人教版初二上册数学知识点归纳

合集下载

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳

人教版八年级数学上册知识点归纳一、有理数1.有理数的含义有理数包括正、负整数和正、负分数,用于表示数量大小和大小比较。

2.有理数的比较大小有理数的大小比较需要转化为相同分母再进行比较,也可以通过数轴来比较。

3.有理数的加减乘除有理数的加减乘除运算需要注意符号和分数的约分。

二、代数式1.代数式的定义含有未知量和运算符号的式子称为代数式,通常用字母表示未知量。

2.代数式的化简代数式的化简需要运用因式分解、公因式提取等方法。

3.代数式的展开代数式的展开需要运用乘法公式、同底数幂规律等方法。

三、一次函数1.一次函数的定义一次函数是指函数的最高次数为1的函数,通常表示为y=kx+b。

2.一次函数图像的性质一次函数的图像是直线,可以通过截距和斜率来确定其位置和性质。

3.一次函数的应用利用一次函数可以解决很多线性方程和实际问题,如直线运动、比例关系等。

四、平方根1.平方根的定义对于正实数a,其平方根b满足b²=a,即b是a的正平方根。

2.平方根的性质平方根具有非负性、单调性、开方运算和分配律等性质。

3.平方根的应用平方根可以用于求解勾股定理、面积和体积等计算问题。

五、二次根式1.二次根式的定义含有形如a√b(a和b均为实数,且b>0)的式子称为二次根式。

2.二次根式的化简二次根式的化简需要运用有理化分母和分解质因数等方法。

3.二次根式的应用二次根式可以用于求解勾股定理、面积和体积等计算问题,也常见于三角函数的定义式中。

以上是人教版八年级数学上册的知识点归纳,涉及到有理数、代数式、一次函数、平方根和二次根式等内容,对学习和掌握初中数学知识有很大帮助。

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳

人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

-按角分类:锐角三角形、直角三角形、钝角三角形。

-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。

3. 三角形的内角和与外角和-三角形内角和为180°。

-三角形的外角等于与它不相邻的两个内角之和。

三角形外角和为360°。

4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。

-全等三角形的对应边相等、对应角相等。

2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。

- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。

2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

-线段垂直平分线上的点与这条线段两个端点的距离相等。

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳第十一章三角形一、与三角形有关的线段1.三角形的定:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。

记作:△ABC72.三角形三边的关系:两边之和大于第三边。

三角形的两边的差一定小于第三边。

二、三角形的高、中线与角平分线1.高:从三角形的顶点向它所对的边做垂线,所得的线段叫三角形这个边上的高。

2.中线:连接项点和它所对的边的中点,所得的线段叫三角形这个边上的中线。

3.角平分线:三角形一个顶角的平分线与它所对的边相交,所得的线段叫三角形的角平分线。

三、三角形的稳定性三角形具有稳定性,四边形没有稳定性。

四、与三角形有关的角1.内角:三角形的内角和等于180。

2.外角:三角形一边与另一边的延长线组成的角叫三角形的外角。

①三角形一个外角等于与它不相邻的两个内角的和。

②三角形一个外角大于与它不相邻的任何一个内角。

3多边形及其内角1.多边形:由有一些线段首位顺次相接组成的图形叫做多边形2.多边形内角:多边形相邻两边组成的角叫做它的内角,3.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

4.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5.凸多边形:画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。

6.正多边形各个角都相等,各条边都相等的多边形叫做正多边形。

7.如果说四边形的一对角互补,那么另一组角也互补。

8.多边形的内角和:n边形的内角和等于180°某(n-2);9.多边形的外角和等于360。

(n边形的边=(内角和÷180°)+2;过n边形一个顶点有(n-3)条对角线;n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形)五、等腰三角形1.等腰三角形:有两条边相等的三角形,叫做等腰三角形。

(相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳

人教版八年级上册数学课本知识点归纳第十五章:整式的乘除与因式分解一、整式的乘法1.同底数幂的乘法规则是:am·an=am+n(m,n都是正整数)。

即同底数幂相乘,底数不变,指数相加。

2.幂的乘法规则是:(am)n=amn(m,n都是正整数)。

即幂的乘方,底数不变,指数相乘。

3.积的乘法规则是:(ab)n=an·bn(n为正整数)。

即乘方的积等于积的乘方。

4.单项式与单项式相乘的规则是:(1)系数与系数相乘;(2)同底数幂与同底数幂相乘;(3)其余字母及其指数不变作为积的因式。

5.单项式与多项式相乘的规则是:用单项式去乘多项式的每一项,再把所得的积相加。

6.多项式与多项式相乘的规则是:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

二、乘法公式1.平方差公式:(a+b)(a-b)=a2-b2.2.完全平方公式:(a±b)2=a2±2ab+b2.口诀:前平方,后平方,积的两倍中间放,中间符号看情况。

(这个情况就是前后两项同号得正,异号得负。

)3.添括号:添括号时,如果括号前面是正号,括到括号里面的各项都不变符号;如果括号前面是负号,括到括号里面的各项都改变符号。

三、整式的除法1.am÷an==am-n(a≠,m,n都是正整数,且m>n)。

即同底数幂相除,底数不变,指数相减。

2.a=1(a≠)。

任何不等于1的数的次幂都等于1.3.单项式除以单项式的规则是:(1)系数相除;(2)同底数幂相除;(3)只在被除式里的幂不变。

4.多项式除以单项式的规则是:先把这个多项式的每一项分别除以单项式,再把所得的商相加。

四、因式分解1.因式分解是把一个多项式化成几个整式乘积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2.公因式是一个多项式中各项都含有的相同的因式。

3.分解因式的方法:1) 提公因式法:ma+mb+mc =m(a+b+c)。

初二数学上册知识点总结人教版

初二数学上册知识点总结人教版

初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,则称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx 经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。

在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。

培养学生良好的变化与对应意识,体会数形结合的思想。

在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

初二数学知识点总结归纳运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二上册数学知识点归纳【导语】学习中的困难莫过于一节一节的台阶,虽然台阶很陡,但只要一步一个脚印的踏,攀登一层一层的台阶,才能实现学习的理想。

祝你学习进步!下面是作者为您整理的《人教版初二上册数学知识点归纳》,仅供大家参考。

【篇一】1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22定理1关于某条直线对称的两个图形是全等形23定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28定理四边形的内角和等于360°29四边形的外角和等于360°30多边形内角和定理n边形的内角的和等于(n-2)×180°31推论任意多边的外角和等于360°32平行四边形性质定理1平行四边形的对角相等33平行四边形性质定理2平行四边形的对边相等34推论夹在两条平行线间的平行线段相等35平行四边形性质定理3平行四边形的对角线相互平分36平行四边形判定定理1两组对角分别相等的四边形是平行四边形37平行四边形判定定理2两组对边分别相等的四边形是平行四边形38平行四边形判定定理3对角线相互平分的四边形是平行四边形39平行四边形判定定理4一组对边平行相等的四边形是平行四边形40矩形性质定理1矩形的四个角都是直角41矩形性质定理2矩形的对角线相等42矩形判定定理1有三个角是直角的四边形是矩形43矩形判定定理2对角线相等的平行四边形是矩形44菱形性质定理1菱形的四条边都相等45菱形性质定理2菱形的对角线相互垂直,并且每一条对角线平分一组对角46菱形面积=对角线乘积的一半,即S=(a×b)÷247菱形判定定理1四边都相等的四边形是菱形48菱形判定定理2对角线相互垂直的平行四边形是菱形49正方形性质定理1正方形的四个角都是直角,四条边都相等50正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角51定理1关于中心对称的两个图形是全等的52定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分53逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称54等腰梯形性质定理等腰梯形在同一底上的两个角相等55等腰梯形的两条对角线相等56等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形57对角线相等的梯形是等腰梯形58平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等59推论1经过梯形一腰的中点与底平行的直线,必平分另一腰60推论2经过三角形一边的中点与另一边平行的直线,必平分第三边61三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半62梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h【篇二】一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区分与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回想1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)五、(等边三角形)知识点回想1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

①、等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

②、等腰三角形的其他性质:(1)等腰直角三角形的两个底角相等且等于45°(2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

(3)等腰三角形的三边关系:设腰长为a,底边长为b,则(4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=③、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

④、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区分三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线相互平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

【篇三】1.提公共因式法※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的情势.这种分解因式的方法叫做提公因式法.如:※2.概念内涵:(1)因式分解的最后结果应当是“积”;(2)公因式多是单项式,也多是多项式;(3)提公因式法的理论根据是乘法对加法的分配律,即:※3.易错点点评:(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.2.运用公式法※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.※2.主要公式:(1)平方差公式:(2)完全平方公式:¤3.易错点点评:因式分解要分解到底.如就没有分解到底.※4.运用公式法:(1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍.3.因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来到达分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范畴内不能再分解为止.4.分组分解法:※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.如:※2.概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可连续分解,分组后是否可利用公式法连续分解因式.※3.注意:分组时要注意符号的变化.5.十字相乘法:※1.对于二次三项式,将a和c分别分解成两个因数的乘积,,,且满足,常常写成的情势,将二次三项式进行分解.如:※2.二次三项式的分解:※3.规律内涵:(1)知道:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.※4.易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采取多项式乘法还原后检验分解的是否正确.。

相关文档
最新文档