概率统计分布表(常用)

合集下载

6.2数理统计中几种常用的分布.

6.2数理统计中几种常用的分布.

性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ

P ( n)
2 2



2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.

i 1 n i 1
n
EX i2 n.
2 DX i
D D(



2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.

统计学第3章-概率、概率分布与抽样分布

统计学第3章-概率、概率分布与抽样分布
3-15
互斥事件及其概率
(例题分析)

解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6


合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率

概率论-分布及其分位数

概率论-分布及其分位数
分布及其分位数
U—分布 正态总体样本均值的分布
设总体 X ~ N , 2 , X1, X2,..., Xn 是 X 的一
个样本, 则样本均值服从正态分布X1 nFra bibliotekn i 1
Xi
~
N
,
2
n
U
X
1 n
n i1
Xi
~
N 0,1
n n
概率分布的分位数(分位点)
定义 对总体X和给定的 (0<<1),若存在x,
f(y)
上分位数或上侧临界值,
其几何意义见图5-5所示.
其中f(y)是 2-分布的概率密度. O
图5-5 2(n) x
显然,在自由度n取定以后,2(n)的值只与有关.
例如,当n=21,=0.05时,由附表3(P254)可查得,
02.05(21) 32.67 即 P 2(21) 32.67 0.05.
即 t(n)≈u , n>45.
一般的t分布临界值表中,详列至n=30,当 n>30就用标准正态分布N(0, 1)来近似.
四、F分布
定义5.5 设随机变量X~ 2(n1)、Y~ 2(n2),且
与相互独立,则称随机变量
F
X Y
n1 n2
服从第一自由度为n1,第二自由度为n2的F分布,
记作 F~F(n1,n2).
02.1(9)≈查 14.684.



14.684x
16 9
≈26.105
n2) F 2
图6-4
(n1,
n2)
x
例 设总体X~N( , 42), X1,X2,…,X10是n=10简
单随机样本, S2为样本方差,已知P{S2>}=0.1,求

8个常见分布期望和方差

8个常见分布期望和方差

8个常见分布期望和方差概率分布的期望和方差为了理解和预测复杂的概率分布,其中最重要的两个因素是期望和方差。

概率分布的期望是由可能的结果的各种频率的平均值。

它是一个数字,可以确定概率变量的未来值的变化,用来表明对分布结果的期望:方差是描述随机变量变化程度的数字,它表示数据离期望值多大程度。

期望和方差是描述统计定律的基本量,它们是用于理解和预测随机变量的行为的最重要的两个概念。

此外,方差也是可以利用的重要的统计概念,用来表明总体变化的大小,以及在给定范围内期望出现变化的可能性。

尽管,有很多不同的概率分布存在,但是在概率领域,最常用的概率分布可以分为三类:正态分布,二项分布和卡方分布。

下文将分别介绍这三类分布的期望和方差。

正态分布是指概率分布中,观测值的分布曲线呈现出钟形状,中心对称型的曲线。

正态分布的期望可以表示为:E(x)=μ,即随机变量的期望值就是均值。

正态分布的方差可以表示为:V(x)=σ2,其中σ2是样本数据的方差,表示数据的变化程度。

二项分布研究的是独立重复试验,其中均有概率p成功,概率q失败,这里p+q=1。

对二项分布,其期望值E(X)=np,即期望值取决于p值和重复次数n;其中变异系数V(x)=npq,表示数据变异的程度。

卡方分布也被称为卡方正态或卡方分位数分布,它描述的是数据来源于独立正态分布的累积分布,通常用于统计检验中的卡方检验。

对卡方分布,其期望值E(X)=n;变异系数V(x)=2n,表示数据变异的程度。

总的来说,概率分布的期望和方差是理解和预测复杂概率分布的基础,它们提供了一种可以用来确定观测值的有效值并预测观测结果的方法。

通过期望和方差,我们可以很容易地推断三类常见分布的理论值,进一步推断复杂概率分布的变化趋势,从而帮助更好地。

t分布表_精品文档

t分布表_精品文档

t分布表1. 什么是t分布表t分布表是一种统计学中常用的工具,用于计算t分布的累积概率。

t分布是一种概率分布,通常用于小样本(样本量较小)情况下对样本均值的推断。

t分布表中列出了在给定自由度和置信水平下的t值和对应的累积概率。

2. t分布表的用途t分布表主要用于解决以下两个问题:a. 给定t值,计算对应的累积概率在统计学中,我们经常需要计算一个t值对应的累积概率,即给定某个t值,求该t值以下的面积。

这可以用t分布表来完成。

用户只需要在t分布表中找到对应的自由度和置信水平,即可得到该t值以下的累积概率。

b. 给定累积概率,计算对应的t值在一些统计推断问题中,我们需要给定累积概率,求该累积概率对应的t值。

例如,在假设检验中,我们常常需要计算一个t临界值,该值将样本均值与总体均值进行比较。

t分布表可以帮助我们找到给定累积概率下的t值。

3. 如何使用t分布表在使用t分布表时,我们需要知道两个关键的输入参数:自由度和置信水平。

a. 自由度自由度(degrees of freedom)是t分布中的一个重要参数。

对于给定的问题,自由度等于样本中独立观察值的数量减1。

例如,若样本容量为10个,则自由度为9。

b. 置信水平置信水平是统计推断中常用的一个指标,用于表示结果的可靠性。

常见的置信水平有0.95(95%置信水平)和0.99(99%置信水平)等。

较高的置信水平意味着对结果的可靠性更高。

使用t分布表的步骤如下:1.确定问题中的自由度和置信水平;2.在t分布表中找到相应的自由度;3.在该行中找到置信水平对应的列;4.交叉点的数值即为t值。

4. t分布表的局限性在使用t分布表时,需要注意其一些局限性:•只能用于正态分布情况下的小样本(样本量较小)推断;•对于较大的自由度,t分布和正态分布的差异较小,所以在样本量大的情况下,通常可以使用正态分布近似代替t分布;•t分布表只给出了常见自由度和置信水平下的数值,若需要计算其他自由度或置信水平下的值,需要使用统计软件或计算工具进行计算。

常用分布概率计算的excel应用 (1)

常用分布概率计算的excel应用 (1)

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。

这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。

§3.1 二项分布的概率计算一、二项分布的(累积)概率值计算用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为:BINOMDIST (number_s,trials, probability_s, cumulative)其中 number_s:试验成功的次数k;trials:独立试验的总次数n;probability_s:一次试验中成功的概率p;cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1或TRUE时,则计算累积概率F n(k),。

即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1)现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。

例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率:(1)一人负责15台机床的维修;(2)3人共同负责80台机床的维修。

原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。

设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布:X~B(15,0.01),而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15故所求概率为P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1)=1-(0.99)15-15×0.01×(0.99)14=1-0.8600-0.1303=0.0097(2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即Y~B(80,0.01)此时因为 n=80≥30, p=0.01≤0.2所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)λλ--≈ekqpCkknkkn!来计算。

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

第3章 常用概率分布(田间试验与统计分析 四川农业大学)

P(“至少1粒种子出苗”) = P(x=1)+P(x=2)+…+P(x=6) = C610.6710.335 C62 0.6720.334 C66 0.6760.330 = 0.0157+0.0799+0.2162 +0.3292+0.2672+0.0905 = 0.9987
二项分布的应用条件:
在统计学上,把小概率事件在一次试验中 看成是实际不可能发生的事件称为小概率事件 实际不可能性原理,亦称为小概率原理(small probability principle)。
小概率事件实际不可能性原理是统计学上 进行假设检验(显著性检验)的基本依据。
第二节 概率分布
事件的概率表示了一次试验某一个结果发生的 可能性大小。
标准正态分布的概率密度函数及分布函数分别 记作ψ(u)和Φ(u)。
(u)
1
u2
e2
2
(u) 1
u 1u2
e 2 du
2
u~N(0,1)
对于任何一个服从正态分布N(μ,σ2)的随 机变量x,都可以通过标准化变换:
u x
将其变换为服从标准正态分布的随机变量u。
一、正态分布的定义及其特征
(一) 正态分布的定义 若连续型随机变 量 x 的概率分布密度函数为
其中μ为平均数,σ2为方差,则称随机变量 x 服从正 态分布(normal distribution) , 记为x~N(μ, σ2)。
相应的概率分布函数为:
F(x) 1
e dx x

(
x) 2 2
对于样本是取自连续型随机变量的情况,这 条函数曲线将是光滑的。这条曲线排除了抽样和 测量的误差,完全反映了水稻行产量的变动规律。 这条曲线叫概率分布密度曲线,相应的函数叫概 率分布密度函数 。

常见的离散型随机变量的概率分布标准版文档

常见的离散型随机变量的概率分布标准版文档

(II) 贝努里概型 和 二项分布 例6 设生男孩的概率为p,生女孩的概率为 q=1-p,令X表示随机抽查出生的4个婴儿 中“男孩”的个数.
我们来求X的概率分布.
X表示随机抽查的4个婴儿中男孩的个数,
生男孩的概率为 p.
男女
X=0 X =1 X =2 X =3 X =4
X的概率分布是:
X可取值0,1,2,3,4.
X()=
1, = 1 0, = 2
例 5 200件产品中,有196件是正品,4
件是次品,今从中随机地抽取一件,若规

1, 取到合格品
X()=
0, 取到不合格品
则 P{X=1}=196/200=0.98, P{X=0}=4/200=0.02
故 X服从参数为0.98的两点分布 . 即 X ∼ B(1,0.98).
注: 贝努里概型对试验结果没有等可能 的要求,但有下述要求: (1)每次试验条件相同;
(2)每次试验只考虑两个互逆结果A或 A ,
且P(A)=p ,P(A)1p; (3)各次试验相互独立.
二项分布描述的是n重贝努里试验中出现 “成功”次数X的概率分布.
例8 某类灯泡使用时数在2000小时以上视为正 品.已知有一大批这类的灯泡,其次品率是0.2. 随机抽出20只灯泡做寿命试验,求这20只灯泡 中恰有3只是次品的概率.
X= X1+X2+ +Xn 其密度函数和分布函数常用 和
表示:
~N(0,1)
(IV)、标准正态分布
0,1的正态分布称为标准正态分布.
其密度函数和分布函数常用 (x)和(x)表示:
(x)
1
x2
e2,
x
2
(x) 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档