气电池在全球被广泛研 究。典型情况下,这种电池使用锂金属作为负极 材料,正极则为多孔的导电碳材料。放电时,从 负极出发的锂离子在正极与空气中的氧气反应, 产生一种叫过氧化锂的固体产物,填充于碳电极 的孔隙中。
充电时,化学过程逆转,过氧化锂被分解释放氧气。该 电池的蓄电能力理论上是目前市场上锂离子电池的10 倍,但实际应用时却存在多个重大缺陷。刘韬说,该电 池的反应产物过氧化锂及反应中间产物超氧化锂都有较 高的反应活性,会分解电解液,因此几个充放电循环后 电池电量就会急剧下降,电池寿命较短;由于过氧化锂 导电性能差,充电时很难分解,需要很高的充电电压, 还会导致分解电解液及碳电极等副作用。
放电时电极反应如下: (1)负极反应(Li→Li++e-) 金属锂以锂离子(Li+)的形式溶于有机电解液,电子供 应给导线。溶解的锂离子(Li+)穿过固体电解质移到正 极的水性电解液中。 (2)正极反应(O2+2H2O+4e-→4OH-) 通过导线供应电子,空气中的氧气和水在微细化碳表面 发生反应后生成氢氧根离子(OH-)。在正极的水性电解 液中与锂离子(Li+)结合生成水溶性的氢氧化锂(LiOH )。充电时电极反应如下: (1)负极反应(Li++e-→Li)
第一块稳定锂空气电池问世
• 多少年来,研究人员一直希望能用锂空气电池代 替传统的锂离子电池,因为锂空气电池的蓄电能 力比性能最好的锂离子电池都要高出 10 倍以上。 但是,由于锂空气电池内部结构的不稳定性,它 在几次充放电之后就会解体,这让锂空气电池迟 迟无法进入消费市场。最近,终于有研究人员宣 布制造出了第一块具有高度稳定性的锂空气电池 ,如果这种新技术能够投入商用,那么未来的电 动汽车将会拥有与传统燃油汽车相同、甚至更强 的续航能力,人们再也不用开一二百公里就停下 来充电了。
锂空气电池正极材料的研究进展

锂空气电池正极材料的研究进展摘要:随着能源产业的飞速发展和环境友好型社会的建设推动,锂空气电池以其极高的理论能量密度及无污染的特点,成为电池体系的研究热点之一。
锂空气电池正极材料对锂空气电池的性能起着重要作用,本文主要综述了锂空气电池正极材料的种类。
主要是碳材料、贵金属及合金,过渡金属及氧化物等。
关键词:锂空气电池,正极,单质,复合材料1引言锂空气电池根据电解液的状态不同,主要可分为水体系、有机体系、水-有机混合体系以及全固态锂空气电池[1]。
在有机体系锂空气电池工作时,原料O通2过多孔空气电极进入到电池内部,在电极表面被催化成氧离子或过氧根离子,与电解质中的锂离子结合生成过氧化锂或氧化锂,沉积在空气电极表面,当产物将空气电极的多孔结构完全堵塞时电池停止放电[2]。
锂空气电池概念自1974年被首次提出,因其不可比拟的理论能量密度,备受研究者的关注,历经几十年的发展和优化,其实际性能也得到了很大的提升,但是,当前的锂空气电池仍面临能量转换效率低、倍率性能差、循环寿命短等问题,极大地阻碍了其实际应用。
正极是锂空气电池的关键组成部分,其上面发生的氧还原反应(ORR)和析氧反应(OER)显著影响电池的工作性能,如过电位、倍率性能、循环稳定性等[3]。
因此,成功开发低成本、高活性、长寿命的高效双功能正极催化剂已成为促进锂空气电池性能提升和发展应用的迫切任务。
2锂空气电池正极单质材料种类碳材料:碳材料包括一些商业碳黑、多孔碳材料、碳纳米管和纳米纤维以及石墨烯等,由于高的导电性、低密度、低成本和易于构造多孔结构等优势,碳材料被广泛应用于锂空气电池中。
碳材料的低质量密度和高导电性有利于锂空气电池获得较大的重量比容量。
碳电极的孔结构可以用现有技术轻松调节,从而提高锂离子和氧气的传输效率[4]。
此外,碳材料的电子结构可以通过掺杂原子进行调整,掺杂原子可以形成催化Li2O2。
基于以上优点,碳材料既可以作为催化剂单独使用,也可以作为其他催化剂的载体使用。
锂空气电池发展历史

锂空气电池发展历史锂空气电池是一种使用锂金属作为阳极、空气中的氧气作为阴极的电池。
它具有高能量密度、低成本和环保等优点,被认为是未来电池领域的一个重要发展方向。
本文将从锂空气电池的起源、发展以及未来展望等方面,介绍锂空气电池的发展历程。
锂空气电池的概念最早可以追溯到1960年代末期,当时美国能源部的研究人员首次提出了这一概念。
然而,由于当时技术条件的限制,锂空气电池的研究进展缓慢。
直到20世纪90年代末期,随着锂离子电池的大规模商业化应用,锂空气电池的研究才开始受到更多的关注。
在过去的二十年里,锂空气电池取得了长足的进展。
首先是电池的正极材料。
早期的锂空气电池使用多孔碳材料作为正极,但由于其低催化活性和较低的导电性,导致电池性能不稳定。
随着纳米材料和碳纳米管等新材料的发展应用,电池的正极材料得到了明显的改善,提高了电池的能量效率和循环寿命。
其次是电池的电解质。
传统的锂空气电池使用有机溶剂作为电解质,但由于其易燃、易挥发和对锂金属的腐蚀性,限制了电池的安全性和循环寿命。
近年来,研究人员提出了使用固态电解质替代有机溶剂的方案,大大提高了电池的安全性和稳定性。
电池的阴极反应也是锂空气电池研究的重点之一。
在锂空气电池中,氧气是阴极活性物质,但氧气的还原反应速度较慢,限制了电池的输出功率。
研究人员通过引入催化剂和改变电极结构等方法,提高了氧气的还原反应速度,从而提高了电池的性能。
锂空气电池仍然面临一些挑战和限制。
首先是锂金属的安全性问题。
锂金属具有高反应性和易燃性,在充放电过程中容易发生安全事故。
其次是电池的循环寿命问题。
锂空气电池在长时间循环使用过程中,阳极会出现极化现象,导致电池的能量效率下降。
此外,锂空气电池的能量密度仍然较低,需要进一步提高。
然而,尽管存在这些挑战,锂空气电池的发展前景依然广阔。
研究人员正在不断改进电池的材料和结构,以提高电池的性能和稳定性。
同时,随着可再生能源的快速发展和电动汽车的普及,对高能量密度电池的需求也越来越大,锂空气电池有望成为未来电池领域的主流技术。
锂电池行业发展现状及趋势研究

锂电池行业发展现状及趋势研究摘要本研究深入探索了全球锂电池行业的发展近况、技术进步、市场需求及其未来动向。
在能源结构的变革与环保意识日益增强的背景下,锂电池行业正处于一个蓬勃发展的黄金时期,其在电动车、智能移动设备等多个领域的应用日渐普及。
目前,行业面临的主要考验集中于原材料供需矛盾、价格不稳定、技术创新需求迫切,以及需符合严格的环保法规。
尽管挑战重重,但技术创新与产业升级也为行业开辟了广阔的发展空间,特别是在增强电池的能量密度、实现成本效益和加强安全性能等方面,孕育着无限的机遇。
研究发现,未来锂电池行业将继续保持增长态势,特别是在新兴市场和发展中国家。
技术创新将是推动行业发展的关键动力,智能化、网络化等先进技术将为行业发展注入新活力。
为应对挑战和抓住机遇,建议行业内企业加强技术创新和研发投入,提升产品的性能与成本竞争力;加强国际合作,引进先进技术和管理经验;积极响应环保法规,加大环保投入,推动绿色生产;同时,积极开拓新兴市场,扩大市场份额,提高品牌影响力。
本研究旨在为锂电池行业的企业和政策制定者提供有益的参考。
关键词:锂电池;技术发展;市场需求;技术创新;未来趋势;产业发展战略目录摘要 (1)第一章引言 (3)1.1 锂电池行业概述 (3)1.2 研究背景与意义 (4)1.3 国内外研究现状 (5)第二章锂电池技术及市场分析 (7)2.1 锂电池技术原理及进展 (7)2.2 锂电池市场需求分析 (7)2.3 锂电池市场竞争格局 (8)第三章锂电池行业发展挑战与机遇 (10)3.1 原材料供应与价格波动 (10)3.2 技术创新与产业升级 (11)3.3 环保法规与政策影响 (11)第四章锂电池行业未来趋势预测 (13)4.1 市场需求增长趋势 (13)4.2 技术创新方向 (13)4.3 产业发展战略建议 (14)第五章结论与展望 (16)5.1 研究结论 (16)5.2 行业展望 (16)第一章引言1.1 锂电池行业概述锂电池,凭借其高能量密度、长循环寿命和低自放电率等诸多优点,在当代能源领域占据了举足轻重的地位。
研究和优化新型锂空气电池的性能

研究和优化新型锂空气电池的性能摘要:随着电子产品的普及和新能源汽车的快速发展,对高能量密度、低成本、环境友好的电池需求日益迫切。
作为一种潜在的候选电池技术,锂空气电池具有较高的理论能量密度和良好的环境可持续性,引起了广泛的研究兴趣。
本论文综述了近年来对新型锂空气电池性能的研究,并重点介绍了优化其性能的方法,包括催化剂设计、氧气输送和电解液改进等。
通过不断地改进和创新,新型锂空气电池有望在未来的能源存储领域发挥重要作用。
关键词:锂空气电池、性能研究、催化剂设计、氧气输送、电解液改进第一章引言1.1 背景近年来,随着全球电子产品的快速发展以及对清洁能源的需求增加,锂电池作为一种重要的能量存储技术备受关注。
然而,传统的锂离子电池受限于其有限的能量密度和增加的成本,无法满足日益增长的电能需求。
因此,寻找更加高效、可持续和成本效益的电池技术成为当今研究的热点之一。
1.2 锂空气电池概述锂空气电池作为一种潜在的候选电池技术,具有较高的理论能量密度和良好的环境可持续性,引起了广泛的研究兴趣。
其工作原理是通过氧气和锂之间的反应来释放能量,氧气从空气中提取,然后通过催化反应与锂发生氧化反应。
与锂离子电池相比,锂空气电池的理论能量密度更高,可以满足更高能量密度应用的需求。
然而,锂空气电池在实际应用中仍面临诸多挑战,如低能量效率、催化剂活性和寿命等问题。
第二章锂空气电池性能研究进展2.1 催化剂设计催化剂是锂空气电池中至关重要的组成部分,可以提高氧气的电化学活性和电池的能量效率。
现有催化剂主要分为金属基催化剂和非金属基催化剂。
其中,碳基材料因其良好的导电性、高比表面积和成本效益优势被广泛研究。
此外,金属氧化物、金属酸盐和金属有机框架等也被用作催化剂。
未来研究可进一步探索合成新型催化剂,优化其活性和稳定性,以提高锂空气电池的性能。
2.2 氧气输送锂空气电池中的氧气输送对于电池的能量效率和长周期稳定性至关重要。
目前,常见的氧气输送方法主要包括自由扩散、气泵和多孔隔膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂空气电池的研究发展及应用
近年来,随着移动互联网、电动汽车等新兴领域的急剧发展,对电池的需求量
越来越大。
而作为近几年兴起的一种新型电池,锂空气电池因其高能量密度、低成本等优点备受关注。
本文将就锂空气电池的研究发展及应用进行探讨。
一、锂空气电池的概念
锂空气电池是指通过将锂与空气中的氧化合生成电能的一种化学反应电池。
锂
金属本身是非常活泼的一种金属反应性元素,而氧气又是空气中最常见的元素,因此将这两种元素结合在一起反应产生的电池能量直接影响了锂空气电池的能量密度。
锂空气电池具有极高的能量密度、最终产品也相对环保,不产生严重的污染物,具有极高的应用前景。
二、锂空气电池的原理
锂空气电池的主要反应可以被描述为:
2Li + O2 → Li2O2
锂金属和氧气反应会产生亚氧化锂,这是一种亮黄色的固体,固体亚氧化锂将
溶解在电解质中,并形成氢氧根离子。
锂空气电池的电解液其实就是含碱液体(如氢氧化钾或氢氧化锂等)的水溶液,而氧气往往从空中被引入到电池内部进行反应,因此,该电池被归类为空气电池。
三、锂空气电池的研究发展
锂空气电池是电池领域里的老生常谈,但一直没有得到广泛的应用,主要是因
为锂空气电池的耐久性不足。
主要表现在电解质的分解和氧气极的极化等方面。
针对以上问题,国内外许多科学家们已经开始加强对锂空气电池的研究,试图
找到利用锂空气电池的更多新途径。
在研究过程中,科学家们对电解质、催化剂和电极材料等方面进行了探索和改进,旨在让锂空气电池更加高效和耐久。
目前,锂空气电池的研究发展主要集中在以下几个方面:
1.电解质:研究水性电解质,或气相水汽的分离蒸馏,制备纯度较高的电解质
从而提升电池的循环利用寿命。
2.催化剂:研究表面积大、活性高、稳定性高的催化剂,能够促进电极表面的
反应,提升电池的放电性能。
3.电极材料:研究新型电极材料,尝试利用生物质等环保材料替代传统氧化铈
等贵金属材料,减少材料成本并提升电池循环利用寿命。
四、锂空气电池的应用前景
锂空气电池因其高能量密度、低成本等优点,具有极高的应用前景。
未来,锂
空气电池很可能会成为替代锂离子电池(Li-ion Battery)的新型电池,主要应用范
围包括:
1.电动汽车:随着电动汽车市场的不断扩大,对于电池的容量和充电速度等方
面也有了更高的要求,锂空气电池作为新型电池,可为电动汽车提供更好的能源解决方案。
2.移动互联网:随着移动互联网的爆炸式发展,难以避免的问题是手机电池容
量的提升,锂空气电池可以大幅提高手机电池的容量,极大地满足了消费者的需要。
3.医疗器械:锂空气电池所使用的材料纯度高,环保且安全,因此,将其应用
于医疗器械中是很有前景的。
总之,锂空气电池的研究发展取得了较大进展,尽管仍有诸多问题需要解决,但是前景十分广阔。
未来,如果科学家们能够进一步提高锂空气电池技术可靠性和实用性,相信它一定会在未来的能源领域里扮演着至关重要的角色。