超高性能混凝土(UHPC)研究综述
超高性能混凝土(UHPC)基本性能研究综述共3篇

超高性能混凝土(UHPC)基本性能研究综述共3篇超高性能混凝土(UHPC)基本性能研究综述1近年来,超高性能混凝土(UHPC)在建筑工程领域中得到了广泛的应用。
相比于普通混凝土,UHPC具有更高的抗压强度、抗拉强度、抗渗透性、抗冻融性以及耐久性。
本文将对UHPC的基本性能进行综述。
1. 抗压强度UHPC的抗压强度一般在150 MPa到250 MPa之间,而普通混凝土的抗压强度通常在20 MPa到40 MPa之间。
这是因为UHPC采用了多种添加剂和超细粉料,使得其微观结构更加精密,可以有效地抵抗压力。
2. 抗拉强度UHPC的抗拉强度通常在10 MPa到15 MPa之间,而普通混凝土的抗拉强度只有1 MPa到2 MPa。
这也是由于UHPC的微观结构更加紧密,能够有效地抵抗拉力。
3. 抗渗透性UHPC的抗渗透性比普通混凝土更好,主要是由于UHPC中使用了高品质的细石颗粒,能够有效地填充混凝土中的微小孔隙,减少渗透的可能性。
4. 抗冻融性UHPC的抗冻融性也比普通混凝土更好,这是由于UHPC中采用了特殊的添加剂来延缓水的渗透和凝结,使得混凝土孔隙中的水不会在冷冻过程中膨胀。
5. 耐久性UHPC的耐久性比普通混凝土更好,这是由于UHPC中添加了特殊的化学成分,可以在一定程度上延缓混凝土的老化过程,从而改善混凝土的耐久性。
综上所述,超高性能混凝土在工程建设中具有重要的应用价值。
随着科学技术的不断进步,UHPC的性能将会得到进一步的提升和改进,为建筑工程的发展做出更大的贡献。
超高性能混凝土(UHPC)基本性能研究综述2超高性能混凝土(UHPC)是一种新型高强低碳建筑材料,它雷同名字,具有出色的力学性能、耐久性和抗冲击性能,是目前替换传统混凝土的一种趋势。
本文将对UHPC的基本性能进行综述。
一、力学性能UHPC的力学性能高于传统混凝土。
表现在以下方面:1. 抗压强度: UHPC的抗压强度通常为150-250 MPa之间,是普通混凝土的10倍以上,并且在高应变下表现出极佳的稳定性。
UHPC与普通混凝土界面黏结性能研究综述

标题:超高性能混凝土与普通混凝土界面抗剪性能试验研究
结果与讨论: 试验结果表明,超高性能混凝土在界面抗剪强度方面表现出显著优势。具体 而言,超高性能混凝土的界面抗剪强度较普通混凝土提高了约30%。此外,超高 性能混凝土在黏结性能和耐久性方面也表现出较好的性能。
标题:超高性能混凝土与普通混凝土界面抗剪性能试验研究
这种界面抗剪性能的提升主要归因于超高性能混凝土的高强度、高韧性以及 良好的耐久性。这些优点使得超高性能混凝土在承受复杂应力作用时,能够更好 地抵抗界面开裂和破坏。
标题:超高性能混凝土与普通混凝土界面抗剪性能试验研究
结论: 本次演示通过室内试验对比研究了超高性能混凝土与普通混凝土的界面抗剪 性能。试验结果表明,超高性能混凝土在界面抗剪强度、黏结性能和耐久性方面 均优于普通混凝土。这些优势主要归因于超高性能混凝土的高强度、高韧性和良 好的耐久性。
基本内容
3、UHPC与普通混凝土界面黏结性能的影响因素及其作用机制影响UHPC与普 通混凝土界面黏结性能的因素很多,主要包括:材料性质、配合比、施工工艺、 养护条件和环境因素等。其中,材料性质是最基本的因素,包括水泥类型、细集 料和粗集料的级配和粒形、掺合料种类和掺量等。
基本内容
配合比对UHPC与普通混凝土界面黏结性能也有重要影响,包括水胶比、砂率、 粗细集料比例等。施工工艺主要包括搅拌、成型和养护方式等,对界面黏结性能 也有较大影响。养护条件包括温度和湿度等,环境因素则包括温度变化、湿度变 化和化学腐蚀等。这些因素的作用机制主要表现在以下几个方面:材料的相互扩 散和化学反应、界面的物理吸附作用、机械咬合作用以及环境因素对界面的侵蚀 作用。
超高性能混凝土(UHPC)研究综述.

低模量的聚丙烯纤 维、中模量的耐碱 玻璃纤维和高模量 的钢纤维混杂
一些力学性能得到一 定程度的改善而 提高。
超高性能混凝土 UHPC
2.1 材料组分与配合比
2 制备技术
2.1.2 寻找水泥的替代品:
1)用粉煤灰取代60%的水泥; 2)RPC中采用粉煤灰和矿渣替代水泥和硅灰;
3)棕榈油灰取代50%的胶凝材料;
缺点
自重大、脆性大和 强度(尤其是抗拉强度) 低,使用范围狭窄;对于 低强度的混凝土,在满足 相同功能时用量较大,不 符合国家节约、降耗要求。
超高性能混凝土 UHPC 1)20年代、50年 代和70年代,混凝 土的平均抗压强度 可分别20、30、 40Mpa。
高强混凝土的发展
0引言
5)Brumaue报道了
4)用稻壳灰取代硅灰; 5)选择多种减水剂进行耦合。
超高性能混凝土 UHPC
2.2 拌制与养护技术
2 制备技术
拌制注意事项:
1)与普通混凝土不同,RPC由于采用基体材料+细粒径组
分材料+钢纤维进行配制,在拌制过程中容易聚团,会影响 RPC成型的均质性和材料性质。 2)采用的搅拌设备、混合料的拌制时间与顺序等也要考虑。 3)注意RPC浇注时钢纤维方向分布对RPC的拉抗强度等性能 的影响。 4)高温、加压养护是UHPC获得高性能的重要手段,温度越 高、时间越长,参加反应的硅灰越多,内部结构也就越密实。
超高性能混凝土 UHPC
2.1 材料组分与配合比
2 制备技术
目的:降低成本、提高性能。
突破点:材料组分和配合比 2.1.1 寻找钢纤维的替代品:
部分碳纤 维和全部 碳纤维 最终破坏形态表现 出很大的脆性破坏。
采用80 级焊接钢 筋网
超高性能混凝土的研究

超高性能混凝土的研究超高性能混凝土(UHPC)是一种新型的混凝土材料,具有卓越的力学性能和耐久性,被广泛应用于桥梁、隧道、建筑和水利工程等领域。
本文将就UHPC的特点、研究现状和未来发展进行详细的介绍。
一、UHPC的特点超高性能混凝土是一种以超细粉料、高性能水泥和高强度骨料为主要原料,通过特殊配比和特殊工艺制成的混凝土。
与传统混凝土相比,UHPC的主要特点如下:1. 高强度:UHPC的抗压强度通常在150MPa以上,是普通混凝土的5倍以上。
抗拉强度为10-20MPa,是普通混凝土的10倍以上。
2. 优异的耐久性:UHPC具有极佳的耐久性,能够在恶劣环境下长期保持较高的力学性能。
具有极佳的抗渗、抗冻融、耐久性和耐化学侵蚀性。
3. 易成型和高粘结性:UHPC的粘结性能非常好,能够与钢筋、预应力钢束等有效结合,加工成各种形状、尺寸的构件。
4. 优异的变形能力:UHPC在受力情况下呈现出极强的变形能力,具有优异的抗裂性和抗震性。
5. 体积稠密:UHPC经过特殊配比和特殊工艺制作,具有极高的致密性和微观结构的精细性,体积密度大于2.4g/cm3。
二、UHPC的研究现状目前,国内外对UHPC的研究已经取得了显著的进展,主要集中在材料成分、配合比设计、制备工艺、力学性能和结构应用等方面。
1. 材料成分:UHPC的基本原料包括水泥、硅粉、矿物掺合料、超细矿物颗粒、粘结剂、外加剂和水,其中水泥和超细矿物颗粒是UHPC的主要材料。
2. 配合比设计:UHPC的配合比设计是关键的技术之一,需要考虑到各种原材料的物理化学性质,以及混凝土的性能要求,通过科学合理的方法确定各种原料的配合比例。
3. 制备工艺:UHPC的制备工艺包括原料的预处理、混合、浇筑、养护等步骤,其中混合工艺是制备UHPC的关键环节。
4. 力学性能:UHPC的力学性能是评价其优劣的重要指标,包括抗压强度、抗拉强度、抗弯强度、抗冻融性等方面的性能。
5. 结构应用:UHPC在桥梁、隧道、建筑和水利工程中得到了广泛应用,主要包括梁、柱、板、墙、连接节点等构件的应用。
超高性能混凝土(UHPC)的性能和应用简述

超高性能混凝土(UHPC)的性能和应用简述1、超高性能混凝土(UHPC)定义与发展历程超高性能混凝土(Ultra-HighPerformance Concrete,简称UHPC),因为一般需掺入钢纤维或高强聚合物纤维,也被称作超高性能纤维增强混凝土(Ultra-HighPerformance Fibre Reinforced Concrete,简称UHPFRC)。
UHPC不同于传统的高强混凝土(HSC)和钢纤维混凝土(SFRC),也不是传统意义“高性能混凝土(HPC)”的高强化,而是性能指标明确的新品种水泥基结构工程材料。
1999年清华大学覃维祖教授等发表文章《一种超高性能混凝土——活性粉末混凝土》最早介绍了UHPC,至今在中国仍然较多地使用“活性粉末混凝土(简称RPC)”名称。
RPC是法国一个公司的专利产品名称,宣传介绍较多而广为人知。
1994年法国学者DeLarrard等将这类新材料称作UHPC,由于UHPC或UHPFRC名称没有商业色彩,且能更好表达这种水泥基材料或混凝土的优越性能,逐步被广泛接受和采用。
UHPC较有代表性的定义或需要具备的特性如下:· 是一种组成材料颗粒的级配达到最佳的水泥基复合材料;· 水胶比小于0.25,含有较高比例的微细短钢纤维增强材料;· 抗压强度不低于150MPa;具有受拉状态的韧性,开裂后仍保持抗拉强度不低于5MPa(法国要求7MPa);· 内部具有不连通孔结构,有很高抵抗气、液体浸入的能力,与传统混凝土和高性能混凝土(HPC)相比,耐久性可大幅度提高。
UHPC属于现代先进材料,创新了水泥基材料(混凝土或砂浆)与纤维、钢材(钢筋或高强预应力钢筋)的复合模式,大幅度提高了纤维和钢筋在混凝土中的强度利用效率,使水泥基结构材料的全面性能发生了跨越式进步。
使用UHPC可以建造轻质高强和高韧性的结构,彻底改变混凝土结构“肥梁胖柱”状态;其结构所拥有的耐久性和工作寿命,远远超越钢、铝、塑料等其它所有结构材料。
超高性能混凝土(UHPC)研究综述

在不影响 钢纤维分布均匀性的前提下,一般可以提高3.5
%~4%,与钢纤维掺量成正比。 4)对抗压强度,钢纤维也有一定的增强作用,但是 一般认为存在一个界限掺量2%,当超过这个掺量时, 抗压强度不升反降。
超高性能混凝土 UHPC
4.1 拉、压强度等基本力学性能
4 材料性能研究
在强度等力学性能等方面主要研究抗压度、抗拉强度、韧性、弹性模量和应 力~应变曲线、 极限应变、泊松比、平均断裂能、延性、热膨胀系数等,其 中抗压强度、抗拉强度是UHPC最基本的力学性能。
等级 R100 R120 R140 抗压强度标 抗折强度/M 弹性模量/G 准值/MPa Pa Pa 100 120 140 ≥12 ≥14 ≥18 ≥40 ≥40 ≥40
R160
R180
160
180
≥22
≥24
≥40
≥40
对抗压强度要求最低为100MPa,比法国 和日本的抗压强度150MPa要低。
1)同普通混凝土一样, UHPC的抗拉强度从高到 低依次为轴拉强度、劈拉强度以及弯拉强度,但是 对于各种 测试结果之间的比值量化关系,目前为 止还没有公认的定论; 2)随砂胶比的增大,RPC的抗折强度、抗压强度 均减小;随水胶比的增大,RPC的抗折强度增大, 但是抗压强度在水胶比为0.18时达到最大值;随钢 纤维掺量的增大,RPC的轴拉强度、劈拉强度和 抗折强度均增大, 但是抗压强度在钢纤维掺量2 %时达到最大值。
10) 以RPC 制备原 理为基础的UHPC 材料的研究与应用, 是当今水泥基材料发 展的主要方向之一。
超高性能混凝土 UHPC
0引言
高强混凝土各国研究进展
1、美国国家科学基金会于1989年投资建立了一个“高 级水泥基材料科技中心”,美国联邦公路局以RPC 为 研究对象,对UHPC 开展了系统的研究,进行了1000 多个试件的测试,研究内容包括配制技术、强度、耐久 性和长期性能等力学性能。 2、法国土木工程学会在大量研究的基础上,于2002 年制订了超高性能纤维混凝土的指南(初稿)。
超高性能混凝土的研究

超高性能混凝土的研究超高性能混凝土(UHPC)是一种具有极高强度、耐久性和耐久性的新型混凝土材料,近年来得到了广泛的关注和研究。
UHPC不仅在建筑领域有着广泛的应用前景,还可以在桥梁、隧道、海洋工程等领域发挥重要作用。
本文将对UHPC的相关研究进行介绍,并探讨其在工程实践中的应用前景。
一、UHPC的定义及特性UHPC是一种具有极高强度(通常高达150MPa以上)、极高密实度和微观结构的混凝土材料。
相比传统混凝土,UHPC具有更高的抗压强度、抗拉强度、抗冻融性和耐久性,其密实的微观结构可以有效降低渗透性,增加材料的耐久性。
UHPC还具有良好的抗化学腐蚀性能和抗爆炸性能,因此在地震、恶劣环境下具有较高的安全性。
二、UHPC的材料组成及制备工艺UHPC的材料组成主要包括水泥、石英粉、硅灰、矿粉、钢纤维等,其中水泥的种类和掺合材料的比例对UHPC的性能有着重要影响。
制备UHPC的工艺则主要包括配合比设计、原材料选用、搅拌工艺和养护工艺等。
UHPC的养护过程也对其性能有着重要影响,合理的养护工艺可以使UHPC获得更好的密实度和力学性能。
三、UHPC的微观结构及性能研究UHPC的微观结构是其具有优异性能的关键。
研究表明,UHPC的微观结构主要是由水泥凝胶、石英凝胶和未水化水泥颗粒等组成,这些微观组分之间相互作用形成了致密的凝胶-骨料界面,增强了UHPC的内聚力和抗渗性。
目前,研究者通过扫描电子显微镜、X射线衍射等技术对UHPC的微观结构进行了深入研究,为其性能提升和应用拓展提供了重要的科学依据。
四、UHPC在工程实践中的应用近年来,UHPC在桥梁、隧道、建筑和海洋工程等领域得到了广泛的应用。
其优异的力学性能和耐久性使得UHPC成为了一种理想的结构材料。
在桥梁领域,UHPC可以制备出更轻、更薄的预应力构件,提高了桥梁的承载能力和耐久性;在建筑领域,UHPC可以制备出更薄、更精致的构件,提高了建筑的抗震性和安全性;在海洋工程中,UHPC可以抵御海水侵蚀和恶劣气候的影响,延长了工程的使用寿命。
超高性能混凝土拉伸与疲劳性能研究进展

3、开展超高性能混凝土与其他材料的复合研究,拓展其应用范围;
4、研究和推广超高性能混凝土的绿色制备技术和环保性能,推动绿色建筑 发展。
参考内容二
超高性能混凝土(UHPC)是一种具有极高强度、耐久性和韧性的新型混凝土 材料。由于其优异的性能,UHPC已成为国内外土木工程领域的研究热点。本次演 示将介绍UHPC在国内外的研究进展。
三、UHPC疲劳性能研究
疲劳性能是决定结构物安全性的重要因素。由于疲劳引起的损伤是结构物破 坏的主要原因之一,因此对UHPC疲劳性能的研究至关重要。目前,关于UHPC疲劳 性能的研究主要集中在以下几个方面:
1、疲劳损伤机制:通过对UHPC进行疲劳试验,研究其在疲劳作用下的损伤 演变规律和机制,为其抗疲劳设计和应用提供理论依据。
五、结论
本次演示对UHPC拉伸与疲劳性能的研究进展进行了综述。通过对UHPC拉伸性 能和疲劳性能的研究现状进行总结,指出了存在的问题和未来研究方向。为了更 好地满足工程需求和提高结构安全性,未来需要在微观机制、多因素耦合作用、 耐久性、数值模拟与优化设计等方面进行深入研究。通过跨学科合作和实践应用, 将有助于推动UHPC在工程领域的发展和应用水平的提高。
二、UHPC拉伸性能研究
UHPC的拉伸性能是其基本力学性能之一,对其在服役过程中的安全性具有重 要影响。近年来,研究者们在UHPC的拉伸性能方面进行了大量研究。例如,通过 在UHPC中添加钢纤维或碳纤维等增强材料,可以有效提高其抗拉强度和韧性。此 外,通过优化配合比设计和制备工艺,也可以显著改善UHPC的拉伸性能。
2、疲劳寿命预测:基于大量试验数据,利用回归分析等方法建立UHPC疲劳 寿命预测模型,为其在工程实践中的安全应用提供技术支持。
3、疲劳损伤修复:针对已发生疲劳损伤的UHPC结构,研究有效的修复方法 和技术,以延长其使用寿命并降低安全隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用,强度超过60 Mpa。
出高性能混凝土(HPC) 混凝土得到运用。
高性能混凝土的发展
0引言
7)Birchal等开发 出无宏观缺陷(MDF) 水泥基材料,抗压 强度达到200Mpa。
9)1994年Larrard等 首次提出超高性能混 凝土(UHPC)的概念。
8)20世纪90年,法国 Bouygues在DSP、 MDF及钢纤维混凝土研 究基础上,研发出RPC。
课程学习目的
1 了解国家高性能混凝土材料研究前沿,顺应 时代新能源新材料的需求。 2 指导学生本科阶段研究学习,培养学生对科 协研究的兴趣,培养科学思维,为未来的深造 和就业做准备。 3 以为UHPC为载体,了解科学研究工作需要做 哪些准备?研究什么内容?其过程如何? 4 学会查找参考文献,熟悉论文写作。
1 UHPC制备基本原理与技术指标
普通混凝土作为一种多孔的不均匀材料,孔结构是影
响其强度的主要因素,而固体混合物的颗粒体系所具有的 高堆积密实度是混凝土获得高强度的关键。
减小 孔隙率
优化孔结构
提高密实度
UHPC制备的 基本原理和 主要方法
掺入纤维
1 RPC制备基本原理与技术指标
RPC 获取超高性能的主要途径
%~4%,与钢纤维掺量成正比。
4)对抗压强度,钢纤维也有一定的增强作用,但是 一般认为存在一个界限掺量2%,当超过这个掺量时, 抗压强度不升反降。
4.1 拉、压强度等基本力学性能
4 材料性能研究
在强度等力学性能等方面主要研究抗压度、抗拉强度、韧性、弹性模量和应 力~应变曲线、 极限应变、泊松比、平均断裂能、延性、热膨胀系数等,其 中抗压强度、抗拉强度是UHPC最基本的力学性能。
(1)剔除粗骨料,限制细骨料的最大粒径不大于300um, 提高了骨料的均匀性。 (2)通过优化细骨料的级配,使其密布整个颗粒空间, 增大了骨料的密实度。 (3)掺入硅粉、粉煤灰等超细活性矿物掺合料,使其具 有很好的微粉填充效应,并通过化学反应降低孔隙率,减 小孔径,优化了内部孔结构。 (4)在硬化过程中,通过加压和热养护,减少化学收缩, 并将C-S-H转化成托贝莫来石,继而成为硬硅钙石,改善材 料的微观结构。 (5)通过添加短而细的钢纤维,改善材料延性。
2、法国土木工程学会在大量研究的基础上,于2002 年制订了超高性能纤维混凝土的指南(初稿)。
3、日本土木工程协会也于2004 年制订了相应的设计 施工指南(初稿),并于2006年出版了英文版本。
高强混凝土各国研究进展
4、韩国提出了一个超级桥梁的计划,希望通过 应用UPHC建造桥梁,减少20%的工程造价,在 10年内节省20亿美元的投资,减少44%二氧化碳 的排放量和减少20%的养护费用。
2.1.1 寻找钢纤维的替代品:
部分碳纤 维和全部
碳纤维
最终破坏形态表现 出很大的脆性破坏。
钢纤维
低模量的聚丙烯纤 维、中模量的耐碱 玻璃纤维和高模量
的钢纤维混杂
采用80 级焊接钢
筋网
抗剪强度超过采用钢纤 维的UHPC 梁,且施 工方便,成本大大降低。
一些力学性能得到一 定程度的改善而 提高。
2.1 材料组分与配合比 2 制备技术
5、我国从20世纪90年代开始了UHPC的研究,取得了 系列研究成果,国家标准《活性粉末混凝土》已于 2015年2月出版。
0引言
高性能混凝土会议
1、2004年9月在德国的卡塞尔举行的UHPC 国 际会议上,与会专家认为UHPC虽然被命名为混凝 土材料,但是却可以认为是一种新型材料,是新一 代水泥基建筑材料。
相对于其他材料,混凝土 生产能耗低、原料来源广、工 艺简便、成本低廉且具有耐久、 防火、适应性强、应用方便等 特点。
0引言
缺点 自重大、脆性大和
强度(尤其是抗拉强度) 低,使用范围狭窄;对于 低强度的混凝土,在满足 相同功能时用量较大,不 符合国家节约、降耗要求。
高强混凝土的发展
1)20年代、50年 代和70年代,混凝 土的平均抗压强度 可分别20、30、 40Mpa。
超高性能混凝土(UHPC) -研究综述
主讲人: 金凌志 2016.4
课程性质和地位
性质:超高性能混凝土(Uitra high Perforance Conc rte)结构研究与应用是一门研究型选修课。 地位:是一门提高本科生专业素养,扩展国际视野,培 养科研能力的拓展课程,也是给准备考研的同学提供超 前学习机会的课程。 前期基础课程:混凝土结构设计原理及混凝土结构、房 屋建筑学、土木工程材料、材料力学、理论力学、结构 力学等。
2、2009年在法国马赛举行的超高性能纤维增 强混凝土国际会议上,与会专家认UHPFRC低碳 环保且性能优异,可以用来建造低碳混凝土结构, 在未来必将得到大力发展。
0引言 高性能混凝土运用情况
UHPC运用情况
尽管UHPC 自出现以来,不断被应用于桥梁、建筑、核电、市政、海
洋等工程之中,然而应用发展远低于预期。以应用最多的桥梁为例,自1997
对于徐变,虽然徐变系数较小,但是由于材料的强度提 高,早龄期加载产生的徐变变形还是相当可观的,因此, 工程应用中应尽可能地采用晚龄期加载。
4.3 耐久性
4 材料性能研究
对于RPC的耐久性研究,其主要集中在抗除冰 盐 腐蚀、抗氯离子渗透能力以及抗冻融循环能力等 方面; 1)RPC具有非常致密的细观 结构和很强的抗渗透 能力以及很好的抗冻融循环能力; 2)UHPC的耐水性比普通混凝土好(以渗出的钙为 指标) ; 3)UHPC具有很好的水密性和愈合裂缝的能力,能 够耐硫酸盐、氯盐,但是不耐高浓度硫酸。
抗压强度标 抗折强度/M 弹性模量/G
准值ቤተ መጻሕፍቲ ባይዱMPa
Pa
Pa
100
≥12
≥40
120
≥14
≥40
140
≥18
≥40
160
≥22
≥40
180
≥24
≥40
对抗压强度要求最低为100MPa,比法国 和日本的抗压强度150MPa要低。
2.1 材料组分与配合比 2 制备技术
目的:降低成本、提高性能。 突破点:材料组分和配合比
3.2 纤维增强增韧机理
3 超高性能机理
1)未掺入钢纤维,UHP
C表现更大脆性。UH
2)RPC的伪应变强
PC 一般掺有纤维,故
化效 应与钢纤维的分
它也可视为基体与纤
布特征有较大的关系,
维的复合材料。
但是纤维分布方向对
抗压强度的影响较小。
3)钢纤维对UHPC的抗拉强度和韧性有明显提高作用,
在不影响 钢纤维分布均匀性的前提下,一般可以提高3.5
3) 高温可促进水泥、硅灰和石英粉的化学反应,当 温度达 到250℃时,RPC中出现硬硅钙石。随着养护温度的增加, C-S-H凝胶平均链长增加,碱激发水泥RPC(碱矿渣水泥 基活性粉末混凝土ARPC)在抗压强度相同情况下,具有更 高的抗弯性能、断裂能以及与钢筋的粘结性能;由于 ARPC 的CaO/SiO2较低,其纳米的孔结构有利于水分的逸出, 内部孔压力较低,因此具有更好的抗火性能。
课程学习要求
1 实践为主,积极参与研究生的RPC梁抗剪结 构试验,学习试验方法,了解试验过程,有时间 尽量多可能积极参与试验。 2 对UHPC的(RPC)相关内容要多看资料, 及时做笔记,掌握材料配比,熟悉试验参数,观 察试验现象,分析试验结果。 3 通过学习和参与试验,完成一篇3000字的试验 报告,或者写作一篇科研论文。
1 RPC制备基本原理与技术指标
[RPC定义]: 以水泥、矿物 掺合料、 细骨料、高强度微细钢纤维或有机 合成纤维 等原料生产的超高性能纤 维增强细骨料混凝土
1 RPC制备基本原理与技术指标
我国国家标准《活性粉末混凝土》对RPC 按力学性能的等级划分见表1。
等级
R100 R120 R140 R160 R180
10) 以RPC 制备原 理为基础的UHPC 材料的研究与应用, 是当今水泥基材料发 展的主要方向之一。
0引言
高强混凝土各国研究进展
1、美国国家科学基金会于1989年投资建立了一个“高 级水泥基材料科技中心”,美国联邦公路局以RPC 为 研究对象,对UHPC 开展了系统的研究,进行了1000 多个试件的测试,研究内容包括配制技术、强度、耐久 性和长期性能等力学性能。
2.1.2 寻找水泥的替代品:
1)用粉煤灰取代60%的水泥; 2)RPC中采用粉煤灰和矿渣替代水泥和硅灰; 3)棕榈油灰取代50%的胶凝材料; 4)用稻壳灰取代硅灰; 5)选择多种减水剂进行耦合。
2.2 拌制与养护技术 2 制备技术
拌制注意事项: 1)与普通混凝土不同,RPC由于采用基体材料+细粒径组 分材料+钢纤维进行配制,在拌制过程中容易聚团,会影响 RPC成型的均质性和材料性质。 2)采用的搅拌设备、混合料的拌制时间与顺序等也要考虑。 3)注意RPC浇注时钢纤维方向分布对RPC的拉抗强度等性能 的影响。 4)高温、加压养护是UHPC获得高性能的重要手段,温度越 高、时间越长,参加反应的硅灰越多,内部结构也就越密实。 5)养护时的压力对 UHPC的性能也有影响。
年第一座UHPC桥加拿大魁北克省Sherbrooke的RPC桥建成以来,十几年间全
世界也仅建成30余座,且以中小跨径与人行桥为主。在中国,UHPC
实际工程应用也极少,以桥梁为例,仅在铁路上有1座梁桥的应用,目前1
座公路梁桥正在建设之中。
UHPC运用不理想的原因
一方面,有关UHPC 的研究主要集中在发达国家, 而这些国家已完成大规模的基础设施建设,推动其研究与 应用的市场动力不足;另一方面,发展中国家虽然有较大 的基础设施建设的需求,但是基础研究不足和UHPC 价 格较高,影响了其在工程中的应用。
3.1 微观结构