1.1.3集合的基本运算
1.1.3集合的基本运算-补集

1.1.3集合的基本运算补集(1)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
(2)补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集, 记作:∁U A即:∁U A ={x|x ∈U ,且x ∉A}.(3)补集的Venn 图表示说明:补集的概念必须要有全集的限制1、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
2、集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A ,A ∪B=B ∪A (∁U A )∪A=U ,(∁U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<< 求ð.解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤ , (){|1,9U C A B x x x =<-≥ 或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A C B C .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------ .(1)又{}3B C = ,∴()A B C = {}3;(2)又{}1,2,3,4,5,6B C = ,得{}()6,5,4,3,2,1,0A C B C =------ . ∴ ()A A C B C {}6,5,4,3,2,1,0=------. A B B A-1 3 59 x【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A = ,求实数m 的取值范围. 解:由A B A = ,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B = ,则(){6,7,9}U C A B = .由{5,8}A B = ,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B = ,()(){1,2,3,4,6,7,9}U U C A C B = .由计算结果可以知道,()()()U U U C A C B C A B = ,()()()U U U C A C B C A B = .点评:可用Venn 图研究()()()U U U C A C B C A B = 与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.【自主尝试】1.设全集{}|110,U x x x N =≤≤∈且,集合{}{}3,5,6,8,4,5,7,8A B ==,求A B ⋃,A B ⋂,()U C A B ⋃.2.设全集{}{}{}|25,|12,|13U x x A x x B x x =-<<=-<<=≤<集合,求A B ⋃,A B ⋂,()U C A B ⋂.3.设全集{}{}{}22|26,|450,|1U x x x Z A x x x B x x =-<<∈=--===且, 求A B ⋃,A B ⋂,()U C A B ⋃.-2 4 m x B A【典型例题】1.已知全集{}|U x x =是不大于30的素数,A,B 是U 的两个子集,且满足{}{}()5,13,23,()11,19,29U U A C B B C A ⋂=⋂=,{}()()3,7U U C A C B ⋂=,求集合A,B.2.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.3. 已知{}{}|24,|A x x B x x a =-≤≤=<① 若A B φ⋂=,求实数a 的取值范围;② 若A B A ⋂≠,求实数a 的取值范围;③ 若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.4.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.【练习】1.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A {}0,1,8,10 B {}1,2,4,6 C {}0,8,10 D Φ2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或23.若{}{}{}0,1,2,1,2,3,2,3,4A B C ===⋂⋃⋂则(A B)(B C)= ( )A {}1,2,3 B {}2,3 C {}2,3,4 D {}1,2,44.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则 ( )A{}|31x x -<< B{}|12x x << C{}|92x x -<< D{}|1x x <【达标检测】一、选择题1.设集合{}{}|2,,|21,M x x n n Z N x x n n N ==∈==-∈则M N ⋂是 ( )A ΦB MC ZD {}02.下列关系中完全正确的是 ( )A {},a a b ⊂ B {}{},,a b a c a ⋂=C{}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=3.已知集合{}{}1,1,2,2,|,M N y y x x M =--==∈,则M N ⋂是 ( )A M B {}1,4 C {}1 D Φ4.若集合A,B,C满足,A B A B C C ⋂=⋃=,则A与C之间的关系一定是( )A A C B C A C A C ⊆ D C A ⊆5.设全集{}{}|4,,2,1,3U x x x Z S =<∈=-,若u C P S ⊆,则这样的集合P共有( )A 5个 B 6个 C 7个 D8个二、填空题6.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________.7.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______.8.集合{}{}{}0,2,4,6,1,3,1,3,1,0,2U U A C A C B ==--=-,则集合B=_____.9.已知{}{}1,2,3,4,5,1,3,5U A ==,则U C U =________________.10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.三、解答题11.已知全集{}|16U x N x =∈≤≤,集合{}2|680,A x x x =-+={}3,4,5,6B = (1)求,A B A B ⋃⋂,(2)写出集合()U C A B ⋂的所有子集.12.已知全集U=R,集合{}{}|,|12A x x a B x x =<=<<,且()U A C B R ⋃=,求实数a 的取值范围13.设集合{}{}22|350,|3100A x x px B x x x q =+-==++=,且13A B ⎧⎫⋂=-⎨⎬⎩⎭求A B ⋃.。
1.1.3集合的基本运算(全集与补集)

A B;
⑵ ⑷
A B;
痧 A , B ; R R
痧A
R
R
B;
⑸ 痧A RR NhomakorabeaB;
⑹
⑺
ðR ( A B ); ðR ( A B ).
小 结
ðR ( A B ) = 痧 R A
A ðR ( A B ) = 痧 R
R
B;
B . R
2.
设全集为U={2, 4, a a 1},
则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
或(余集). 记作 ðu A
即
ðu A {x x U , 且x A}.
A
U
ðu A
性质
(1) (2)
A (ðu A) U A (ðu A) Φ
例题讲解
设全集为R, A {x x 5}, B {x x 3}. 求 1.
观察集合A,B,C与D的关系: A={菱形} B={矩形} C={平行四边形}
D={四边形}
定 义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形}
C={平行四边形} D={四边形}
定 义
设U是全集,A是U的一个子集,
2
A {a 1, 2}, ð U A {7},
求实数a的值.
作业练习
教材P12练习T1~4
; / 炒股配资 ;
法/)阅读记录/下次打开书架即可看到/请向你の朋友第六百⑨拾四部分红尘域卡槽"你准备去哪里/叶静云用着它那双修长笔直の大腿漫无目の踢咯踢面前の石头/长腿划过优雅の弧度/完美の曲线让人心魂
1.1.3集合的基本运算(并集交集)

评卷人 王
得分 0
解:由y=-x2-2x,(y=x2-4x+3,) 得2x2-2x+3=0, ∵Δ=(-2)2-4×2×3=4-24=-20<0, ∴方程2x2-2x+3=0无解. 故M∩N=∅.
提示:在上述问题中,集合C是由那些既属于集合A同时 又属于集合 B的所有元素组成的.
交集 且 属于集合 B 一般地, 由属于集合 A_____ 自然 所有元素 组成的集合,称为 A 与 的____________ 语言 B 的交集 A∩B={x|x∈A且x∈B} (读作“A 交 符号 _______________________ 语言 B”)
(6)两个集合的交集是其中任一集合的子集,即 ( A B) A,( A B) B
1.设集合 M={x|-3<x<2},N={x|1≤x≤3},则 M∩ N = ( ) A.{x|1≤x<2} B.{x|1≤x≤2} C.{x|2<x≤3} D.{x|2≤x≤3}
解析:
在数轴上表示集合 M、N 为
1.1.3
集合的基本运算
第1课时 并集、交集
考察下列各个集合,你能说出集合C与集合A、B之间的关系 吗? (1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6} (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数} 提示:在上述两个问题中,集合A,B与集合C之间都具有 这样一种关系:集合C是由所有属于集合A或属于集合B的 元素组成的.
①当B=∅时,只需2a>a+3, 即a > 3 ; ②当 B≠∅时,根据题意作出如图所示的数轴,
1.1.3集合的基本运算

(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A 文字语言
符号语言 A∪B= { x︱ xA或 x B } A∩B= { x︱ x A 且 xB } CUA = { x︱ xU且
A
B
A
B
例6 新华中学开运动会,设 A={x|x是新华中学高一年级参加百米赛跑的同学}
B={x|x是新华中学高一年级参加跳高比赛的同学},
求A∩B. 解:A∩B={x|x是新华中学高一年级既参加百米赛 跑又参加跳高比赛的同学}.
例7 设平面内直线 l1上的点的集合为 L1 , 直线l2 上点 的集合为L2 , 试用集合的运算表示 l1 , l2的位置关系 .
解得a 3且A B {8,4,4,7,9}
解: A B {9}, 9 A 所以a 2 9或2a 1 9, 解得a 3或a 5 当a 3时,A {9,5,4}, B {2,2,9}, B中元素违 背了互异性,舍去 . 当a 3时,A {9,7,4}, B {8,4,9}, A B {9} 满足题意,故A B {7,4,8,4,9}. 当a 5时,A {25,9,4}, B {0,4,9}, 此时A B {4,9}, 与A B {9}矛盾,故舍去 . 综上所述,a 3且A B {7,4,8,4,9}.
(1)若U={四边形},A={梯形}, 则CUA={平行四边形} (2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=
2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3} 且CBA={5},求实数a的值。 3. 已知全集U={1,2,3,4,5}, 非空集A={xU|x2-5x+q=0}, 求CUA及q的值。
1.1.3集合的基本运算

A
A∩B
B
A∩B
B
A∩B
交集例题
是等腰三角形}, 例3 设A={x x是等腰三角形 B={x x是直 是等腰三角形 是直 角三角形},则 ∩ 角三角形 则A∩B?
说明:两个集合求并集,结果还是一个集合,是由集合 说明:两个集合求并集,结果还是一个集合,是由集合A 的所有元素组成的集合(重复元素只看成一个元素). 与B 的所有元素组成的集合(重复元素只看成一个元素). Venn图表示: 图表示: 图表示 A
A∪B ∪
A
A∪B ∪
B
A
A∪B ∪
B
B
并集例题
={4, 8}, ={3 ={3, 例1.设A={4,5,6,8},B={3,5,7,8} ={4 求AUB. U . ={x| 1<x<2} <2}, ={ |1<x< ={x|1< <3}, 例2.设集合A={ |-1< <2},B={ |1< <3}, 设集合 ={ 求AUB. U .
1.1.3 集合的基本运算
类比引入
思考: 思考:
两个实数除了可以比较大小外, 两个实数除了可以比较大小外,还可以进 除了可以比较大小外 加法运算 类比实数的加法运算, 运算, 行加法运算,类比实数的加法运算,两个集合 是否也可以“相加” 是否也可以“相加”呢?
类比引入
思考: 思考:
考察下列各个集合,你能说出集合 与集 考察下列各个集合,你能说出集合C与集 之间的关系吗 合A、B之间的关系吗? 之间的关系吗?
1.1.3集合的基本运算

【例题】某地对农户抽样调查,结果如下:电冰箱拥有率为 49%,电视机拥有率为 85%,洗
衣机拥有率为 44%,只拥有上述三种电器中的两种的占 63%,三种电器齐全的占 25%,那么
一种电器也没有的相对贫困户所占比例为
.
【答案】10%
1.1.3 习题课(XXmin)
【交、并、补集】
【例】设集合 A {(x, y) | y 2x 1, x N*}, B {(x, y) | y ax2 ax a, x N *} ,问是 否存在非零整数 a ,使 A B ,若存在,请求出 a 的值;若不存在,请说明理由.
① A A A; A A; ②交换率: A B B A ;结合律: ( A B) C A (B C) ; ③ A A B;B A B; ④A B AB A;A BB AB;
(下面,我们有关并集性质的几个应用)
【例】已知集合 A {1,3, m}, B {1, m}, A B A ,则 m 【练习】 A {1,3, x} , B {1, x2} ,若 A B={1,3, x},则 x
1.1.3 集合的基本运算(XXmin)
预习目标:
(1)理解交集、并集、补集的基本概念并掌握其运算; (2)会用 Venn 图来解决交、并、补问题; (3)掌握交、并、补集的一些简单性质。
教学过程:
(我们知道,实数有加、减、乘、除四则运算,那么集合时候也可以有类似的运算呢?首先 类比一下实数的加法,大家观察下列各个集合,能否找出集合 C 与集合 A 、B 之间的关系。) 一、并集
【交、并综合题】
【例】【2005 江苏文理 7】若集合 A, B, C 有 A B B C ,则一定有( )
1.1.3集合的基本运算(第一课时)

1.1.3集合的基本运算(第一课时)并集【学习目标】1、理解并集的概念;2、掌握有关集合的术语和符号;运用性质解决一些简单问题3、能用图示法表示两个集合的并集【重点】并集的概念【难点】并集的概念和集合的运算【知识准备】交集的概念【新课探知】任务一:已知:集合{}{}6,5,4,3,4,3,2,1==B A 请把属于集合A 或者属于集合B 的所有元素找出来写成一个集合解决下列问题:1、这个新集合中的元素与集合A 、集合B 中元素有何关系?2、从元素与集合的关系试叙述并集的概念.3、用符号怎么表示?归纳出交集的概念:一般地,由属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与B 的并集。
记作:A B读作:“A 并B ” 即: {|}A B x x A x B =∈∈或例1设集合{|1},{|2}A x x B x x =<=< ,求A B练习一 求集合A 与B 的并集(1){6,8,10,12},{3,6,9,12}A B ==(2){|12},{|03}A x x B x x =-≤≤=≤≤任务二:由并集的定义,观察下列式子是否成立或完成等式(1) A B B A = (2) A A A =(3) A ∅=______ (4)如果A B ⊆,那么A B =_____ 例2已知集合{|},{|}Z {|}A x x B x x x x ===是奇数是偶数,是整数求: A B Z A Z B练习二:(1)设{|>3}{|>0}A x x B x x ==,求A B ,并在数轴上表示运算的过程(2)设{|}{|}A x x B x x ==是等腰三角形,是直角三角形,求A B .【自我检测】1、设A ={1,2},B ={3,4,5,6},求A B 2、设集合{1},{1,2},{1,2,3}M N P ===,则()P N M =_________【拓展延伸】1、求下列各图中集合A 与B 的并集(用彩笔图出)说明:1、当集合都不是空集时,它们的并集是怎样的?2、当两个集合没有公共元素时,两个集合的并集是什么?2、写出满足条件{1,2}{0,1,2,3}B =的所有集合.A。
数学课件:1.1.3集合的基本运算(第1课时并集、交集)

第十页,编辑于星期日:十一点 三十七分。
第十一页,编辑于星期日:十一点 三十七分。
已知集合A={x|-2≤x≤5},B={x|2m-1≤x≤2m+1},若A∪B =A,求实数m的取值范围.
【思路点拨】 由题目可获取以下主要信息: ①集合A确定,集合B中元素不确定; ②A∪B=A.解答本题时,可由A∪B=A知B⊆A.从而分B=Ø和 B≠Ø分类讨论. ③本题中B={x|2m-1<x<2m+1},由于2m+1>2m-1,故B≠Ø.
1.(1)若本例(1)中,问题改为求A∪B. (2)本例(2)中,问题改为求M∩N. 【解析】 (1)由例1中的数轴表示知A∪B=R,故选D. (2)由例1中的数轴表示知M∩N={x|-3<x<5},故选C. 【答案】 (1)D;(2)C
第九页,编辑于星期日:十一点 三十七分。
设集合A={x|-1<x<a},B={x|1<x<3}且A∩B=Ø,求a的取值范 围.
①当a-1=2,即a=3时,B={1,2}; ②当a-1=1,即a=2时,B={1}. 于是a=2或a=3都满足题意. 所以a的取值范围是{a|a=2,或a=3}.
第十八页,编辑于星期日:十一点 三十七分。
1.对并集概念的理解 “x∈A,或x∈B”包含三种情况:“x∈A,但x∉B”;“x∈B, 但x∉A”;“x∈A,且x∈B”.Venn图如图.另外,在求两个集合的 并集时,它们的公共元素只出现一次.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目的:
知识与技能:
1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;
2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集;
3、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
过程与方法:针对具体实例,通过类比实数间的加法运算引入了集合间“并”的运算,并在此基础上进一步扩展到集合的“交”的运算和“补”的运算。
类比方法的使用体现了知识之间的联系,渗透了数学学习的方法。
情感、态度与价值观:
1、类比方法让学生体会知识间的联系;
2、Venn 图表达集合运算让学生体会数形结合思想方法的应用对理解抽象概念的作用;
3、通过集合运算的学习逐渐发展学生使用集合语言进行交流的能力。
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
一、复习回顾:
1:什么叫集合A 是集合B 的子集?
2:关于子集、集合相等和空集,有哪些性质?
(1) .A A ⊆;
(2) 若A B ⊆,且B A ⊆,则.A B =;
(3) 若,,A B B C ⊆⊆则C A ⊆;
(4) A ∅⊆.
二、创设情境,新课引入
问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗?
(1){
}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ; (2){}是有理数x x A =,{}是无理数x x B =,{}
是实数x x C =.
学生讨论并引出新课题.
三、师生互动,新课讲解:
1、并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B读作:“A并B”即: A∪B={x|x∈A,或x∈B}
例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A∪B。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A∪B。
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
你会用表示上述例题中的两个并集吗?请你用Venn图表示出不同关系的两个集合的并集。
让学生动手操作,教师指导。
在上图中我们除了研究集合A与B的并集外,它们的公共部分还应是我们所关心的,我们称其为集合A与B的交集。
你能从上面的例题1中并类比“并集”的概念归纳出“交集”的概念吗?
学生归纳得:
2 交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”即: A∩B={x|∈A,且x∈B}交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
例2:(1
)设A={4,5,6
,8},B={3,5
,7,8},求:
A I
B 。
(2)设集合A={x|-1<x<2},集合B={x|1<x<3},求:A I B 。
例3(课本P9例7) 设平面内直线l 1上的点的集合为L 1,直线l 2上点的集合为L 2,试用集合的运算表示l 1,l 2的位置关系。
请你结合上述例子用Venn 图表示出不同关系的两个集合的交集。
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
变式训练3:求下列各图中集合A 与B 的并集与交集
3.全集
一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe ),通常记作U 。
问:在问题{
}{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A 中,我们若把集合C 作为全集,请你说出集合A 与B 有怎样的关系吗?
由此你能归纳出补集概念吗?你会用Venn 图表示表示出它们的关系吗?
通过学生思考、讨论、归纳出:
4.补集:
A
对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集(complementary set ),简称为集合A 的补集,记作:C U A 即:C U A={x|x ∈U 且x ∉A}
补集的Venn 图表示
说明:补集的概念必须要有全集的限制 例4(课本P11例8) ① 设U={x|X 是小于9的正实数},A={1,2,3}B={3,4,5,6}
求C U A ,C U B 。
② 设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A ∩B ,C U (A ∩B )。
课堂练习:(课本P11练习NO :1,2,3,4)
**结论归纳(重要):
⑴求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。
⑵集合基本运算的一些结论:
A ∩
B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩A
A ⊆A ∪
B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A
(C U A )∪A=U ,(C U A )∩A=∅
若x ∈(A ∩B ),则x ∈A 且x ∈B
若x ∈(A ∪B
),则x ∈A ,或x ∈B
四、课本小结,巩固反思: ()()();()()().
U U U U U U C A C B C A B C A C B C A B ==I U U I 摩根律
求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。