电力拖动基础知识

合集下载

电力拖动控制系统基础知识(培训教材)

电力拖动控制系统基础知识(培训教材)

4电力拖动控制系统基础知识自动控制系统可以从一些不同的角度来进行分类。

一般按系统结构特点分类,大致可分为:开环控制系统、闭环控制系统及复合控制系统。

其中,闭环控制系统又分为单环控制系统、双环控制系统等;而复合控制系统是既有主反馈,又有前馈的控制系统。

所谓前馈控制是一种按照扰动进行控制的开环控制。

因此复合控制系统是开环、闭环结合的系统。

4.1开环控制系统与闭环控制系统的概念4.1.1开环控制系统(1)开环控制系统概念开环控制系统是与闭环控制系统相对而言的。

如果在系统中控制信息的流动未形成闭合回路,那么该系统就称之为开环控制系统。

(2)开环控制系统种类常见的开环控制系统有以下两种:1)按干扰补偿的前馈控制系统通过前面对控制的分析可知,稳定被控制量实质上就是在干扰信号出现时,操纵控制量使之对被控量的影响与干扰量对被控量的影响互相抵消以保持被控量不变,这样就产生了利用干扰去克服干扰的控制思路。

其原理方框图见图4-1-1。

图4-1-1前馈系统控制图在这种系统中,由于测量的是干扰量,故只能对可测干扰进行补偿。

不可测干扰以及对象、各部件内部参数变化给被控量造成的干扰,系统自身无法控制。

因此,控制精度受到了原理上的限制。

2)按给定值操作的开环控制系统所谓按给定值操作的开环控制系统,就是事先计算出希望的给定量,然后向执行器提供该给定量后就不再管它了,那么这种系统就是所谓的按给定值操作的开环系统。

见图4-1-2。

开环控制系统由于没有信息的回馈,控制器就无法知晓控制的效果,因此也就没有纠正偏差的能力。

因此这种系统只能用在对控制质量要求不高的场合,或者是在闭环控制中起辅助的控制以减轻反馈控制的负担。

图4-1-2按给定值操作的开环系统综上所述,开环控制系统的特点是:①不必对被控量进行测量和反馈,因而结构简单。

②这种系统需要采用高精度元件保证控制精度。

③对干扰造成的误差,系统不具有修正能力。

④系统不存在稳定性问题。

(3)开环调速系统及其存在的问题在实际应用中,晶闸管-电动机系统和可逆直流脉宽调速系统都是开环调速系统,调节控制电压就可以改变电动机的转速。

电力拖动基础知识复习资料题

电力拖动基础知识复习资料题

,.《电力拖动基础》复习题一、填空题:1 。

直流电机的机械特征方程为n =Ua/CeΦ-RaT/CaC TΦ2,各项的意义为① 同步转速 no=Ua/Ce Φ②转速将 n=-RaT/CaC TΦ2③斜率β=-Ra/CaC TΦ2。

2 。

他励直流电机的自然(固有)特征的条件① Ua=UN② Φ=ΦN(I f=I fN)③ 电枢不串电阻。

3。

他励直流电机的人为特征与自然特征对比较,降压人为? 特征的斜率不变理想空载转速变化;串电阻n 0不变 ? 变化;弱磁人为n 0、? 均变化。

4。

直流电机直接启动时,I st = (10 ~20 )I N,带来影响① 巨大的电磁力破坏绕组② 保护装置的动作没法起动③ 换向的条件恶化④ 电网电的颠簸影响其余电机的正常工作⑤巨大的冲击力破坏减速装置。

5。

直流电机起动的方法有电枢串电阻或降低供电电压. 。

6。

直流电机的制动有电压反接,电势反接,能耗制动,回馈制动.7。

电机的电动状态和制动状态的差别为是视 n 与 T 方向;同样为电动,相反为制动。

8。

电机的回馈制动除了n 与 T 方向相反还要 |n|>|n 0|。

n0n,调速范围Dnmax9。

电机的调速指标:静差率n n min,光滑0.T T N性n K,调速方法与负载转矩的配合,调速的经济性. 。

n K1,.10 。

直流电机的恒转矩调速有 调压调速,电枢串电阻,恒功率调速有弱磁调速 .11 。

直流电机的 n = f (t )为 动向特征, n = f (T )为 静态特征。

12 。

判断电力拖动系统的稳固条件为∕ < dTL/ dn。

dT /dn13 。

产生电力拖动系统过渡(动向)过程的内因有机械惯性、电磁惯性、热惯性外因有要求电机起动、制动、反向、调速。

14 。

电力拖动系统过渡 (动向) 过程有: 机械过渡过程 (只考虑机械惯性的一阶动向特征)和 机械-电磁过渡过程(同时考虑机械惯性和电磁惯性的二阶动向特征) 。

电机与电力拖动基础课程设计知识分享

电机与电力拖动基础课程设计知识分享

一、设计题目:提升机主电路的设计:图1—提升机电力拖动系统原理图图2—提升机电力拖动系统速度图1.加速阶段t1:以最大加速度加速,速度由0增加到v1,当v=v1时,电机工作在固有特性上。

2.等速阶段t2:以v1速度匀速运行。

3.调速阶段t3:以v2速度匀速运行,v2 =0.7v1。

4.减速阶段t4:以最大减加速度减速,速度由v2减小0。

二、课程设计的目的将损坏拖动系统的传动机构。

图3他励直流电动机直接启动接线图2)降低电源电压启动:将励磁绕组接通电源,并将励磁电流调到额定值,然后从低向高调节电枢回路电压的启动方法称为降低电源电压启动;要限制启动电流,首先考虑的是降低电动机输入电压,在直流电动机启动瞬问,给电动机加上较低的电压,以后随着电动机转速的升高,逐步增加直流电压的数值,直到电动机启动完毕,加在电动机上的电压即是电动机的额定电压特点:缩短启动时间,启动过程中能量损耗小,启动平稳,便于实现自动化。

需要一套可调的直流电源启动设备,增加初投资。

用减压启动的方法启动并励电动机时必须注意:启动时必须加上额定的励磁电压,使磁通一开始就有额定值,否则电动机的启动电流虽然比较大,但启动转矩较小,电动机仍无法启动。

图4降低电源电压启动接线图3)电枢回路串电阻启动:电枢回路中串接启动电阻以限制启动电流的启动方法称为电枢回路串电阻启动。

电枢回路串电阻启动即启动时在电枢回路串入电阻,以减小启动电流I,电动机启动后,再逐渐切除电阻,s以保证足够的启动转矩。

在分级启动过程中,若忽略电枢回路电感,并合理的选择每次切除的电阻值就能做到每切除一段启动电阻,电枢电流就瞬间增大到最大启动电流1I 。

此后,随着转速上升,电枢电流逐渐下降。

每当电枢电流下降到某以数值2I 时就切除一段电阻,电枢电流就又突增到最大电流1I 。

这样,在启动过程就可以把电枢电流限制在1I 和2I 之间。

2I 称为切换电流。

启动电阻分段数目越少,启动过程中电流变化范围大,转矩脉动大,加速不均匀,而且平均启动转矩小,启动时间长。

电机与拖动基础知识点

电机与拖动基础知识点

电机与拖动基础知识点1. 电机分类:电机可以根据其用途、结构和工作原理进行分类。

常见的电机类型包括直流电机、异步电机(感应电机)、同步电机和步进电机等。

2. 磁场和磁通:电机中的磁场是由电流通过线圈产生的。

磁通是指通过线圈的磁力线数量,它与电机的性能密切相关。

3. 绕组和电枢:电机中的绕组是由导线绕制而成的,用于产生磁场。

电枢是指电机中的旋转部分,它可以是转子或定子。

4. 电磁感应:当磁通通过导体时,会在导体中产生电动势,这种现象称为电磁感应。

异步电机和同步电机都是基于电磁感应原理工作的。

5. 直流电机:直流电机是将直流电转换为机械能的设备。

它包括定子和转子两部分,通过电刷和换向器实现电流的换向。

6. 异步电机:异步电机也称为感应电机,是一种广泛应用的交流电机。

它的转子转速略低于同步转速,通过转子感应的磁场与定子磁场的相互作用产生转矩。

7. 同步电机:同步电机的转子转速与定子磁场的转速相同,因此称为同步电机。

它通常用于发电机和大功率驱动装置。

8. 电机拖动:电力拖动是指利用电动机作为原动机来驱动生产机械。

它涉及电机的选择、控制和传动等方面。

9. 电机控制:电机的控制包括调速、反转、起动和制动等。

常见的电机控制方法包括变频调速、直流调速和步进电机控制等。

10. 电机性能:电机的性能指标包括转矩、功率、效率、转速、起动电流和转矩等。

了解这些指标对于选择和应用电机非常重要。

以上是《电机与拖动基础》课程中的一些重要知识点。

通过深入学习这些内容,您将能够理解电机的工作原理、特性和应用,为进一步学习和应用电机技术打下坚实的基础。

电机与拖动基础知识重点

电机与拖动基础知识重点

电机与拖动基础总复习试题类型一、填空题(每题1分,共20分)二、判断题(每题1分,共10分)三、单项选择题(每题2分,共20分)四、简答题(两题,共15分)五、计算题(三题,共35分):电力拖动系统动力学基础1.电力拖动系统一般由电动机、生产机械的传动机构、工作机构、控制设备和电源组成,通常又把传动机构和工作机构称为电动机的机械负载。

由电动机的电磁转矩T e与生产机械的负载转矩T L的关系:1)当T e = T L时,d n/d t = 0,表示电动机以恒定转速旋转或静止不动,电力拖动系统的这种运动状态被称为静态或稳态;2)若T e>T L时,d n/d t>0,系统处于加速状态;3)若T e<T L时,d n/d t<0,系统处于减速状态。

;也就是一旦d n/d t≠0 ,则转速将发生变化,我们把这种运动状态称为动态或过渡状态。

3.生产机械的负载转矩特性:直流电机原理1.直流电动机主要由定子、转子、电刷装置、端盖、轴承、通风冷却系统等部件组成。

定子由机座、主磁极、换向极、电刷装置等组成。

转子(又称电枢)由电枢铁心、电枢绕组、换向器、转轴和风扇等组成。

2.直流电机的绕组有五种形式:单叠绕组、单波绕组、复叠绕组、复波绕组和蛙绕组(叠绕和波绕混合绕组)。

,3 极距、绕组的节距(第一节距、第二节距、合成节距)的概念和关系。

4 单叠绕组把每个主磁极下的元件串联成一条支路,因此其主要特点是绕组的并联支路对数a 等于极对数n p 。

5 电枢反应:直流电机在主极建立了主磁场,当电枢绕组中通过电流时,产生电枢磁动势,也在气隙中建立起电枢磁场。

这时电机的气隙中形成由主极磁场和电枢磁场共同作用的合成磁场。

这种由电枢磁场引起主磁场畸变的现象称为电枢反应。

6 直流电机的励磁方式:dndT dn dT Le7直流电机的电枢电压方程和电动势:)直流电机电磁转矩e af f a T G I I =8 直流电动机功率方程ΦnC E e a =aT e ΦI C T =a a a I R E U a +=9直流电机工作特性a ae e R Un I C C =+ΦΦ,10 直流电动机励磁回路连接可靠,绝不能断开一旦励磁电流为0,则电机主磁通将迅速下降至剩磁磁通,若此时电动机负载较轻,电动机的转速将迅速上升,造成“飞车”;若电动机的负载为重载,则电动机的电磁转矩将小于负载转矩,使电机转速减小,但电枢电流将飞速增大,超过电动机允许的最大电流值,引起电枢绕组因大电流过热而烧毁。

电力拖动基础知识(1)

电力拖动基础知识(1)

6.行程开关
用作电路的限位保护、行程控制、自动切换等。都 是由触头系统、操作机构和外壳组成。其是利用生产机 械的运动部件碰压使其触头动作的。
电力拖动基础知识(1)

电力拖动基础知识(1)
自动空气断路器(自动开关)

作用:可实现短路、过载、失压保护。
结构:
过流 脱扣器
欠压 脱扣器
工作原理:过流时,过流脱扣器将脱钩顶开,断开电 源;欠压时,欠压脱扣器将脱钩顶开,断开电源。
电力拖动基础知识(1)
小型断路器—5SX系列
塑壳断路器
电路符号
电力拖动基础知识(1)
制动等动作,如接触器、继电器等。 (2) 保护电器:用来保护电动机,使其安全运行,以
及保护生产机械使其不受损坏,如熔断器、电流继电器等。 (3) 执行电器:用来操作、带动生产机械和支撑与保
持机械装置在固定位置上的一种元件,如电磁铁、电磁离合 器等。
大多数电器既可作控制电器,亦可作保护电器,它们 之间没有明显的界线。如电流继电器可按“电流”参量来 控制电动机,又可用来保护电动机不致过载;又如行程开 关既可用来控制工作台地加、减速及行程长度,又可作为 终端开关保护工作台不致闯到导轨外面去。
电力拖动基础知识(1)
其他:如RT0系列有添料封闭管式熔断器。
IF t
安秒特性
FU
电路符号
电力拖动基础知识(1)
5.按钮
按钮是一种专门用于手动发出控制信号的器件。属于主令 电器,它被广泛用各于种控制场合 ,其触头允许通过的电流 较小,一般不超过5A。主要在控制电路中发出指令或信号去 控制接触器、继电器等电器,再由他们去控制主电路的通断、 功能转换或电气联锁。
电力拖动基础知识(1)

电力拖动基础知识2篇

电力拖动基础知识2篇

电力拖动基础知识2篇电力拖动基础知识(上)一、定义电力拖动是指通过电机将动力传递给机械设备,实现运转的一种方式。

它通过电缆和插头连接电机和机械设备,可控性强、安全可靠、维护方便、结构简单,被广泛应用于工业生产中。

二、分类根据传动方式可以把电力拖动分为直接拖动和间接拖动。

直接拖动:电机轴与被传动设备轴一体化,由机座支撑。

间接拖动:电机轴和被传动设备轴不直接相连接,采用联轴器(容许轴向或角度偏差范围内的相连方法)或传动系(如齿轮、皮带轮、圆柱齿轮减速器等)相连。

根据电机放置位置不同,可将电力拖动分为水平放置和垂直放置。

水平放置:电机和被传动设备放置在同一水平面上。

垂直放置:电机和被传动设备放置在垂直位置上。

三、组成部分电力拖动主要由电机、电缆、插头、运动控制器和传动组成。

电机:根据被传动设备的不同,可选用交流电机、直流电机、异步电机、感应电机或步进电机等不同类型的电机。

电缆:电缆是把电能传送到电机的信道。

电缆选用规范应根据日常工作环境的情况和周围环境的影响,针对每个电力拖动系统进行衡量。

在选择电缆时应注意其工作电压、导体截面积及芯数等参数。

插头:插头用于连接电源和电机,使电路通断。

插头的选型和安装条件要根据具体的要求进行确定,不能选用不符合规定的插头。

运动控制器:运动控制器是实现电机启动、停止、转向、调速、保护等功能的关键设备,可选用PLC、变频器、伺服系统等。

传动:传动是指利用联轴器或传动系等设备,实现电机与被传动设备之间转矩传递的过程。

所选传动设备的型号要根据电机输出功率、转矩以及被传动设备的输出要求等多种因素进行综合评估。

四、优点1. 安全可靠:电力拖动传动系统是以电缆和插头为主要元件的,具有不易损坏、不易烧毁的特性,保证了设备安全可靠运行,并且电力拖动传动系统总是密闭运转,以减少环境污染。

2. 控制灵活:电力拖动具有启动方便、可调速、转向快速、调整方便等特点,可实现启动、停止、调速、反向、定位、同步等多种运动控制。

电力拖动教学计划

电力拖动教学计划

电力拖动教学计划引言概述:电力拖动是现代工业领域中广泛应用的一种技术,它通过电动机将电能转化为机械能,实现机械设备的运动。

为了提高学生对电力拖动技术的理解和应用能力,制定一套系统的电力拖动教学计划是非常必要的。

本文将从基础知识、实验教学、案例分析、实践应用和综合评估五个方面,详细阐述电力拖动教学计划的内容和方法。

一、基础知识1.1 电力拖动的基本原理详细介绍电力拖动的基本原理,包括电动机的工作原理、电力传动系统的组成和工作原理等。

1.2 电力拖动的分类和特点介绍电力拖动的分类,如直流电动机拖动、交流电动机拖动等,以及不同类型电动机的特点和适用范围。

1.3 电力拖动的控制方法阐述电力拖动的控制方法,包括直接启动、星角启动、变频启动等,以及各种启动方法的特点和应用场景。

二、实验教学2.1 实验设备和仪器介绍电力拖动实验室的设备和仪器,如电动机、变频器、控制柜等,以及实验室的布置和安全注意事项。

2.2 实验内容和步骤详细介绍电力拖动实验的内容和步骤,包括电动机的启动和停止、转速控制、负载特性测试等实验项目。

2.3 实验数据处理和分析指导学生如何正确处理和分析实验数据,通过实验结果分析电力拖动系统的性能和特点,培养学生的实验技能和数据分析能力。

三、案例分析3.1 电力拖动在工业自动化中的应用以实际工业自动化案例为例,分析电力拖动在工业生产中的应用,如机床、输送设备等,强调电力拖动的优势和效果。

3.2 电力拖动在能源节约中的作用以能源节约为主题,分析电力拖动在工业生产中的能源消耗情况,以及通过电力拖动技术实现的能源节约效果。

3.3 电力拖动在环境保护中的意义探讨电力拖动在环境保护中的作用,例如减少传统燃料的使用,降低污染排放等,引导学生关注电力拖动技术的环境价值。

四、实践应用4.1 电力拖动系统设计与调试引导学生进行电力拖动系统的设计与调试实践,包括电动机选型、传动装置设计、控制系统设计等,培养学生的实践操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力拖动基础知识
电力拖动基础知识
引言
电力拖动是指利用电动机将动力传递给装置或机械的一种技术。

它在现代工业中起着至关重要的作用,广泛应用于各个行业。

本文将介绍电力拖动的基础知识,包括电动机的工作原理、电力传动系统的组成以及一些常见的应用。

一、电动机的工作原理
电动机是电力拖动的核心部件,它将电能转换为机械能,通过轴向动力输出。

电动机的工作原理主要基于电磁感应和洛伦兹力。

1. 电磁感应
电磁感应是电动机实现转动的基本原理。

当电流通过电动机的线圈时,会在线圈周围产生磁场。

根据法拉第电磁感应定律,当磁场改变时,会在线圈中产生感应电动势。

这个电动势会与电源电压产生差异,导致电流流经线圈。

差异越大,电流越大。

2. 洛伦兹力
电动机实现转动的另一个原理是洛伦兹力。

当线圈中有电流通过时,它在磁场中受到力的作用。

根据右手定则,电流方向与磁场方向之间的关系将决定所受力的方向。

由于线圈的结构,导线受到力的方向相同,这将产生一个力矩,使电机开始旋转。

二、电力传动系统的组成
电力传动系统是电力拖动的基础,它由电动机、传动装置和负载组成,各部分通过轴连接。

1. 电动机
电动机是传动系统的动力源,它的类型有很多种。

常见的电动机包括直流电动机、交流异步电动机和交流同步电动机。

不同类型的电动机有不同的应用领域和工作原理。

2. 传动装置
传动装置用于将电动机的转速和转矩传递给负载。

常见的传动装置包括齿轮传动、皮带传动和链传动。

通过不同的传动装置,可以实现不同的转速和转矩要求。

3. 负载
负载是电力传动系统中的目标设备或机械。

它可以是任何需要动力传递的装置,如机床、输送带和风扇。

负载的特点和要求将决定电动机和传动装置的选择。

三、常见的电力拖动应用
电力拖动在工业中的应用广泛,以下是一些常见的应用领域:
1. 工业生产线
工业生产线通常需要大量的电力来驱动各种设备和机械。

电力拖动被广泛应用于各个环节,如输送链、旋转装置和起重机。

2. 交通运输
交通运输中的电力拖动主要应用于轨道交通和电动汽车。

电力拖动使得列车和电动汽车能够高效地行驶,降低能源消耗和环境污染。

3. 化工和石油工业
化工和石油工业通常需要处理大量的流体和物质。

电力拖动被用于泵、风机和搅拌机等设备,提供动力支持。

结论
电力拖动是现代工业中不可或缺的一部分,它通过电动机将电能转换为机械能,实现各种设备和机械的动力传递。

本文介绍了电动机的工作原理、电力传动系统的组成以及一些常见的应用领域。

了解电力拖动的基础知识,有助于我们更好地理解和应用这一技术。

相关文档
最新文档