归并排序详解
python 归并排序详解

python 归并排序详解
【原创版】
目录
1.归并排序的基本原理
2.归并排序的实现方法
3.归并排序的性能分析
4.归并排序的应用示例
正文
一、归并排序的基本原理
归并排序(Merge Sort)是一种分治思想的排序算法。
它的基本原理是将原始数组分成两个子数组,然后对这两个子数组分别进行排序,最后将排序好的子数组合并成一个完整的有序数组。
归并排序是不断将数组分成子数组并排序,然后再合并子数组的过程,以此达到整个数组有序的目的。
二、归并排序的实现方法
归并排序的实现方法主要分为两个步骤:归并排序子数组和合并有序子数组。
1.归并排序子数组
归并排序子数组的过程是通过递归实现的。
假设原始数组为 arr,我们可以将其分成两个子数组,分别为 left 和 right。
然后对 left 和right 分别进行归并排序,直到数组长度为 1(此时数组天然有序)。
2.合并有序子数组
合并有序子数组的过程比较简单。
假设 left 和 right 已经是有序的子数组,我们只需要遍历这两个数组,将元素依次放入结果数组中。
当
left 和 right 的元素都为空时,说明合并完成,结果数组就是最终的有序数组。
三、归并排序的性能分析
归并排序的时间复杂度为 O(nlogn),空间复杂度为 O(n)。
其中,n 为原始数组的长度。
归并排序的性能主要取决于子数组的划分和合并过程,由于子数组的划分是均匀的,因此合并过程的时间复杂度为 O(n)。
python 归并排序详解

python 归并排序详解摘要:一、归并排序的基本概念二、归并排序的算法实现1.递归实现2.非递归实现三、归并排序的优化1.优化空间复杂度2.优化时间复杂度四、归并排序的应用与实战五、总结与拓展正文:一、归并排序的基本概念归并排序(Merge Sort)是一种分治思想的排序算法。
它将待排序的序列分成两部分,分别对这两部分进行递归排序,然后将排序好的两部分合并成一个有序序列。
这个过程一直重复,直到整个序列被排序。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
二、归并排序的算法实现1.递归实现归并排序的递归实现如下:```pythondef merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]left_half = merge_sort(left_half)right_half = merge_sort(right_half)return merge(left_half, right_half) def merge(left, right):result = []i = j = 0while i < len(left) and j < len(right): if left[i] < right[j]:result.append(left[i])i += 1else:result.append(right[j])j += 1result += left[i:]result += right[j:]return resultarr = [38, 27, 43, 3, 9, 82, 10]print(merge_sort(arr))```2.非递归实现归并排序的非递归实现如下:```pythondef merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]left_half = merge_sort(left_half)right_half = merge_sort(right_half)return merge(left_half, right_half) def merge(left, right):result = []i = j = 0while i < len(left) and j < len(right): if left[i] < right[j]:result.append(left[i])i += 1else:result.append(right[j])j += 1result += left[i:]result += right[j:]return resultarr = [38, 27, 43, 3, 9, 82, 10]print(merge_sort(arr))```三、归并排序的优化1.优化空间复杂度归并排序的空间复杂度为O(n),可以通过合并过程中的数组切片实现空间优化,将空间复杂度降低到O(logn)。
python 归并排序详解

python 归并排序详解摘要:一、归并排序的介绍1.归并排序的定义2.归并排序的特点二、归并排序的基本思想1.分治思想2.归并的过程三、归并排序的Python 实现1.递归实现2.迭代实现四、归并排序的时间复杂度分析1.最好情况2.最坏情况3.平均情况五、归并排序的优缺点分析1.优点2.缺点六、总结1.归并排序的应用场景2.与其他排序算法的比较正文:一、归并排序的介绍归并排序是一种分治思想的排序算法,通过递归地将待排序的数组分为两半,分别对这两半进行排序,然后将排序好的两个子数组合并成一个有序数组。
归并排序的时间复杂度为O(nlogn),是一种效率较高的排序算法。
二、归并排序的基本思想1.分治思想:将一个大问题分解成若干个相同的小问题,然后逐个解决这些小问题,最后将小问题的解合并得到大问题的解。
2.归并的过程:归并排序的基本思想是将待排序的数组不断分为两半,分别对这两半进行排序,然后将排序好的两个子数组合并成一个有序数组。
具体过程分为以下几个步骤:a.初始化两个指针i 和j,分别指向待排序数组的第一个元素和中间元素。
b.比较i 和j 指向的元素,将较小的元素放入临时数组t 中,并将指向较小元素的指针向后移动一位。
c.重复步骤b,直到i 或j 指向数组的末尾。
d.将t 中的元素复制回待排序数组,从t 的起始位置开始,直到t 的末尾。
三、归并排序的Python 实现1.递归实现:```pythondef merge_sort(arr):if len(arr) <= 1:return arrmid = len(arr) // 2left = arr[:mid]right = arr[mid:]left = merge_sort(left)right = merge_sort(right)return merge(left, right)```2.迭代实现:```pythondef merge_sort(arr):size = len(arr)for mid in range(1, size):left = arr[:mid]right = arr[mid:]left = merge_sort(left)right = merge_sort(right)arr = merge(left, right) return arr```四、归并排序的时间复杂度分析1.最好情况:当待排序数组已经是有序的时候,归并排序只需要进行一次归并操作,时间复杂度为O(n)。
算法—4.归并排序(自顶向下)

算法—4.归并排序(⾃顶向下)1.基本思想将两个有序的数组归并成⼀个更⼤的有序数组,很快⼈们就根据这个操作发明了⼀种简单的递归排序算法:归并排序。
要将⼀个数组排序,可以先(递归地)将它分成两半分别排序,然后将结果归并起来。
你将会看到,归并排序最吸引⼈的性质是它能够保证将任意长度为N的数组排序所需时间和NlogN成正⽐;它的主要缺点则是它所需的额外空间和N成正⽐。
简单的归并排序如下图所⽰:原地归并的抽象⽅法:实现归并的⼀种直截了当的办法是将两个不同的有序数组归并到第三个数组中,实现的⽅法很简单,创建⼀个适当⼤⼩的数组然后将两个输⼊数组中的元素⼀个个从⼩到⼤放⼊这个数组中。
public void merge(Comparable[] a, int lo, int mid, int hi){int i = lo, j = mid+1;//将a[lo..hi]复制到aux[lo..hi]for (int k = lo; k <= hi; k++) {aux[k] = a[k];}//归并回到a[lo..hi]for (int k = lo; k <= hi; k++) {if(i > mid){a[k] = aux[j++];}else if(j > hi){a[k] = aux[i++];}else if(less(aux[j], aux[i])){a[k] = aux[j++];}else{a[k] = aux[i++];}}}以上⽅法会将⼦数组a[lo..mid]和a[mid+1..hi]归并成⼀个有序的数组并将结果存放在a[lo..hi]中。
在归并时(第⼆个for循环)进⾏了4个条件判断:左半边⽤尽(取右半边的元素)、右半边⽤尽(取左半边的元素)、右半边的当前元素⼩于左半边的当前元素(取右半边的元素)以及右半边的当前元素⼤于等于左半边的当前元素(取左半边的元素)。
2.具体算法/*** ⾃顶向下的归并排序* @author huazhou**/public class Merge extends Model{private Comparable[] aux; //归并所需的辅助数组public void sort(Comparable[] a){System.out.println("Merge");aux = new Comparable[a.length]; //⼀次性分配空间sort(a, 0, a.length - 1);}//将数组a[lo..hi]排序private void sort(Comparable[] a, int lo, int hi){if(hi <= lo){return;}int mid = lo + (hi - lo)/2;sort(a, lo, mid); //将左半边排序sort(a, mid+1, hi); //将右半边排序merge(a, lo, mid, hi); //归并结果}} 此算法基于原地归并的抽象实现了另⼀种递归归并,这也是应⽤⾼效算法设计中分治思想的最典型的⼀个例⼦。
二分归并排序的时间复杂度以及递推式

一、简介二分归并排序是一种常见的排序算法,它通过将问题分解为子问题,并将子问题的解合并来解决原始问题。
该算法的时间复杂度非常重要,因为它直接影响算法的效率和性能。
在本文中,我们将深入探讨二分归并排序的时间复杂度,并通过递推式来进一步分析算法的性能。
二、二分归并排序的时间复杂度1. 分析在二分归并排序中,时间复杂度可以通过以下三个步骤来分析:- 分解:将原始数组分解为较小的子数组。
- 解决:通过递归调用来对子数组进行排序。
- 合并:将排好序的子数组合并为一个整体有序的数组。
2. 时间复杂度在最坏情况下,二分归并排序的时间复杂度为O(nlogn)。
这是因为在每一层递归中,都需要将数组分解为两个规模近似相等的子数组,并且在每一层递归的最后都需要将这两个子数组合并起来。
可以通过递推式来进一步证明算法的时间复杂度。
3. 递推式分析我们可以通过递推式来分析二分归并排序的时间复杂度。
假设对规模为n的数组进行排序所需的时间为T(n),则可以得到以下递推式:T(n) = 2T(n/2) +其中,T(n/2)表示对规模为n/2的子数组进行排序所需的时间表示将两个子数组合并所需的时间。
根据递推式的定义,我们可以得到二分归并排序的时间复杂度为O(nlogn)。
三、结论与个人观点通过以上分析,我们可以得出二分归并排序的时间复杂度为O(nlogn)。
这意味着该算法在最坏情况下也能保持较好的性能,适用于大规模数据的排序。
我个人认为,二分归并排序作为一种经典的排序算法,其时间复杂度的分析对于理解算法的工作原理和性能至关重要。
通过深入研究递推式,可以更加直观地理解算法的性能表现,为进一步优化算法提供了重要的参考依据。
四、总结在本文中,我们探讨了二分归并排序的时间复杂度,通过分析和递推式的方式深入理解了该算法的性能表现。
通过对时间复杂度的分析,我们对算法的性能有了更深入的认识,并且能够更好地理解算法在实际应用中的表现。
相信通过本文的阅读,读者能够对二分归并排序有更全面、深刻和灵活的理解。
算法21--内部排序--归并排序

实现这种递归调用的关键是为过程建立递归调用工作栈。通 常,在一个过程中调用另一过程时,系统需在运行被调用过 程之前先完成3件事:
(1)将所有实参指针,返回地址等信息传递给被调用过程; (2)为被调用过程的局部变量分配存储区; (3)将控制转移到被调用过程的入口。 在从被调用过程返回调用过程时,系统也相应地要完成3件事: (1)保存被调用过程的计算结果; (2)释放分配给被调用过程的数据区; (3)依照被凋用过程保存的返回地址将控制转移到调用过程.
实际的意义:可以把一个长度为n 的无序序列看成 是 n 个长度为 1 的有序子序列 ,首先做两两归 并,得到 n/2 个长度为 2 的子序列;再做两两 归并,…,如此重复,直到最后得到一个长度为 n
的有序序列。
归并排序
初始序列
[49] [38] [65] [97 [76] [13] [27]
第一步 第二步
T(1)=1 T(n)=kT(n/m)+f(n)
2019/10/20
归并排序时间复杂性分析
• 合并趟数: log2n • 每趟进行比较的代价 n • 总的代价为 T(n) = O ( nlog2n ) • 在一般情况下:
c
n=1
T(n) =
T( n/2 ) + T( n/2 ) + cn n>1
优缺点:Ω的这个定义的优点是与O的定义对称,缺点 是当 f(N) 对自然数的不同无穷子集有不同的表达式, 且有不同的阶时,未能很好地刻画出 f(N)的下界。
2019/10/20
f(n) cg(n)
n0
n
2019/10/20
代入法解递归方程
方法的关键步骤在于预先对解答作出推测,然后用 数学归纳法证明推测的正确性。
归并排序PPT课件

.
12
10.6 基数排序
❖ “花色”优先
先分成4堆; 然后,每堆再按“面值”排; 最后,收成一堆。
扑克牌 “排序” 为例
.
13
10.6 基数排序
❖ “面值”优先
先分成13堆; 每堆再按“花色”排;
扑克牌 “排序” 为例
.
14
10.6 基数排序
❖ 多关键码排序
假设有n个记录……的序列 { R1, R2, …,Rn}
.
24
10.6.2 链式基数排序
分配 算法
.
25
10.6.2 链式基数排序
收集 算法
.
26
10.6.2 链式基数排序
❖ 性能分析
若每个关键码有d 位,需要重复执行d 趟“分配” 与“收集”。而每趟对n 个对象进行“分配”, 对r 个队列进行“收集”。总时间复杂度为O(d (n+r))。
若基数r相同,对于数据个数较多而关键码位数
.
5
初始关键字: [49] [38] [65] [97] [76] [13] [27] 一趟归并后: [38 49] [65 97] [13 76] [27] 二趟归并后: [38 49 65 97] [13 27 76] 三趟归并后: [13 27 38 49 65 76 97]
.
6
10.5 归并排序
每个记录Ri中含有d个关键字(Ki0, Ki1, …,Kid-1)。则 有序是指:对于序列中任意两个记录Ri和Rj(1≤i<j≤n) 都满足下列(词典)有序关系:
(Ki0, Ki1, …,Kid-1)< (Kj0, Kj1, …,Kjd-1) 其中K0被称为“最高”位关键字,Kd-1被称为 “最低” 位关键字。
二叉树的快速排序、归并排序方法

二叉树的快速排序、归并排序方法一、快速排序快速排序采用的是分治法策略,其基本思路是先选定一个基准数(一般取第一个元素),将待排序序列抽象成两个子序列:小于基准数的子序列和大于等于基准数的子序列,然后递归地对这两个子序列排序。
1. 递归实现(1)选定基准数题目要求采用第一个元素作为基准数,因此可以直接将其取出。
(2)划分序列接下来需要将待排序序列划分成两个子序列。
我们定义两个指针 i 和 j,从待排序序列的第二个元素和最后一个元素位置开始,分别向左和向右扫描,直到 i 和 j 相遇为止。
在扫描过程中,将小于等于基准数的元素移到左边(即与左侧序列交换),将大于基准数的元素移到右边(即与右侧序列交换)。
当 i=j 时,扫描结束。
(3)递归排序子序列完成划分后,左右两个子序列就确定了下来。
接下来分别对左右两个子序列递归调用快速排序算法即可。
2. 非递归实现上述方法是快速排序的递归实现。
对于大量数据或深度递归的情况,可能会出现栈溢出等问题,因此还可以使用非递归实现。
非递归实现采用的是栈结构,将待排序序列分成若干子序列后,依次将其入栈并标注其位置信息,然后将栈中元素依次出栈并分割、排序,直至栈为空。
二、归并排序归并排序同样采用的是分治思想。
其基本思路是将待排序序列拆分成若干个子序列,直至每个子序列只有一个元素,然后将相邻的子序列两两合并,直至合并成一个有序序列。
1. 递归实现(1)拆分子序列归并排序先将待排序序列进行拆分,具体方法是将序列平分成两个子序列,然后递归地对子序列进行拆分直至每个子序列只剩下一个元素。
(2)合并有序子序列在完成子序列的拆分后,接下来需要将相邻的子序列两两合并为一个有序序列。
我们先定义三个指针 i、j 和 k,分别指向待合并的左侧子序列、右侧子序列和合并后的序列。
在进行合并时,从两个子序列的起始位置开始比较,将两个子序列中较小的元素移动到合并后的序列中。
具体操作如下:- 当左侧子序列的第一个元素小于等于右侧子序列的第一个元素时,将左侧子序列的第一个元素移动到合并后的序列中,并将指针 i 和 k 分别加 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归并排序详解
归并排序是一种常见的排序算法,它采用了分治的思想,将待排序的
序列分成若干个小的子序列,然后每个子序列内部进行排序,最后将
所有子序列合并成一个有序的序列。
归并排序的时间复杂度为
O(nlogn),具有稳定性。
归并排序的过程可以分为以下三个步骤:
1.分:将待排序的序列分成若干个子序列,然后对每个子序列进行排序。
其中,子序列的长度为1时即认为这个子序列有序,然后将这些有序
的子序列合并成更长的有序序列(长度为2);最终再合并成更长的有序序列(长度为4),以此类推。
2.治:合并两个有序序列,使之成为一个有序序列。
可以采用双指针法,比较两个有序序列当前位置的元素,将小的元素放入临时数组中,重
复此步骤直到所有的元素都被放入新数组中。
3.合:将所有子序列合并成一个有序序列。
下面是归并排序的示例代码:
```python
def merge_sort(arr):
if len(arr) < 2:
return arr # 当序列只有一个元素时,认为它是有序的
mid = len(arr) // 2 # 找到序列中间的位置
left = merge_sort(arr[:mid]) # 对左半部分进行排序
right = merge_sort(arr[mid:]) # 对右半部分进行排序
return merge(left, right) # 合并左右两个有序序列
def merge(left, right):
res = [] # 临时数组
i, j = 0, 0 # 双指针,分别指向左右两个有序序列的起点
while i < len(left) and j < len(right):
if left[i] <= right[j]:
res.append(left[i])
i += 1
else:
res.append(right[j])
j += 1
res += left[i:] # 如果左半部分有剩余,将其全部放入临时数组 res += right[j:] # 如果右半部分有剩余,将其全部放入临时数组 return res
```
归并排序是一种相对简单的排序算法,稳定性好,应用领域很广。
但对于较大的数据量,归并排序的空间复杂度较高(需要一个和待排序数组长度一样的临时数组),有时候可能会不太适合。