因式分解(第2课时)教学案

合集下载

运用公式法分解因式2教学设计

运用公式法分解因式2教学设计

运用公式法分解因式(2)教学设计教材分析:分解因式是进行代数恒等变形的重要手腕之一。

它和整式乘法运算,尤其是多项式乘法运算有着密切的联系,分解因式是后续学习分式的化简与运算、解一元二次方程的重要基础。

因此学好分解因式对于代数知识的后续学习,具有相当重要的意义。

另外,本节课的学习是通过乘法公式()2222b ab a b a +±=±的逆向变形展开的,可以进一步发展学生观察、归纳、类比、归纳等能力,发展有层次的思考及语言表达能力。

学情分析:学生在七年级下册已经学习了整式的运算及乘法公式,对乘法公式的特征有了必然的熟悉。

在本节课之前又学习了用提取公因式法和运用平方差公式分解因式,对因式分解的概念及意义有了初步的理解,这些都为本节课的学习奠定的必要的基础。

同时,在上节课学习用平方差公式分解因式时,又经历的逆向思维的训练,这些都为本节课的学习做了能力和方式上的准备。

教学目标:一、知识与技术:使学生会用完全平方公式分解因式,进一步发展符号感和推理能力。

二、数学思考:使学生了解分解因式的方式、在考虑用公式法时看可否运用完全平方公式。

在导出用完全平方公式及对其特点进行辨析的进程中,培育学生观察、归纳和逆向思维的能力。

3、解决问题 :通过对完全平方公式的再熟悉,和由整式乘法取得分解因式的方式,进一步培育学生的逆向思维和推理能力,使学生学习多步骤、多方式的分解因式。

4、情感与态度:通过综合运用提公因式法、完全平方公式法分解因式,进一步培育学生观察和联想能力,培育学生的学习踊跃性、主动性,增强学习数学的信心和兴趣重点难点:重点:运用公式法分解因式难点:完全平方公式的识别及正确运用完全平方公式分解因式教学进程:一:温习引入1、将下列式子分解因式(1)812-a (2)()22n n m -+ 二、计算下列各式(1)()22y x + (2)()22y x - 由此你能把下列式子分解因式吗?(3)2244y xy x ++ (4)2244y xy x +-3、回忆咱们所学习过的完全平方公式并写下来。

湘教版七年级数学下册教学课件(XJ) 第3章 因式分解 第2课时 利用完全平方公式进行因式分解

湘教版七年级数学下册教学课件(XJ) 第3章 因式分解 第2课时 利用完全平方公式进行因式分解
首2 ±2×首 +尾2 ×尾
=(a ± b)² (首±尾)2
两个数的平方和加上(或减去) 这两个数的积的2倍,等于这 两个数的和(或差)的平方.
对照 a²±2ab+b²=(a±b)²,填空: 1. x²+4x+4= ( )²+2x·( )·( )+x( )²=2( 2 )² x + 2 2.m²-6m+9=( )²-m2·( ) ·( m)+( )²=3( 3)² m - 3 3.a²+4ab+4b²=( )²+2a·( ) ·( )a+( 2)b²=( 2b)² a + 2b
分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;
(2)中将a+b看成一个整体,设a+b=m,则原式化为m2-12m+36.
解: (1)原式=3a(x2+2xy+y2) =3a(x+y)2;
(2)原式=(a+b)2-2·(a+b) ·6+62 =(a+b-6)2.
利用公式把某些具有特殊形式(如平方差式,完全平方式 等)的多项式分解因式,这种分解因式的方法叫做公式法.
当堂练习
1.下列四个多项式中,能因式分解的是( )
B
A.a2+1
B.a2-6a+9
C.x2+5y D.x2-5y
2.把多项式4x2y-4xy2-x3分解因式的结果是( )
B
A.4xy(x-y)-x3 B.-x(x-2y)2
C.x(4xy-4y2-x2) D.-x(-4xy+4y2+x2)
3.若m=2n+1,则m2-4mn+4n2的值是________. 1 4.若关于x的多项式x2-8x+m2是完全平方式,则m的值为___________ .

因式分解教案_2

因式分解教案_2

因式分解教案因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y 中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

因式分解教案-2

因式分解教案-2

因式分解教案有关因式分解教案4篇因式分解教案篇1学习目标1、学会用公式法因式法分解2、综合运用提取公式法、公式法分解因式学习重难点重点:完全平方公式分解因式.难点:综合运用两种公式法因式分解自学过程设计完全平方公式:完全平方公式的逆运用:做一做:1.(1)16x2-8x+_______=(4x-1)2;(2)_______+6x+9=(x+3)2;(3)16x2+_______+9y2=(4x+3y)2;(4)(a-b)2-2(a-b)+1=(______-1)2.2.在代数式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,•可用完全平方公式因式分解的是_________(填序号)3.下列因式分解正确的是( )A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)24.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+15.计算:20062-40102006+20052=___________________.6.若x+y=1,则 x2+xy+ y2的值是_________________.想一想你还有哪些地方不是很懂?请写出来。

________________________________________________________________________ ____________ 预习展示一:1.判别下列各式是不是完全平方式.2、把下列各式因式分解:(1)-x2+4xy-4y2(2)3ax2+6axy+3ay2(3)(2x+y)2-6(2x+y)+9应用探究:1、用简便方法计算49.92+9.98 +0.12拓展提高:(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2(2)4x2+y2-4xy-12x+6y+9=0求x、y关系(3)分解因式:m4+4教后反思考察利用公式法因式分解的题目不会很难,但是需要学生记住公式的形式,之后利用公式把式子进行变形,从而达到进行因式分解的目的,但是这里有用到实际中去的例子,对学生来说会难一些。

精品-14.3.2 第2课时 运用完全平方公式因式分解教案2

精品-14.3.2 第2课时 运用完全平方公式因式分解教案2

第2课时运用完全平方公式因式分解教学目标1.使学生理解用完全平方公式分解因式的原理。

2.使学生初步掌握适合用完全平方公式分解因式的条件,会用完全平方公式分解因式。

重点难点重点:让学生会用完全平方公式分解因式。

难点:让学生识别并掌握用完全平方公式分解因式的条件。

教学过程一、引入新课我们知道,因式分解是整式乘法的反过程。

倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法;运用平方差公式法。

现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们共学过三个乘法公式:平方差公式:(a+b)(a–b)=a2–b2。

完全平方公式:(a±b) 2= a2±2ab+ b2.这节课,我们就要讲用完全平方公式分解因式。

二、新课讲解1.将完全平方公式倒写:a2+2ab+ b2=(a+b) 2,a2–2ab+ b2=(a–b) 2。

便得到用完全平方公式分解因式的公式。

2.分析上面两个等式的左边,它们都有三项,其中两项符号为“+”是一个整式的平方,还有一项呢,符号可“+”可“–”,它是那两项幂的底的乘积两倍。

凡具备这些特点的三项式,就是一个二项式的完全平方。

将它写成平方形式,便实现了因式分解。

例如x2 + 6x + 9↓↓↘=(x) 2+2(3)(x)+(3) 2=(x+3) 2.4 x2– 20x + 25↓↓↘=(2x) 2– 2(2x)(5) + (5) 2=(2x+5) 2.3.范例讲解例4 把25x4+10x2+1分解因式。

[教学要点]按前面的分析,让学生先找两个平方项,写出这两个二次幂:25x4=(5x2) 2,1=12.再将另一项写成前述两个幂的底的积的二倍:10x2=2•(5x2)•1,原式便可以写成(5x2+1) 2.可以问学生,如果题中第二项前面带“–”好呢?是否可用完全平方公式:仍可用完全平方公式,得出的是(5x2–1)的平方。

例5把–x2–4y2+4xy分解因式。

二次三项式的因式分解(用公式法)教学案(二)

二次三项式的因式分解(用公式法)教学案(二)

二次三项式的因式分解(用公式法)教学案(二)一、素质教育目标(一)知识教学点:熟练地运用公式法在实数范围内将二次三项式因式分解.(二)能力训练点:通过本节课的教学,提高学生研究问题、解决问题的能力.(三)德育渗透点:进一步对学生进行辩证唯物主义思想教育.二、教学重点、难点1.教学重点:用公式法将二次三项式因式分解.2.教学难点:一元二次方程的根和二次三项因式分解的关系.三、教学步骤(一)明确目标对于含有一个字母在实数范围内可分解的二次三项式,学生利用十字相乘法或用公式法可以解决.对于含有两个字母的二次三项式如何用公式法进行因式分解是我们本节课研究的目标.(二)整体感知本节课是上节课的继续和深化,上节课主要练习了利用公式法将含有一个字母的二次三项式因式分解,这节课研究含有两个字母的二次三项式的因式分解,实际上可设二次三项式为零,把一个字母看成是未知数,其它看成已知数,求出方程的两个根,然后利用公式法将问题解决.本节课较上节课有一定的难度.通过本节课,进一步提高学生分析问题、解决问题的能力.上节课是本节课的基础,本节课是上节课的加深和巩固.(三)重点、难点的学习和目标完成的过程1.复习提问:(1)如果x1,x2是方程ax2+bx+c=0的两个根,则ax2+bx+c如何因式分解?(2)将下列各式因式分解?①4x2+8x-1;②6x2-9x-21.2.例1 把2x2-8xy+5y2分解因式.解:∵关于x的方程2x2-8xy+5y2=0的根是教师引导、板书,学生回答.注意以下两个问题:(1)把x看成未知数,其它看成已知数.(2)结果不能漏掉字母y.练习:在实数范围内分解下列各式.(1)6x2-11xy-7y;(2)3x2+4xy-y2.学生板书、笔答,评价.注意(1)可有两种方法,学生体会应选用较简单的方法.例2 把(m2-m)x2-(2m2-1)x+m(m+1)分解因式.分析:此题有两种方法,方法(一)∵关于x的方程(m2-m)x2-(2m2-1)x+m(m+1)=0∴(m2-m)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)用十字相乘法.(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[(m-1)x-m][mx-(m+1)]=(mx-x-m)(mx-m-1).方法(二)比方法(一)简单.由此可以得出:遇见二次三项式的因式分解:(1)首先考虑能否提取公因式.(2)能否运用十字相乘法.(3)最后考虑用公式法.以上教师引导,学生板书、笔答,学生总结结论.练习:把下列各式因式分解:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-2x(x+1)-3.解:(1)(m2-m)x2-(2m2-1)x+m(m+1)=m(m-1)x2-(2m2-1)x+m(m+1)=[mx-(m+1)][(m-1)x-m]=(mx-m-1)[(m-1)x-m)].(因式分解法)(2)(x2+x)2-2x(x+1)-3…第一步=(x2+x-3)(x2+x+1)…第二步(1)题用十字相乘法较简单.(2)题第一步到第二步用十字相乘法,由第二步到第三步用公式法.注意以下几点:(1)因式分解一定进行到底.(2)当b2-4ac≥0时,ax2+bx+c在实数范围内可以分解.当b2-4ac<0时,ax2+bx+c在实数范围内不可分解.(四)总结与扩展启发引导、小结本节课内容.1.遇见二次三项式因式分解.(1)首先考虑能否提取公因式.(2)其次考虑能否选用十字相乘法.(3)最后考虑公式法.2.通过本节课的学习,提高学生分析问题、解决问题的能力.3.注意以下几点;(1)在进行2x2-8xy+5y2分解因式时,千万不要漏掉字母y.(2)因式分解一定进行到不能再分解为止.(3)对二次三项式ax2+bx+c的因式分解,当b2-4ac≥0时,它在实数范围内可以分解;当b2-4ac<0时,ax2+bx+c在实数范围内不可以分解.四、布置作业1.教材P.38中B 1 . 2(8).2.把下列各式分解因式:(1)(m2-m)x2-(2m2-1)x+m(m+1);(2)(x2+x)2-3x(x+1)-4.五、板书设计12.6 二次三项式的因式分解(二)结论:例1.把2x2-8xy+5y2因式分解.如果x1,x2为一元二次方解:略程ax2+bx+c=0的两个根,则ax2+bx+c=a(x-x1)(x-x2)六、作业参考答案A21.教材P.39中1.(1)(3x+5)(2x-3);(2)(7x-6y)(6x-7y);(4)(2x-9y)(7x-2y)3.(1)[mx-(m+1)][(m-1)x-m] (2)解:(x2+x)2-3x(x+1)-4 =(x2+x-4)(x2+x+1)。

12.2 用因式分解法解一元二次方程教学案(二)

12.2 用因式分解法解一元二次方程教学案(二)

12.2 用因式分解法解一元二次方程教学案(二)一、素质教育目标(一)知识教学点:能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.(二)能力训练点:通过比较、分析、综合,培养学生分析问题解决问题的能力.(三)德育渗透点:通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.二、教学重点、难点和疑点1.教学重点:熟练掌握用公式法解一元二次方程.2.教学难点:用配方法解一元二次方程.3.教学疑点:对“选择恰当的方法解一元二次方程”中“恰当”二字的理解.三、教学步骤(一)明确目标解一元二次方程有四种方法,四种方法各有千秋,究竟选择什么方法最适当是本节课的目标.在熟练掌握各种方法的前提下,以针对一元二次方程的特点选择恰当的方法或者说是用简单的方法解一元二次方程是本节课的目的.(二)整体感知一元二次方程是通过直接开平方法及因式分解法将方程进行转化,达到降次的目的.这种转化的思想方法是将高次方程低次化经常采取的.是解高次方程中的重要的思想方法.在一元二次方程的解法中,平方根的概念为直接开平方法的引入奠定了基础,符合形如(ax+b)2=c(a,b,c常数,a≠0,c ≥0)结构特点的方程均适合用直接开平方法.直接开平方法为配方法奠定了基础,利用配方法可推导出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者较前者简单.但没有配方法就没有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是独立的一种方法.它和前三种方法没有任何联系,但蕴含的基本思想和直接开平方法一样,即由高次向低次转化的一种基本思想方法.方程的左边易分解,而右边为零的题目,均用因式分解法较简单.(三)重点、难点的学习与目标完成过程1.复习提问(1)将下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项系数及常数项.(1)3x2=x+4;(2)(2x+1)(4x-2)=(2x-1)2+2;(3)(x+3)(x-4)=-6;(4)(x+1)2-2(x-1)=6x-5.此组练习尽量让学生眼看、心算、口答,使学生练习眼、心、口的配合.(2)解一元二次方程都学过哪些方法?说明这几种方法的联系及其特点.直接开平方法:适合于解形如(ax+b)2=c(a、b、c为常数,a≠0 c≥0)的方程,是配方法的基础.配方法:是解一元二次方程的通法,是公式法的基础,没有配方法就没有公式法.公式法:是解一元二次方程的通法,较配方法简单,是解一元二次方程最常用的方法.因式分解法:是最简单的解一元二次方程的方法,但只适用于左边易分解而右边是零的一元二次方程.直接开平方法与因式分解法都蕴含着由高次向低次转化的思想方法.2.练习1.用直接开平方法解方程.(1)(x-5)2=36;(2)(x-a)2=(a+b)2;此组练习,学生板演、笔答、评价.切忌不要犯如下错误①不是x-a=a+b而是x-a=±(a+b);练习2.用配方法解方程.(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)配方法是解决代数问题的一大方法,用此法解方程尽管有点麻烦,但由此法推导出的求根公式,则是解一元二次方程最通用也是最常用的方法.此练习的第2题注意以下两点:(1)求解过程的严密性和严谨性.(2)需分b2-4ac≥0及b2-4ac<0的两种情况的讨论.此2题学生板演、练习、评价,教师引导,渗透.练习3.用公式法解一元二次方程练习4.用因式分解法解一元二次方程(1)x2-3x+2=0;(2)3x(x-1)+2x=2;解(2)原方程可变形为3x(x-1)+2(x-1)=0,∵(x-1)(3x+2)=0,∴ x-1=0或3x+2=0.如果将括号展开,重新整理,再用因式分解法则比较麻烦.练习5.x取什么数时,3x2+6x-8的值和2x2-1的值相等.解:由题意得3x2+6x-8=2x2-1.变形为x2+6x-7=0.∴(x+7)(x-1)=0.∴ x+7=0或x-1=0.即 x1=-7,x2=1.∴当x=-7,x=1时,3x2+6x-8的值和2x2-1的值相等.学生笔答、板演、评价,教师引导,强调书写步骤.练习6.选择恰当的方法解下列方程(1)选择直接开平方法比较简单,但也可以选用因式分解法.(2)选择因式分解法较简单.学生笔答、板演、老师渗透,点拨.(四)总结、扩展(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法对解某些一元二次方程是最简单的方法.在解一元二次方程时,应据方程的结构特点,选择恰当的方法去解.(2)直接开平方法与因式分解法中都蕴含着由二次方程向一次方程转化的思想方法.由高次方程向低次方程的转化是解高次方程的思想方法.四、布置作业1.教材P.21中B1、2.2.解关于x的方程.(1)x2-2ax+a2-b2=0,(2)x2+2(p-q)x-4pq=0.4.(1)解方程①(3x+2)2=3(x+2);(2)方程(m2-3m+2)x2+(m-2)x+7=0,m为何值时①是一元二次方程;②是一元一次方程.五、板书设计12.2 用因式分解法解一元二次方程(二)四种方法练习1……练习2……1.直接开平方法…………2.配方法3.公式法4.因式分解法六、作业参考答案1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;2:1秒2.(1)解:原方程可变形为[x-(a+b)][x-(a-b)]=0.∴ x-(a+b)=0或x-(a-b)=0.即 x1=a+b,x2=a-b.(2)解:原方程可变形为(x+2p)(x-2q)=0.∴ x+2p=0或x-2q=0.即 x1=-2p,x2=2q.原方程可化为5x2+54x-107=0.(2)解①∵ m2-3m+2≠0..∴ m1≠1,m2≠2.∴当m1≠1且m2≠2时,此方程是一元二次方程.解得:m=1.∴当m=1时此方程是一元二次方程.。

22.2.1.2 用因式分解法解一元二次方程 华师大版数学九年级上册教案

22.2.1.2 用因式分解法解一元二次方程 华师大版数学九年级上册教案

第2课时用因式分解法解一元二次方程￿※教学目标※【知识与技能】￿理解并掌握因式分解法,并能灵活运用因式分解法解一元二次方程.￿【过程与方法】￿经历因式分解法的探究过程,使学生能探究并归纳出因式分解法.￿【情感态度】￿学生通过观察、分析、讨论与交流等活动,进一步增强与他人交流的能力.￿【教学重点】￿理解并掌握因式分解法,并能灵活运用因式分解法解一元二次方程.￿【教学难点】￿因式分解法的适当选用.￿※教学过程※￿一、复习引入￿试用两种方法解方程方法一:先移项,得再直接开平方,得所以原方程的解是方法二:将方程左边用平方差公式分解因式,得必有解这两个一元一次方程,得所以原方程的解是二、探索新知￿1.解一元二次方程的基本思想就是通过降次将二次方程转化为一次方程来解.对于下列方程:不用直接开平方法,你能把它们转化为两个一次方程,进而求出它们的解吗?￿解:(1)将方程左边用平方差公式分解因式,得所以所以(2)将方程左边用平方差公式分解因式,得所以所以￿2.因式分解法￿当一元二次方程的一边为零,而另一边能分解成两个一次因式乘积的形式时,可令每个因式分别为零,通过解这两个一元一次方程的方法来求此一元二次方程的解.这种解一元二次方程的方法叫做因式分解法.￿【例1】用因式分解法解下列方程:￿分析:提公因式法是因式分解法的常用方法之一.￿解:(1)方程左边分解因式,得所以(2)移项,得方程左边分解因式,得￿所以￿【例2】用因式分解法解下列方程:￿分析:运用公式法是因式分解法的基本方法之一,其中(1)、(2)运用平方差公式,(3)运用完全平方公式.￿解:(1)将方程左边运用平方差公式分解因式,得所以(2)将方程左边运用平方差公式分解因式,得整理,得所以(3)将方程左边运用完全平方公式分解因式,得三、巩固练习￿用因式分解法解下列方程:￿答案:￿四、应用拓展￿【例3】解下列方程:￿分析:(1)可变形后用直接开平方法求解,(2)可用因式分解法求解.￿解:(1)变形,得直接开平方,得￿所以(2)将方程左边分解因式,得即所以【例4】小张和小林一起解方程小张将方程左边分解因式,得小林的解法是这样的:移项,得方程两边都除以小林说:“我的方法多简便!”可另一个根哪里去了?小林的解法对吗?你能解开这个谜吗?￿解:小林的解法不对.原因在于等式左右两边都除以时,没有考虑的值是否为0,当时,解得x=6;而当时,左边=右边,此时在用因式分解法解方程时,通常把等式的一边化为0后,再进行求解.￿￿五、归纳小结￿1.因式分解法把一元二次方程化为两个一元一次方程来解,体现了“降次”的思想.￿2.因式分解法解一元二次方程的理论依据是两个因式的积等于零,那么这两个因式中至少有一个等于零,即3.因式分解法的关键是掌握分解因式的两种基本方法:提公因式法和运用公式法.￿※课后作业※￿教材第25页练习(1)、(2)、(3)、(4)题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题因式分解(第2课时)
课型:新授课执笔:审核:七年级数学科备课组上课班:上课时间:
【教学目标】
1.探索并运用平方差公式进行因式分解,体会转化思想.
2.会综合运用提公因式法和平方差公式对多项式进行因式分解.
【重点难点】
1、重点:运用平方差公式来分解因式.
2、难点:运用平方差公式来分解因式.
【教学媒体的应用】电子媒体和传统媒体相结合。

【教学方法】讲练结合、合作交流
【自主复习、预习】
【教学过程】
一、检查自主复习、预习
把下列各式分解因式:
(1)x2+x (2)4a2b-6abc (3) x (a+1)-y(a+1)
二、点评、讲授
你能将多项式y2-25与多项式x2-4 分解因式吗?
(1)本题你能用提公因式法分解因式吗?
(2)这两个多项式有什么共同的特点?
(3)你能利用整式的乘法公式——平方差公式(a+b)(a-b) =a2-b2来解决这个问题吗?
你对因式分解的方法有什么新的发现?请尝试着概括你的发现.
把整式的乘法公式——平方差公式(a+b)(a-b) =a2-b2反过来就得到因式分解的平方差公式:a2-b2 =(a+b)(a-b)
(1)平方差公式的结构特征是什么?
(2)两个平方项的符号有什么特点?
适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个
平方项的符号相反.
例题:分解因式
(1)4x2-9 (2) (x+p)2-(x+q)2
例2分解因式:
(1) x4-y4 (2) a3b-ab
通过对例2的学习,你有什么收获?
(1)分解因式必须进行到每一个多项式都不能再分解
为止;
(2)对具体问题选准方法加以解决.
三、巩固练习
练习1下列多项式能否用平方差公式来分解因式,为什么?
(1) x2+y2 (2) x2-y2 (3) -m2+n2(4) -a2-b2
2、把下列各式分解因式:
(1)a2-1/25b2(2)9a2-4b2(3)-1+36b2(4)(2x+y)2-(2x-y)2
3、16x4-1
四、测试(或点拨、释难)
五、小结与导学
(一)小结:(1)本节课学习了哪些主要内容?
(2)因式分解的平方差公式的结构特征是什么?
(3)综合运用提公因式法和平方差公式进行因式分解
时要注意什么?
(二)导学:
【作业布置】P119 1
【板书设计】
【个别学生面对面辅导情况】
【课后反思】。

相关文档
最新文档