八年级上册数学知识点归纳总结

合集下载

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结
一、轴对称图形
轴对称图形的性质包括对应线段相等和对应角相等。

在画出一个图形关于某条直线的轴对称图形时,需要找到关键点,画出这些关键点的对应点,然后按照原图顺序依次连接各点。

二、等腰三角形和等边三角形
等腰三角形的两个底角相等,顶角平分线、底边上的高、底边上的中线互相重合,称为“三线合一”。

判定一个三角形是否为等腰三角形,可以通过等角对等边的性质。

等边三角形的三个内角都相等,每个角都是60°。

如果一个等腰三角形有一个角是60°,那么它就是等边三角形。

三、整式的乘法
整式的乘法包括单项式与单项式相乘,以及单项式与多项式相乘。

在单项式与单项式相乘时,需要将它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

四、函数
函数是描述变量之间关系的一种方式。

在函数中,x是自变量,y 是因变量。

函数的表示法有三种:关系式(解析)法、列表法和图象法。

五、圆
圆的周长是图形一周的长度,直径所在的直线是圆的对称轴。

圆的最长的弦是直径,直径是过圆心的弦。

圆周率(π)是圆的周长与
直径的比值,通常取π≈3.14。

圆周角是顶点在圆周上,且它的两边分别与圆有另一个交点的角,它等于相同弧所对的圆心角的一半。

以上知识点是八年级上册数学的主要内容,掌握这些知识点对于理解数学概念和解决实际问题都非常重要。

八年级数学上册知识要点总结

八年级数学上册知识要点总结

八年级数学上册知识要点总结八年级数学上册知识归纳一、算术平方根1.算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。

0的算术平方根为0;2.平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。

3.开平方:求一个数a的平方根的运算(与平方互为逆运算)4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。

二、立方根1.立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。

2.开立方:求一个数a的立方根的运算(与立方互为逆运算)。

3.立方根性质:正数的立方根是正数;负数的立方根是负数。

0的立方根是0;三、实数1.无理数:无限不循环小数。

如:π、√2、√32.实数:有理数和无理数统称实数。

实数都可以用数轴上的点表示。

八年级数学知识总结一、正方形定义:一个角是直角的菱形或邻边相等的矩形。

性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。

判定定理:1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

二、梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

1、直角梯形的定义:有一个角是直角的梯形2、等腰梯形的定义:两腰相等的'梯形。

等腰梯形的性质:1、同一底边上的两个角相等;2、两条对角线相等;3、两腰相等;4、对称性:轴对称图形。

等腰梯形判定定理:1、两腰相等的梯形是等腰梯形;2、同一底上两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形;八年级数学知识重点一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。

3、勾股数:满足a2b2c2的三个正整数,称为勾股数。

二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。

2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。

八年级上册数学知识点归纳笔记

八年级上册数学知识点归纳笔记

八年级上册数学知识点归纳笔记
一、代数式与方程
1.代数式的定义:
代数式是由系数、变量、常数组成的数学表达式。

2.等式与方程的定义:
•等式是指一个数学表达式左边等于右边;
•方程是指等式中间带有未知数,令两边等式相等求解未知数的数学问题。

3.代数方程及解法:
•一元一次方程:解法为常规解法,通过移项把未知数移到右边,然后除以系数求得解。

•一元二次方程:解法为利用一元二次方程的解法,把一元二次方程转换为一元一次方程,然后利用常规解法求解。

二、向量
1.向量的定义:
向量是由它的起点、终点和方向组成的数学实体。

2.集合的定义:
集合是指一组拥有共有特征的元素集合。

3.向量的几何意义:
可以用向量表示物体间的位置关系,可以用向量刻画物体间的运动关系,可以利用向量分析物体间的力学、热力学等关系。

4.向量的运算:
(1)向量的加法:把两个向量的起点(或终点)重合,然后把它们的箭头连接起来,即为两个向量的和。

(2)向量的数量积:把一个向量与一个数学量相乘,其结果也是一个向量,称为向量的数量积。

(3)向量的点积:把两个向量单独分别乘以对应的分量,然后把乘积相加,得到的结果是一个实数,称为向量的点积。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边:组成三角形的三条线段叫做三角形的边。

3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。

4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。

(2)直角三角形:有一个角是直角的三角形。

(3)钝角三角形:有一个角是钝角的三角形。

2、按边分类:(1)不等边三角形:三条边都不相等的三角形。

(2)等腰三角形:有两条边相等的三角形。

其中,相等的两条边叫做腰,另一条边叫做底边。

两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

(3)等边三角形:三条边都相等的三角形,也叫正三角形。

(三)三角形的三边关系1、三角形任意两边之和大于第三边。

2、三角形任意两边之差小于第三边。

(四)三角形的内角和定理三角形三个内角的和等于 180°。

(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

2、三角形的一个外角等于与它不相邻的两个内角的和。

3、三角形的一个外角大于与它不相邻的任何一个内角。

二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(二)全等三角形的性质1、全等三角形的对应边相等。

2、全等三角形的对应角相等。

(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。

2、两边和它们的夹角分别相等的两个三角形全等(SAS)。

3、两角和它们的夹边分别相等的两个三角形全等(ASA)。

4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。

5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。

三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳八年级上册数学主要包括整数的加减乘除、分式、一元一次方程与一次方程组等内容。

以下是对这些知识点的详细总结和归纳。

一、整数的加减乘除1. 整数的概念:整数包括正整数、负整数和0。

整数是数轴上的点,可以进行加减乘除计算。

2. 整数的加减法:同号两个数相加、异号两个数相减。

同号两个数相加,取相同的符号,然后将它们的绝对值相加;异号两个数相减,取绝对值大的符号,然后用绝对值大的数减去绝对值小的数,差的符号与绝对值大的数的符号相同。

3. 整数的乘法:同号两个数相乘得正,异号两个数相乘得负。

两个数相乘时,先将它们的绝对值相乘,再确定符号。

4. 整数的除法:同号两个数相除得正,异号两个数相除得负。

两个数相除时,先将被除数和除数的绝对值相除,再确定符号。

5. 整数运算的性质:加法交换律、结合律;乘法交换律、结合律;加法与乘法的相互分配律;零的性质:任何整数与0相加等于自身;乘法的零性质:任何整数与0相乘等于0;除法的性质:0不能作为除数。

二、分式1. 分式的概念:分式是一个整数分母和分子组成的表达式,包括真分式和假分式。

其中,分母不为0。

2. 分式的加减乘除:加减法:先通分,再进行加减法;乘法:先化简为最简分式,再进行乘法;除法:倒数再乘。

3. 分式的性质:分式也遵循加法交换律、结合律和乘法交换律、结合律;负数分式化成最简分式时,分母为正。

三、一元一次方程1. 一元一次方程的概念:一元一次方程是指只含有一个未知数的一次方程,且未知数的最高次数为1。

2. 解一元一次方程的基本方法:通过移项变元、整理方程式,最终得到未知数的值。

3. 一元一次方程的应用:一元一次方程在解决实际问题中的应用非常广泛,如人头问题、水池问题、速度问题等。

四、一元一次方程组1. 一元一次方程组的概念:一元一次方程组是指由两个或两个以上的一元一次方程组成的方程组。

2. 一元一次方程组的解法:通过分别解方程组中的各个方程,最终得到未知数的值。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳一、实数1. 有理数和无理数的概念- 有理数:可以表示为两个整数的比的数- 无理数:不能表示为两个整数的比的数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的概念和运算- 实数的性质和比较大小二、代数表达式1. 单项式和多项式- 单项式的定义和度量- 多项式的定义、次数和系数2. 代数式的加减运算- 合并同类项- 去括号法则3. 代数式的乘法运算- 单项式乘单项式- 单项式乘多项式- 多项式乘多项式4. 代数式的因式分解- 提公因式法- 公式法(如平方差公式、完全平方公式)三、方程与不等式1. 一元一次方程- 方程的建立和解法- 方程的解的检验2. 一元一次不等式- 不等式的概念和性质- 不等式的解法- 不等式的解集表示3. 二元一次方程组- 代入法解方程组- 消元法解方程组- 方程组的解的情况分析四、几何1. 平行线与角- 平行线的判定和性质- 同位角、内错角、同旁内角- 角的分类(锐角、直角、钝角、平角、周角)2. 三角形- 三角形的基本性质- 三角形的内角和外角性质- 等腰三角形和等边三角形的性质- 三角形的中线、高线、角平分线3. 四边形- 四边形的定义和分类- 矩形、菱形、正方形的性质- 平行四边形的性质4. 圆的基本性质- 圆的定义和圆心、半径- 弦、直径、弧、半圆- 圆周角和圆心角的关系- 切线的概念和性质五、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 统计图表的绘制(如条形图、饼图)2. 概率- 随机事件的概念- 概率的计算方法- 等可能事件的概率六、应用题- 利用所学知识解决实际问题- 培养数学建模和逻辑推理能力请注意,以上内容是根据一般八年级上册数学教材的常见知识点进行归纳,具体的教学大纲和知识点可能会根据不同地区和版本的教材有所差异。

教师和学生应参考具体的教材和教学大纲来确定学习重点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学知识点归纳总结很多学生到了八年级数学成绩开始下降,其实很大一部分原因是没有掌握好课本的基础知识。

下面是小编为大家整理的关于八年级上册数学知识点归纳,希望对您有所帮助!八年级上册数学知识点总结一、轴对称图形1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点。

3、轴对称图形和轴对称的区别与联系。

4、轴对称的性质。

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2、线段垂直平分线上的点与这条线段的两个端点的距离相等。

3、与一条线段两个端点距离相等的点,在线段的`垂直平分线上。

三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。

关于y轴对称的点横坐标互为相反数,纵坐标相等。

2、三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。

四、(等腰三角形)知识点回顾1、等腰三角形的性质。

①、等腰三角形的两个底角相等。

(等边对等角)②、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)五、(等边三角形)知识点回顾1、等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

等腰三角形的性质与判定等腰三角形性质等腰三角形判定中线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。

角平分线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。

角等边对等角等角对等边边底的一半<腰长<周长的一半两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

初中八年级数学知识点总结归纳三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形8、多边形的内角:多边形相邻两边组成的角叫做它的内角9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.四边形1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3、平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4、三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5、直角三角形斜边上的中线等于斜边的一半。

6、矩形的定义:有一个角是直角的平行四边形。

7、矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD8、矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9、菱形的定义:邻边相等的平行四边形。

10、菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11、菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。

图形的平移与旋转1、平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2、平移性质(1)图形平移前后的形状和大小没有变化,只是位置发生变化。

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

(3)多次连续平移相当于一次平移。

(4)偶数次对称后的图形等于平移后的图形。

(5)平移是由方向和距离决定的。

(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等。

八年级上册数学知识点总结归纳三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

全等三角形1、全等三角形的性质:全等三角形的对应角相等、对应边相等。

2、三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)实数1、一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.a叫做被开方数。

2、一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。

3、一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方。

4、任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数。

5、无限不循环小数又叫无理数。

6、有理数和无理数统称实数。

7、数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的。

相关文档
最新文档