矩阵及其运算测试题

合集下载

考研数学三(矩阵及其运算)-试卷2

考研数学三(矩阵及其运算)-试卷2

考研数学三(矩阵及其运算)-试卷2(总分:54.00,做题时间:90分钟)一、选择题(总题数:6,分数:12.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

(分数:2.00)__________________________________________________________________________________________ 解析:2.设n维行向量αA=E-ααT,B=E+2αTα,则AB=(分数:2.00)A.0.B.E.√C.-E.D.E+αTα.解析:解析:AB=(E-αTα)(E+2αTα)=E+2αTα-αTα-2αTααTα=E+αTα-2αT(ααT)α.注意ααT,故AB=E.应选(B).3.设A是任一n阶矩阵,下列交换错误的是(分数:2.00)A.A * A=AA *.B.A m A p =A p A m.C.A T A=AA T.√D.(A+E)(A-E)=(A-E)(A+E).解析:解析:因为AA * =A * A=|A|E, A m A p =A p A m =A m+p, (A+E)(A-E)=(A-E)(A+E)=A 2 -E,所以(A)、(B)、(D)均正确.而AA T,故(C)不正确.4.设A,B,A+B,A -1 +B -1均为n阶可逆矩阵,则(A -1 +B -1 ) -1 =(分数:2.00)A.A+B.B.A -1 +B -1.C.A(A+B) -1 B.√D.(A+B) -1.解析:解析:(A -1 +B -1 ) -1 =(EA -1 +B -1 ) -1 =(B -1 BA -1 +B -1 ) -1 =[B -1 (BA -1 +AA -1 )] -1 =[B -1 (B+A)A -1 ] -1 =(A -1 ) -1 (B+A) -1 (B -1 ) -1 =A(A+B) -1 B.故应选(C).5.设A,B均是n阶矩阵,下列命题中正确的是(分数:2.00)或B=0.且B≠0.A|=0或|B|=0.√A|≠0且|B|≠0.解析:解析:A=≠0,但AB=0,所以(A),(B)均不正确.又如AB≠0,但|A|=0且|B|=0.可见(D)不正确.由AB=0有|AB|=0,有|A|.|B|=0.故|A|=0或|B|=0.应选(C).注意矩阵A≠0和行列式|A|≠0是两个不同的概念,不要混淆.6.设B=(分数:2.00)A.AP 1 P 2B.AP 1 P 3.√C.AP 3 P 1.D.AP 2 P 3.解析:解析:把矩阵A的第2列加至第1列,然后第1,3两列互换可得到矩阵B,表示矩阵A的第2列加至第1列,即AP 1,故应在(A)、(B)中选择.而P 3表示第1和3两列互换,所以选(B).二、填空题(总题数:12,分数:24.00)7.若 A 2 = 1,A 3 = 2.(分数:2.00)填空项1:__________________8.若 A * = 1,(A * ) * = 2.(分数:2.00)填空项1:__________________ (正确答案:正确答案:1)填空项1:__________________ (正确答案:0)解析:解析:用定义.A 11 =-3,A 12 =6,A 13 =-3,A 21 =6,A 22 =-12, A 23 =6,A 31 =-3,A 32 =6, A 33 =-3,故因为r(A * )=1,A *的二阶子式全为0,故(A * ) * =0.9.设 A -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])10.设矩阵(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因B=(A+2E)(A+3E),又=5B -1,故11.设A是n阶矩阵,满足A 2 -2A+E=0,则(A+2E) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由(A+2E)(A-4E)+9E=A 2 -2A+E=0有 (A+2E). (4E-A)=E. (A+2E) -1.12.若(A * ) -1 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为(A * ) -113.若A -1(3A) * = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为(kA) * =k n-1 A *,故(3A) * =3 2 A *,又A * =|A|A -1,而从而(3A) * =9A *14.设x= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4或-5)解析:解析:A不可逆|A|=0x=4或x=-5.15.设A,B均为3阶矩阵,且满足AB=2A+B,其中B-2E|= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:-2)解析:解析:由AB-2A-B+2E=2E,有A(B-2E)-(B-2E)=2E,则(A-E)(B-2E)=2E.于是|A-E|.|B-2E|=|2E|=8,而|A-E|=-4,所以|B-2E|=-2.16.设A 2 -BA=E,其中B= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由于BA=A 2 -E,又A可逆,则有B=(A 2 -E)A -1 =A-A -1.故17.设XA=A T +X,其中X= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由XA-X=A T有X(A-E)=A T,因为A可逆,知X与A-E均可逆.故X=A T (A-E) -118.已知X满足A * X=A -1 +2X,其中A *是A的伴随矩阵,则X= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:左乘A并把AA *=|A|E代入得|A|X=E+2AX,移项得(|A|E-2A)X=E.故X=(|A|E-2A)-1.由|A|=4知X=(4E-2A) -1三、解答题(总题数:9,分数:18.00)19.解答题解答应写出文字说明、证明过程或演算步骤。

矩阵及其运算练习题

矩阵及其运算练习题
线性代数习题集
第二章 矩阵及其运算 习题 2.1 矩阵及其运算 【基本题】
1 2 1 0 1 4 一、设 A= 3 1 4 ,B= 2 1 3 ,求 0 -1 2 1 2 1
(1) 2A-B; (2) 2A+3B; (3) 满足 A+X=2B 的 X.
9. 设 A, B, C 均为 n 阶方阵, 且 A 可逆, 则下列结论必成立的是 ( ) . (A) 若 AC=BC,则 A=B; (C) 若 BA=CA,则 B=C; (B) 若 BA=O,则 A=O 或 B=O; (D) 若 A1B CA1 ,则 B=C.
A B 10. 设 M ,其中设 A,B,C,D 为 n(n>1)阶方阵,则 MT=( ). C D A A C (A) ; (B) T B D B AT CT ; (C) T D B AT CT (D) T ; DT C BT . DT
(1)A T +B; (2)AB;
(3)BA.
二、将矩阵适当分块后计算
2 0 0 0 0 0 0 1 2 0 0 0 2 2 0 0 1 0 0 0 0 1 1 1 1 1 4 0 1 0 1 1 1 1 1 1 . 1 0 0 1
(3) 设 A 为 3 阶方阵且 A 3 ,求 3 A1 2 A ;
( 5A )1 ;
1 1 1 (4) 设 A1 1 2 1 ,求 ( A )1 ; 1 1 3
线性代数习题集
0 0 1 2 3 0 (5) 设 A 0 4 5 0 0 6
1 3 0 ( 2) 2 6 1 . 0 1 1

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠

故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠

根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E

解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算

线性代数-矩阵及其运算习题

线性代数-矩阵及其运算习题


D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D

D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n

1
n
n
n n n×n

n − 1 − 1 − 1 2
n −1
n n−1

n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.

X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,

矩阵运算新练习题

矩阵运算新练习题
x1 (t ) x1 (t ) x2 (t ) x 2 (t ) x2 (t ) 3x3 (t ) u1 (t ) x3 (t ) x1 (t ) 5 x2 (t ) 3x3 (t ) u2 (t ) y x (t ) u (t ) 5u (t )
(2 )
( z 3.2)( z 2.6) H ( z) z 5 ( z 8.2)
9.假设描述系统的常微分方程为
y (t ) 13 y(t ) 4 y(t ) 5 y(t ) 2u(t )
(3)
请选择一组状态变量并将此方程在MATLAB工 作空间中表示出来,并求出系统的传递函数和零 极点模型。(提示:几阶微分方程就选几个状态 变量) 10.假设系统的状态空间方程为
6 8 0 A 5 3 2 1 4 3
1 4 2 2 1 2 和B 0 3 1
3 p ( x ) x 2 x 4的根 2.求多项式
3.已知多项式的根分别为1、2、3、4、5,试求此根 的多项式。 4.求多项式 p( x) x5 15x4 85x3 225x2 274x 120 在点x=9处的值。 2 3 2 q ( x ) 2 x x5 5.分别求多项式 p( x) 3x 2x x 8与 的导数及p( x)* q( x) 和 p( x) / q( x) 的导数,并求出p(2) 和 q(2)的值 6.求线性方程的解:要求分别用直接法和LU分解法 求线性方程的解。
11.假设系统由下面的传递函数矩阵给出,试将其输 入到MATLAB工作空间。 0.72 s
0.252e (1 3.3s)3 (1 1800 s) G ( s) 0.0435 3 (1 25.3 s ) (1 360 s)

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。

7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。

对于矩阵C = [2 1; 1 2],其行列式det(C)是________。

8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。

对于矩阵D = [4 1; 0 3],其特征值是________。

9. 矩阵的迹是主对角线上元素的和。

对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。

通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。

下面给出一些矩阵练习题及其答案,供大家参考。

1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。

解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。

因此,A 的转置矩阵为 A^T = [4; 2]。

2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。

解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。

通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。

3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。

解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。

特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。

解方程可得特征值λ1 = 1 和λ2 = 3。

特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。

特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。

4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。

解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。

计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。

矩阵的秩表示矩阵中独立的行或列的最大个数。

对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。

矩阵习题带答案

矩阵习题带答案

矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。

掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。

在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。

1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。

解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。

因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。

解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。

计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。

解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。

对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。

4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。

解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。

首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。

计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 矩阵及其运算测试题
一、选择题
1.下列关于矩阵乘法交换性的结论中错误的是( )。

(A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换;
(C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。

2.设n (2n ≥)阶矩阵A 与B 等价,则必有( )
(A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。

3.设A 、B 为方阵,分块对角阵00A C B ⎛⎫=
⎪⎝⎭
,则*
C =( )。

(A) **00
A B ⎛⎫
⎪⎝⎭ (B) **||00
||A A B B ⎛⎫
⎪⎝⎭ (C) **||00||B A A B ⎛⎫ ⎪⎝⎭ (D) **||||0
0||||A B A A B B ⎛⎫ ⎪⎝⎭
4.设A 、B 是n (2n ≥)阶方阵,则必有( )。

(A)A B A B +=+ (B)kA k A = (C)
A
A B B
=-g (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ⨯==-其中E 是4阶单位矩阵,则()f x 中3
x 的系数为( )。

(A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++
6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。

(A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111()B A B A -----+
7.若12312,,,,αααββ都是4维列向量,且4阶行列式
()()12311223,,,,,,,m n αααβααβα==
则4阶行列式()32112,,,(
)αααββ+=。

(A)m n + (B)mn (C)n m - (D)m n -
8.设A 、B 、C 均为可逆矩阵,且ABC E =,则必有( )。

(A)BCA E = (B)CBA E = (C)BAC E = (D)ACB E =
9.设A 是n 阶可逆方阵,将A 的第1列加到第2列得到的矩阵记为B ,*A 、*B 分别为A 、B 的伴随矩阵,则( )。

(A)将*A 的第1列加到第2列得到*B ; (B)将*A 的第1行加到第2行得到*B ;
(C)将*A 的第2列乘以(-1)加到第1列得到*B ; (D)将*A 的第2行乘以(-1)加到第1行得到*B 。

10.设A 是n 阶方阵,E 是n 阶单位矩阵,且A E +可逆。

下列各式中,哪一个不正确的( )。

(A)22()()()()A E A E A E A E +-=-+ (B)()()()()T T A E A E A E A E +-=-+ (C)11()()()()A E A E A E A E --+-=-+ (D)**()()()()A E A E A E A E +-=-+
二、填空:
1.设矩阵A 、B ,若AB 有意义,则A 、B 的行数和列数需满
足 ;[]21123⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦= ,431512325701⎡⎤⎡⎤
⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
= 。

2.矩阵120132A ⎡⎤
=⎢
⎥-⎣⎦
的转置矩阵是 。

3.设矩阵4321A ⎡⎤=⎢
⎥⎣⎦,B 1123B -⎡⎤=⎢⎥⎣⎦1123-⎡⎤⎢⎥⎣⎦
,则2T AB A B -= ,
2T B A E -= 。

4.设矩阵A 是n 阶方阵,0,A a =≠则*A = 。

5.方阵A=111221
22a a a a ⎡⎤

⎥⎣⎦
的伴随矩阵为*A = ,已知det()A A =,det(2)A = 。

6.设1225A ⎡⎤
=⎢⎥⎣⎦
,则1A -= ,520
02
10
000120
011B ⎡⎤⎢⎥⎢⎥=⎢⎥
-⎢⎥
⎣⎦
,则1B -= 。

7.设矩阵A 、B 均可逆,O A X B O ⎡⎤
=⎢⎥
⎣⎦
,则1X -= 。

8.设100220345A -⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦,则*1()A -= 。

9.设300140003A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,则1(2)A E --= 。

10.A 是3阶方阵,1
2
A =,则1*(3)2A A --= 。

三、计算题
1.已知11
(1,2,3),(1,,),,23
T A αβαβ===求n A 。

2.设100101010A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,证明当3n ≥时,恒有22n n A A A E -=+-,并求100A 。

3.1
P AP -=Λ,其中1411P --⎡⎤=⎢⎥⎣⎦,1002-⎡⎤
Λ=⎢⎥
⎣⎦
,求11A 。

4.设210120001A ⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
,矩阵B 满足**2ABA BA E =+,求B 。

四、证明题
1.设矩阵A 、B 都是对称矩阵,证明AB 是对称矩阵的充要条件是AB BA =。

2.设0k A =(k 为正整数),证明:121()...k E A E A A A ---=++++。

3.设方阵A 满足,220A A E --=,
证明:A 及A+2E 都可逆,并求1A -及1(2)A E -+。

相关文档
最新文档