4.1因式分解教学设计

合集下载

(完整版)北师大版八年级数学下册4.1因式分解教案

(完整版)北师大版八年级数学下册4.1因式分解教案

《因式分解》教学设计因式分解是义务教育课程标准实验教科书(北师版)《数学》八年级下册第四章第一节内容,本章主要是研究代数式的因式分解的方法和应用;本节要求使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.。

所以本节的重点是理解因式分解的意义.识别分解因式与整式乘法的关系。

【知识与能力目标】使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.【过程与方法目标】通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力. 【情感态度价值观目标】通过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系.【教学重点】1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.【教学难点】通过观察,归纳分解因式与整式乘法的关系.教师准备课件、多媒体;学生准备;练习本;Ⅰ.创设问题情境,引入新课[师]大家会计算(a+b)(a-b)吗?[生]会.(a+b)(a-b)=a2-b2.[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.Ⅱ.讲授新课1.讨论993-99能被100整除吗?你是怎样想的?与同伴交流.[生]993-99能被100整除.因为993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.[师]993-99还能被哪些正整数整除?[生]还能被99,98,980,990,9702等整除.[师]从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流.[师]大家可以观察a3-a与993-99这两个代数式.[生]a3-a=a(a2-1)=a(a-1)(a+1)3.做一做(1)计算下列各式:①(m+4)(m-4)=__________;②(y-3)2=__________;③3x(x-1)=__________;④m(a+b+c)=__________;⑤a(a+1)(a-1)=__________.[生]解:①(m+4)(m-4)=m2-16;②(y-3)2=y2-6y+9;③3x(x-1)=3x2-3x;④m(a+b+c)=ma+mb+mc;⑤a(a+1)(a-1)=a(a2-1)=a3-a.(2)根据上面的算式填空:①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();④y2-6y+9=()2.⑤a3-a=()().[生]把等号左右两边的式子调换一下即可.即:①3x2-3x=3x(x-1);②m2-16=(m+4)(m-4);③ma+mb+mc=m(a+b+c);④y2-6y+9=(y-3)2;⑤a3-a=a(a2-1)=a(a+1)(a-1).[师]能分析一下两个题中的形式变换吗?[生]在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘积的形式.[师]在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式推出整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式(factorization).4.想一想由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a -1)的变形是分解因式,这两种过程正好相反.[生]由(a+b)(a-b)=a2-b2可知,左边是整式乘法,右边是一个多项式;由a2-b2=(a+b)(a-b)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过程正好相反.[师]非常棒.下面我们一起来总结一下.如:m(a+b+c)=ma+mb+mc (1)ma+mb+mc=m(a+b+c)(2)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.即ma+mb+mc m(a+b+c).所以,因式分解与整式乘法是相反方向的变形.5.例题投影片(§4.1 A)下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.而不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)是因式分解.[师]大家认可吗?[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.Ⅲ.课堂练习连一连解:Ⅳ.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形.Ⅴ.课后作业习题4.11.连一连解:2.解:(2)、(3)是分解因式.3.因19992+1999=1999(1999+1)=1999×2000,所以19992+1999能被1999整除,也能被2000整除.(2)因为16.9×81+15.1×81=81×(16.9+15.1) =81×32=4 所以16.9×81 +15.1×81能被4整除.4.解:当R 1=19.2,R 2=32.4,R 3=35.4,I=2.5时, IR 1+IR 2+IR 3 =I (R 1+R 2+R 3) =2.5×(19.2+32.4+35.4) =2.5×87 =217.5 Ⅵ.活动与探究 已知a=2,b=3,c=5.求代数式a (a+b -c )+b (a+b -c )+c (c -a -b )的值. 解:当a=2,b=3,c=5时,a (a+b -c )+b (a+b -c )+c (c -a -b ) =a (a+b -c )+b (a+b -c )-c (a+b -c ) =(a+b -c )(a+b -c ) =(2+3-5)2=0 ●板书设计§4.1 分解因式一、1.讨论993-99能被100整除吗? 2.议一议 3.做一做4.想一想(讨论整式乘法与分解因式的联系与区别)5.例题讲解二、课堂练习三、课时小结四、课后作业◆教学反思略。

北师大版八年级下册数学《4.1 因式分解》教案

北师大版八年级下册数学《4.1 因式分解》教案

北师大版八年级下册数学《4.1 因式分解》教案一. 教材分析北师大版八年级下册数学《4.1 因式分解》这一节主要介绍了因式分解的概念和基本方法。

通过本节课的学习,学生能够理解因式分解的意义,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决一些实际问题。

二. 学情分析学生在学习这一节之前,已经学习了整式的乘法,对一些基本的代数运算有一定的了解。

但是,因式分解作为一种独立的数学思想,对学生来说可能还有一些抽象和难以理解。

因此,在教学过程中,需要引导学生从实际问题出发,逐步理解和掌握因式分解的方法。

三. 教学目标1.了解因式分解的概念和意义。

2.掌握提公因式法、公式法等基本的因式分解方法。

3.能够运用因式分解解决一些实际问题。

四. 教学重难点1.因式分解的概念和意义。

2.提公因式法和公式法的运用。

五. 教学方法采用问题驱动法,引导学生从实际问题出发,探索和理解因式分解的概念和方法。

同时,结合案例分析和练习,让学生在实践中掌握因式分解的方法。

六. 教学准备1.PPT课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,比如:已知二次函数f(x)=x^2+4x+4,求其解析式。

让学生思考如何将这个二次函数表示成两个一次函数的乘积形式。

2.呈现(10分钟)讲解因式分解的概念,介绍提公因式法和公式法。

通过PPT课件,展示因式分解的步骤和例子,让学生理解和掌握因式分解的方法。

3.操练(10分钟)让学生分组讨论,每组选取一个题目进行因式分解。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)让学生独立完成一些因式分解的练习题,教师选取一些题目进行讲解和分析。

5.拓展(10分钟)引导学生思考如何将因式分解应用到解决实际问题中,比如:求解一元二次方程、求函数的极值等。

6.小结(5分钟)让学生总结因式分解的概念和方法,以及自己在学习过程中的收获和不足。

7.家庭作业(5分钟)布置一些因式分解的练习题,让学生巩固所学知识。

浙教版数学七年级下册《4.1 因式分解》教学设计3

浙教版数学七年级下册《4.1 因式分解》教学设计3

浙教版数学七年级下册《4.1 因式分解》教学设计3一. 教材分析浙教版数学七年级下册《4.1 因式分解》是初中学段的一节重要课程。

因式分解是代数学习中的基础,也是解决方程、不等式等问题的关键。

本节课主要让学生掌握因式分解的基本方法和技巧,能够运用因式分解解决实际问题。

二. 学情分析七年级的学生已经掌握了整式的加减、乘除等基本运算,对代数概念有了一定的理解。

但因式分解作为一种独立的解题方法,对学生来说还是较为抽象和复杂的。

因此,在教学过程中,需要关注学生的认知水平,循序渐进地引导学生理解和掌握因式分解。

三. 教学目标1.让学生掌握因式分解的定义和方法。

2.培养学生运用因式分解解决实际问题的能力。

3.提高学生的逻辑思维和运算能力。

四. 教学重难点1.因式分解的定义和方法。

2.因式分解在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生自主探究和小组讨论,培养学生解决问题的能力和合作精神。

六. 教学准备1.准备相关的教学案例和练习题。

2.制作多媒体课件,以便进行生动形象的讲解。

七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,激发学生的学习兴趣。

示例:已知二次方程 x^2 + 4x + 3 = 0,求解该方程的解。

2.呈现(10分钟)讲解因式分解的定义和方法,让学生理解和掌握。

因式分解的定义:将一个多项式表示为两个或多个多项式的乘积的形式。

因式分解的方法:(1)提取公因式法:找出多项式中的公因式,将其提取出来。

(2)十字相乘法:对于二次多项式,通过十字相乘的方式找到因式。

3.操练(10分钟)让学生进行因式分解的练习,巩固所学知识。

(1)因式分解 x^2 - 5x + 6。

(2)因式分解 x^2 + 6x + 9。

4.巩固(10分钟)通过讲解和练习,让学生进一步理解和掌握因式分解。

示例:已知二次方程 x^2 - 5x + 6 = 0,求解该方程的解。

2022-2023学年八年级数学北师大版下册4.1因式分解 教案

2022-2023学年八年级数学北师大版下册4.1因式分解 教案

2022-2023学年八年级数学北师大版下册4.1因式分解教案一、教学目标1.理解因式分解的概念和意义;2.掌握基本的因式分解方法;3.能够应用因式分解解决实际问题;4.培养学生的逻辑思维和综合运算能力。

二、教学内容1.回顾负数的乘法和除法;2.因式分解的基本概念;3.因式分解的基本方法;4.应用因式分解解决实际问题。

三、教学重点1.理解因式分解的概念和意义;2.掌握基本的因式分解方法。

四、教学难点1.能够应用因式分解解决实际问题;2.培养学生的逻辑思维和综合运算能力。

五、教学准备1.北师大版八年级数学下册教材;2.学生练习册;3.教学投影仪和课件。

六、教学过程1. 导入(5分钟)目的:进一步激发学生对因式分解的兴趣。

1.引入一个生活中的问题:小明买了5个苹果,小红买了3个苹果,他们一共买了多少个苹果?请用数学式子表示出来。

2. 新课讲解(10分钟)目的:引入因式分解的概念和意义。

1.引导学生思考:在小明和小红买苹果的问题中,能否用一种更简洁的方式表示数量关系?2.引出因式分解的概念:将一个数或者一个代数式写成若干个乘积的形式,其中每个乘积的因数称为因式。

3.引导学生发现因式分解的意义:通过因式分解,可以使问题的表达更加简洁,同时也方便我们进行计算和解题。

3. 示例演练(15分钟)目的:回顾负数的乘法和除法,并让学生掌握基本的因式分解方法。

1.提醒学生注意负数的乘法和除法规则:两个负数相乘得正数,一个正数和一个负数相乘得负数,负数除以正数得负数,正数除以负数得正数。

2.给出一个示例:将14ab分解为因式的乘积。

3.引导学生思考解题思路:首先确定14的因数,然后确定a和b的因数,并组合得到14ab的所有因式。

4.和学生一起分解示例:14ab = 2 * 7 * a * b。

4. 练习与巩固(15分钟)目的:让学生通过练习巩固所学的因式分解方法。

1.学生完成教材上的练习题,老师及时给予指导和解答。

5. 拓展与应用(10分钟)目的:引导学生将因式分解应用到实际问题中。

4.1《因式分解》参考教案1

4.1《因式分解》参考教案1

4.1 因式分解教案一、背景介绍因式分解是代数式中的重要内容,它与前一章整式和后一章分式联系极为密切。

因式分解的教学是在整式四则运算的基础上进行的,因式分解方法的理论依据就是多项式乘法的逆变形。

它不仅在多项式的除法、简便运算中有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三角函数式的恒等变形提供了必要的基础。

因此,学好因式分解对于代数知识的后续学习,具有相当重要的意义。

二、教学设计【教学内容分析】因式分解的概念是把一个多项式化成几个整式的积的形式,它是因式分解方法的理论基础,也是本章中一个重要概念。

教材在引入中是结合剪纸拼图来阐述这一概念的,也可以与小学数学里因数分解的概念类比予以说明。

在教学时对因式分解这一概念不宜要求学生一次彻底了解,应该在讲授因式分解的三种基本方法时,结合具体例题的分解过程和分解结果,说明这一概念的意义,以达到逐步了解这一概念的教学目的。

【教学目标】1、认知目标:(1)理解因式分解的概念和意义(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

2、能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。

3、情感目标:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学准备】实物投影仪、多媒体辅助教学。

【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。

【初一年级学生活波好动,好表现,争强好胜。

情境导入借助抢答的方式进行,引进竞争机制,可以使学生在参与的过程中提高兴趣,并增强竞争意识和探究欲望。

浙教版数学七年级下册《4.1 因式分解》教学设计2

浙教版数学七年级下册《4.1 因式分解》教学设计2

浙教版数学七年级下册《4.1 因式分解》教学设计2一. 教材分析浙教版数学七年级下册《4.1 因式分解》是学生在掌握了整式的乘法运算和多项式相等的基础知识后,进一步学习的知识点。

这一节内容主要介绍了因式分解的定义、方法和应用。

教材通过具体的例子,引导学生掌握因式分解的基本技巧,并能够灵活运用到实际问题中。

本节课的内容是学生后续学习二次方程、二次不等式等知识的基础,具有重要的意义。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算和多项式相等的基础知识。

他们能够进行简单的整式乘法运算,但对于因式分解的概念和方法可能还比较陌生。

因此,在教学过程中,教师需要通过具体的例子,引导学生理解因式分解的概念,掌握因式分解的方法。

三. 教学目标1.知识与技能:使学生理解因式分解的概念,掌握因式分解的方法,能够对简单的多项式进行因式分解。

2.过程与方法:通过具体的例子,引导学生掌握因式分解的基本技巧,并能够灵活运用到实际问题中。

3.情感态度与价值观:培养学生的逻辑思维能力,提高学生学习数学的兴趣。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:如何引导学生理解因式分解的概念,以及如何让学生掌握因式分解的方法。

五. 教学方法1.情境教学法:通过具体的例子,引导学生理解因式分解的概念。

2.启发式教学法:通过提问和引导学生思考,激发学生的学习兴趣和动力。

3.小组合作学习:让学生在小组内进行讨论和实践,提高学生的合作能力和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示具体的例子和教学内容。

2.练习题:准备一些因式分解的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生思考如何将一个多项式进行分解。

例如,给出多项式x^2 + 2x + 1,引导学生思考如何将其分解。

2.呈现(15分钟)教师通过PPT展示因式分解的定义和方法,让学生了解因式分解的概念和基本技巧。

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计

北师大版八年级下册数学《4.1 因式分解》教学设计一. 教材分析《4.1 因式分解》是北师大版八年级下册数学的一章内容。

本章主要介绍了因式分解的概念、方法和应用。

因式分解是初中学过的最复杂的整式运算,也是中学数学中重要的思想方法。

本章内容对于学生来说,既是对之前所学知识的巩固,也是为之后学习更高级数学打下基础。

二. 学情分析学生在学习本章内容之前,已经掌握了整式的加减、乘法、除法等基本运算,同时也学习过一些简单的因式分解方法。

但是,对于八年级的学生来说,因式分解仍然是一个比较困难的问题,需要通过实例讲解和练习来进一步理解和掌握。

三. 教学目标1.知识与技能:使学生理解因式分解的概念,掌握因式分解的方法,能够运用因式分解解决实际问题。

2.过程与方法:通过实例讲解和练习,培养学生观察、分析、归纳的能力,提高解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生感受到数学的美丽和实用性。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:如何运用因式分解解决实际问题。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过实例讲解、练习和讨论,使学生理解和掌握因式分解的方法和应用。

六. 教学准备1.准备相关教学材料,如PPT、教案、练习题等。

2.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出因式分解的概念和方法。

例如,讲解“分解因数”的概念,让学生初步了解因式分解的意义。

2.呈现(15分钟)讲解因式分解的基本方法,如提公因式法、公式法等。

通过示例,让学生观察和分析因式分解的过程,引导学生主动思考和探究。

3.操练(15分钟)让学生分组进行练习,互相讨论和交流因式分解的方法。

教师巡回指导,解答学生的疑问,及时给予反馈和评价。

4.巩固(10分钟)让学生独立完成一些因式分解的题目,巩固所学知识。

教师选取部分学生的作业进行讲解和分析,指出其中的错误和不足。

北师大版八年级数学(下册)优秀教学案例:4.1因式分解

北师大版八年级数学(下册)优秀教学案例:4.1因式分解
在本章节的教学过程中,我将关注学生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展,努力提高他们的数学素养,为学生的终身发展奠定坚实基础。在教学实践中,注重激发学生的学习兴趣,营造轻松愉快的教学氛围,使他们在愉悦的情感体验中学习数学,感受数学的无穷魅力。
三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁厂中学高效课堂数学教学设计
4.1 因式分解
铁厂中学李兴林
一.教材分析:
因式分解是代数的重要内容,它与整式和它在分式有密切联系,因式分解是在学习有理
数和整式四则运算上进行的,它为今后学习分式运算,解方程及方程组及代数式和三角函数
式恒等变形提供必要的基础。

因此学好因式分解对于代数知识的后继学习具有相当重要的意
义.
本节是因式分解的第1小节,它主要让学生经历从分解因数到分解因式的过程,让学生
体会数学思想——类比思想,分解的思想,逆向思考的作用,体会数学思维之间的整体联系。

二.学情分析:
学生的技能基础:学生已经熟悉乘法的分配律及其逆运算,并且学习了整式的乘法运算,
因此,对于因式分解的引入,学生不会感到陌生,它为今天学习分解因式打下了良好基础.学生活动经验基础:由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维
对于八年级学生还比较生疏,接受起来还有一定的困难,再者本节还没有涉及因式分解的具
体方法,所以对于学生来说,寻求因式分解的方法是一个难点。

三.教学目标:
1.使学生了解因式分解的意义,理解因式分解的概念。

2.认识因式分解与整式乘法的相互关系——互逆关系(即相反变形)。

3.通过对分解因式与整式的乘法的观察与比较,培养变形与化归的能力。

4.培养学生认识矛盾的对立统一,勇于探索的精神和实事求是的学习态度。

四.教学重点:因式分解的概念。

教学难点:难点是理解因式分解与整式乘法的相互关系。

五.教学过程:
本节课设计了五个教学环节:复习回顾(整式乘法),自主探究概念,小组合作学习,
检测巩固,小结。

(一)复习回顾
1.整式乘法有几种形式?
(1)单项式乘以单项式:3aˑ4ab=
(2)单项式乘以多项式:
a(m+n)=_______
(3)多项式乘以多项式: (a+b)(m+n)=_____________
千教万教,教人求真
2.乘法公式有哪些?
(1)平方差公式: (a+b)(a-b)=_______
(2)完全平方公式: (a±b)2=___________
(二)自主探究:
特点:特点:
2、总结定义:
把一个化成的形式,我们把这种变形叫做;我们也叫做把这个多项式。

3、理解概念:判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y)
(2).2x(x-3y)=2x2-6xy
(3). 6x2y3=3xy.2xy2
(4).(x+2)2=x2+4x+4
(5).2πR+ 2πr= 2π(R+r)
4、下列代数式从左到右的变形是因式分解吗?
(1)a2+a=a(a+1)
(2) (a+3)(a-3)=a2-9
(3) 4x2-4x+1=(2x+1)2
(4) x2-3x+1=x(x-3)+1
1)
(5) x2+1=x(x+
x
(6) 18a3bc=3a2b.6ac
(三)合作学习:
1、小组合作学习:因式分解与整式乘法有什么关系?(小组讨论)
千学万学,学做真人
铁厂中学高效课
堂数学教学设计
千教万教,教人求真 2、你能举出几个因式分解的例子吗?(小组讨论)
(四)检测巩固:
1、连一连:
2、拓展研究 :
手工课上,老师给小明同学发下一张如左图形状的纸张,要求他在恰好不浪费纸张的前
提下剪拼成右图形状的长方形,作为一幅精美剪纸的衬底,请问你能据此写出一个多项式的因式分解吗?
(五)小结:
(1)你能说说什么是分解因式吗?
把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式。

(2)应该怎样认识“因式分解”?
分解因式与整式乘法是互逆过程.
六.教学反思
关于如何上好数学概念课一直是数学教学中热点讨论的话题,也是难题,而真正有效的数学概念课教学是要让学生从根本上理解概念的意义,并学会灵活运用。

本节课以学生的思维进程发展为主线,采用逐步渗透,螺旋式类比方法,在概念引入时,从分解因数到分解因式的类比,到概念强化阶段,又以整式乘法与分解因式的过程类比,因式分解过程中正反两例的类比,逐渐加深学生的认识,主要体现在从一开始一连串的知识性问题引入,到后来环节中多次提出思考性的问题,启发、引导学生做进一步的猜想、探究,这种循序渐进的思维进程有助于学生理解接受新知识。

x 2-y 2
9-25x 2
x 2+2x+1 xy-y 2
(x+1)2 y(x-y) (3-5x)(3+5x) (x+y)(x-y) a a-b a+b a。

相关文档
最新文档