单光子计数实验
单光子计数

鲁东大学物理与光电工程学院——近代物理实验(Ⅱ)学号 姓名 班级 日期单光子计数实验系统1.实验目的(1)了解单光子计数器的结构和工作原理;(2)学习用单光子计数系统检验微弱光信号的方法;(3)研究鉴别电压对系统性能的影响,确定最佳鉴别电压(阈值);(4)了解光子计数器的信噪比,测试光子计数器的最低暗计数率和最小可检测光计数率;2.实验原理2.1光子流量和光流强度光具有波粒二像性,其粒子性特征物理量(能量E 和动量p )与波动性特征物理量(频率ν和波长λ)的关系是/;//E hv hc p h E c λλ==== (1)式中h 是普朗克常量,c 是光速。
在弱光情况下,光的量子性特征明显,即光子。
一束单色光可以看成是光子流,光子流量R (CPS )定义为单位时间内通过某一截面的光子数(单位:秒-1,或Hz),光流强度是单位时间内通过某一截面的光能量E ,用光功率P 表示。
单色光的光功率P 等于光子流量R 乘以单光子能量(本实验所用单色光500nm ,光子能量E=4×10-19J),即P RE = (2)测得入射光子流量R ,即可计算出相应的入射光功率P 。
表1光子流量R(CPS)和光功率P(W)之间的对应数值关系及检测方法2.2单光子计数在量子通讯、量子光学、生物化学发光分析等领域中,辐射光强度极其微弱,光子流量为1~103,光电管的阴极受光照射产生光电子,经过多级倍增在阳极产生一系列分立的尖脉冲(光电子脉冲),再对脉冲进行放大、甄别后进行脉冲计数。
脉冲的平均数量与光子流量成正比,在一定的时间内对光脉冲计数,便可检测到光子流量,这种测量光强的方法称为光子计数。
实际的光电管中,入射光子是以一定概率(量子效率η)产生光电子,考虑到光电倍增管的量子效率η,可由脉冲计数率R p (CPS)换算出光子流量R/p R R η= (CPS) (3)光子计数器主要由光源、光阑筒、光电倍增管、放大器、甄别器、计数器等组成,图1.图1单光子计数器原理2.3光电倍增管PMT(Photo Multiplier Tub)2.3.1光电倍增管的结构和工作原理光电倍增管(PMT)是一种高灵敏度电真空探测器件,利用外光电效应把微弱的光输入转化为光电子, 并经过多级二次电子发射,使光电子获得倍增,实现微弱光的探测。
物理实验报告_单光子计数实验研究

单光子计数实验研究摘 要:本实验利用GSZF-2A 型单光子计数器实验系统,在波长为500nm 的近单色弱光情况下确定了功率为10-13W 量级时系统的最佳甄别电平,并研究了实验中信噪比与接受光功率P 0以及测量时间t 的关系,同时也研究了工作温度T 对暗计数率R d 的影响。
并通过实验了解光子计数方法和弱光检测中的一些特殊问题。
关键词:光子流量和光流强度 PMT甄别电平信噪比一、 引言现代科学技术的许多领域,如天文光度测量、大气污染检测等,都会涉及极微弱的光信号的检测问题。
微弱光信号是时间上比较分散的光子流,因而由检测器(通常是光电倍增管,以下简称PMT )输出的信号将是自然离散化的电信号。
针对这一特点发展起来的单光子检测计数,采用脉冲放大、脉冲甄别和数字计数技术,大大地提高了弱光探测的灵敏度,这是其他弱信号探测方法所不能比拟的。
光子计数技术有如下优点:第一,有很高的信噪比,基本消除了PMT 的高压直流漏电流和各倍增级的热电子发射形成的暗电流所造成的影响,可以区分强度有微小差别的信号,测量精度很高;第二,抗漂移性很好,在光子计数测量系统中,PMT 增益的变化、零点漂移和其他不稳定因影响不大,所以时间稳定性好;第三,有比较宽的线性动态范围,最大计数率可达107二、 实验原理2.1 光子流量和光流强度光是由光子组成的光子流,单个光子的能量Ep 与光波频率ν的关系是νh Ep = (1) 光子流量R 可用单位时间内通过的光子数表示;光流强度是单位时间内通过的光能量,用光功率P 表示,单位为W 。
单色光的光功率P 与光子流量R 的关系是PRE P = (2)当光流强度小于10-16W 时通常称为弱光,此时可见光的光子流量可降到1ms 内不到一个光子,因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
2.2 PMT 输出的信号波形PMT 是一种从紫外到近红外都有很高灵敏度和超快时间响应的真空电子管类光探测器件,用于各种微弱光的测量。
《单光子计数实验》课件

对未来研究的建议
01
深入研究单光子计数的物理机制和探测技术,提高探测效率和 准确性。
02
拓展单光子计数实验的应用领域,如生物医学、环境监测、光
学通信等。
加强与其他学科的交叉研究,如物理学、化学、生物学等,以
03
推动单光子计数实验的发展和应用。
THANKS
感谢观看
实验设备
03
电脑、数据采集和处理软件、电源等。
实验过程
调整光学元件
调整反射镜和透镜等光学元件 ,确保激光束准直并聚焦在光 电倍增管上。
调整激光功率
调整激光器的功率,以适应实 验需求。
连接设备
将单光子计数器、激光器、光 学元件和光电倍增管按照实验 要求连接起来。
开始计数
启动单光子计数器,开始记录 每个光子事件。
重复实验
进行多次实验以获取可靠的数 据。
数据处理与分析
数据整理
将实验数据整理成表格或图形形式,便于分析。
数据筛选
剔除异常数据,确保数据质量。
数据分析
利用统计分析方法,对数据进行处理和分析,得出实验结果。
结果解释
根据数据分析结果,解释单光子计数的原理和实验现象。
04
结果与讨论
实验结果
实验数据记录
而在电场的作用下被加速并打在电子计数器上,实现单光子的计数。
03
特点
高灵敏度、低噪声、计数精度高。
激光器
作用
产生单光子源,为实验提供所需的光子。
工作原理
利用激光的相干性,通过调制产生单光子。
特点
高亮度、高相干性、高稳定性。
光路系统
01
02
03
作用
将激光器产生的光子传输 到单光子计数器中。
单光子计数试验

单光子计数实验讲义一 实验目的1. 掌握使用光子技术的方法对微弱信号进行检测及实验的操作过程;2. 2.了解光子计数方法的基本原理光电倍增管〔PMT 〕的工作原理。
二 实验仪器光源,PMT ,制冷器,外光路,电脑。
三 实验原理在弱光信号检测中,当光强微弱到一定程度时,光的量子特征开始突出起来。
例如:He-Ne 激光光源,其每个光子的能量为 10-19焦耳。
当光功率小于10-11瓦时,相当光子的发射率为108光子数/秒,即光子的发射周期约为10-8秒,刚好是PMT 输出脉冲可分辨的极限宽度〔即PMT 响应时间〕。
这样,PMT 的输出呈现出脉冲序列的特点,可测得一个个不重叠的光子能量脉冲。
光子计数器就是利用光信号脉冲和噪声脉冲之间的差异,如幅度上的差异,通过一定的鉴别手段进行工作,从而到达提高信噪比的目的。
单光子试验框图入图1所示。
〔一〕基本原理单光子计数法利用在弱光下光电倍增管输出信号自然离散化的特点,采用精密的脉冲幅度甄别技术和数字计数技术,可把淹没在背景噪声中的弱光信号提取出来。
当弱光照射到光电子阴极时,每个入射光子以一定的概率〔即量子效率〕使光阴极发射一个电子。
这个光电子经倍增系统的倍增最后在阳极回路中形成一个电流脉冲,通过负载电阻形成一个电压脉冲,这个脉冲称为单光子脉冲。
如图1所示,横坐标表示PMT 输出的噪声与单光子的幅度电平〔能量〕,纵坐标表示其幅度电平的分布概律。
可见,光电子脉冲与噪声分布位置不同。
由于信号脉冲增益相近,其幅度相当好的集中在一个特定的范围内,光阴机反射的电子形成的脉冲幅度较大,图1 单光子实验框图图2 PMT 输出脉冲分布而噪声脉冲则比较分散,它在阳极上形成的脉冲幅度较低,因而出现了“单光电子峰”。
用脉冲幅度鉴别器把幅度低于的脉冲抑制掉,只让幅度高于的脉冲通过就实现了单光子计数。
放大器的功能是把光电子脉冲和噪声脉冲线性放大,应友谊顶的增益,上升时间≤3ns,这就要求放大大器的通频带宽到达100MHz,并且有较宽的线性动态范围和较低的热噪声,经过放大后的信号要便于脉冲幅度鉴别器的鉴别。
实验21 单光子计数实验(已完成)

实验目的
(1)掌握一种弱光的检测技术,了 解光子技术的基本原理和基本实验技 术以及弱光检测中的一些主要问题。
(2)了解弱光的概率分布规律。
实验装置
图1 GSZF-2A单光子计数实验系统
图2 单光子计数器的框图Βιβλιοθήκη 图3 光路图实验原理
单光子计数器方法利用弱光下光电倍增管输出电流信号自然离 散的特征,采用脉冲高度甄别和数字计数技术将淹没在背景噪 声中的弱光信号提取出来。
图5 甄别器的作用 a放大后b甄别后
脉冲高度甄别器 脉冲高度甄别器的功能是鉴别输出光电子 脉冲,弃除光电倍增管的热发射噪声脉冲。在甄别器内设有一 个连续可调的参考电压——甄别电平Vh。如图5所示,当输出 脉冲高度高于甄别电平Vh时,甄别器就输出一个标准脉冲;当 输入脉冲高度低于Vh时,甄别器无输出。如果把甄别电平选在 与图4中谷点对应的脉冲高度Vh上,这就弃除了大量的噪声脉 冲,因对光电子脉冲影响较小,从而大大提高了信噪比。Vh称 为最佳甄别(阈值)电平。
高压电源
制冷器 光电倍增管
温度指示
光阑筒
衰减片
窄带滤波器
放大器
甄别器
计算机 示波器
图7 光路图
光源
功率计
实验内容及步骤
1. 将冷却水管接在水龙头上并开始通水,打开光子计数 器开关。两分钟后打开制冷器开关。
2.约20分钟后,待PV显示值与SV显示相符合后,打开 计算机开始采集数据。
3.开机后,在桌面上打开“单光子计数”文件,将模式项为 “阈值方式”,改变参数。然后点“开始”开始,采集数 据,得到一曲线,取阈值。
近代物理实验
实验二十一 单光子计数实验
郑州大学物理实验中心
实验背景
光子计数也就是光电子计数,是微弱光(低于10-14W)信 号探测中的一种新技术。它可以探测弱到光能量以单光子 到达时的能量。目前已被广泛应用于喇曼散射探测、医学、 生物学、物理学等许多领域里微弱光现象的研究。
单光子计数实验报告

单光子计数实验报告单光子计数实验报告引言:单光子计数实验是量子光学中的一项重要实验,它通过对光子进行单个计数,可以研究光子的量子特性和光子的统计规律。
本文将对单光子计数实验进行详细的报告和分析。
实验原理:单光子计数实验的原理基于光子的波粒二象性。
光子既可以被看作是电磁波的粒子性质,也可以被看作是粒子的波动性质。
在实验中,我们使用光子计数器来对光子进行计数。
光子计数器是一种高灵敏度的探测器,可以探测到单个光子的到达,并记录下来。
通过对大量光子的计数,我们可以得到光子的统计规律。
实验步骤:1. 准备实验装置:实验装置包括激光器、光子计数器、光学元件等。
激光器用于产生单光子源,光子计数器用于计数光子的到达,光学元件用于调整光子的路径和干涉等。
2. 调整激光器:首先需要调整激光器,使其产生稳定的激光光束。
激光光束的稳定性对实验结果的准确性有很大影响。
3. 进行单光子计数实验:将激光光束导入光子计数器,并记录下光子的到达时间和数量。
通过对大量光子的计数,可以得到光子的统计规律,例如光子的平均数、光子的分布等。
实验结果:在实验中,我们得到了大量光子的计数数据,并进行了统计分析。
通过分析数据,我们得到了光子的平均数为10个,光子的分布呈正态分布。
这些结果与理论预期相符合,验证了实验的准确性和可靠性。
实验讨论:通过单光子计数实验,我们可以研究光子的量子特性和光子的统计规律。
光子的量子特性包括光子的波粒二象性、光子的纠缠等。
光子的统计规律包括光子的平均数、光子的分布等。
这些研究对于理解量子光学和量子信息科学具有重要意义。
实验应用:单光子计数实验在量子通信、量子计算等领域具有广泛的应用。
在量子通信中,我们可以利用光子的量子特性来实现安全的通信。
在量子计算中,我们可以利用光子的统计规律来进行计算和处理信息。
因此,单光子计数实验在实际应用中具有重要的意义。
结论:通过单光子计数实验,我们可以研究光子的量子特性和光子的统计规律。
单光子计数实验报告

引言:单光子计数实验是现代光子学研究中一项重要的技术手段,可以用于精确测量光子的数量和计数。
本文是对单光子计数实验的进一步探索和研究的报告,主要介绍了实验的设备和方法,以及实验过程中所遇到的问题和解决方法。
通过这些实验数据和分析结果,我们可以对单光子计数实验的原理和应用有更深入的了解,为相关研究和技术应用提供参考。
正文内容:一、实验设备和方法1.实验装置:我们采用了型光子计数器作为主要的实验装置。
该光子计数器具有较高的计数精度和稳定性,可以实现单光子计数和时间分辨测量。
2.实验光源:为了获得单光子信号,我们使用了一台型激光器。
该激光器可以发射高稳定度和窄脉冲宽度的光子,适用于单光子计数实验。
3.实验样品:我们选择了一种具有较高荧光量子效率的荧光物质作为实验样品。
通过调节样品的浓度和吸光度,我们可以控制单光子计数的强度和分布。
4.实验控制系统:为了实现精确控制和数据采集,我们采用了一个先进的实验控制系统。
该系统可以实时监测光子计数器的计数和时间,以及控制实验参数的设置。
二、实验过程和数据分析1.实验准备:在进行实验之前,我们需要对实验装置和控制系统进行校准和调试,确保实验的准确性和可靠性。
3.数据分析:通过对实验数据的分析,我们可以得到单光子计数的数据分布和统计特性。
在数据分析过程中,我们采用了一系列数学方法和统计模型,例如:泊松分布,高斯分布等等。
4.结果验证:为了验证实验结果的可靠性,我们进行了重复实验,并与模拟结果进行对比分析。
通过小概率事件的比较和实验误差的评估,我们可以确定实验的可信度和准确性。
5.实验拓展:在实验过程中,我们遇到了一些问题和挑战,例如:背景光噪声的影响,光子计数器的非线性等。
通过改进实验方法和技术手段,我们不断优化实验流程,并获得了更精确和可靠的实验结果。
三、实验结果和讨论1.单光子计数分布图:我们通过实验数据和分析,得到了单光子计数的分布图。
该分布图呈现出明显的峰值和尾部,符合光子计数的统计特性。
单光子计数实验

实验十七单光子计数实验光子计数也就是光电子计数,即当光流强度小于10−16W时,光的光子流量可降到一毫秒内不到一个光子,因此该实验系统要完成的是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数.它是微弱光信号探测中的一种新技术。
它可以探测弱到光能量以单光子到达时的能量。
目前已被广泛应用于喇曼散射探测、医学、生物学、物理学等许多领域里微弱光现象的研究。
通常的直流检测方法不能把淹没在噪声中的信号提取出来。
微弱光检测的方法有:锁频放大技术、锁相放大技术和单光子计数方法。
最早发展的锁频,原理是使放大器中心频率f0与待测信号频率相同,从而对噪声进行抑制。
但这种方法存在中心频率不稳、带宽不能太窄、对待测信号缺乏跟踪能力等缺点。
后来发展了锁相,它利用待测信号和参考信号的互相关检测原理实现对信号的窄带化处理,能有效的抑制噪声,实现对信号的检测和跟踪。
但是,当噪声与信号有同样频谱时就无能为力,另外它还受模拟积分电路漂移的影响,因此在弱光测量中受到一定的限制。
单光子计数方法,是利用弱光照射下光电倍增管输出电流信号自然离散化的特征,采用了脉冲高度甄别技术和数字计数技术。
与模拟检测技术相比有以下优点:1、测量结果受光电倍增管的漂移、系统增益的变化及其它不稳定因素影响较小。
2、基本上消除了光电倍增管高压直流漏电流和各倍增级的热发射噪声的影响,提高了测量结果的信噪比。
可望达到由光发射的统计涨落性质所限制的信噪比值。
3、有比较宽的线性动态范围。
4、光子计数输出是数字信号,适合与计算机接口作数字数据处理。
所以采用光子计数技术,可以把淹没在背景噪声中的微弱光信息提取出来。
目前一般光子计数器的探测灵敏度优于10-17W,这是其它探测方法所不能比拟的。
一、实验目的1、介绍这种微弱光的检测技术;了解SGD-2实验系统的构成原理。
2、了解光子计数的基本原理、基本实验技术和弱光检测中的一些主要问题。
3、了解微弱光的概率分布规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甄别器中设有一个连续可调的阈电平,即甄别电平。只有当输入脉冲的幅度大于甄别电平时,甄别器才输出一个有一定幅度和形状的标准脉冲。
当有一脉冲触发了甄别器中的线路以后,在它恢复原ቤተ መጻሕፍቲ ባይዱ以前甄别器不能接受后续脉冲,这段时间称为死时间。
(4)计数器
计数器的作用是将甄别器输出的脉冲累计起来并予以显示。
4.光子计数器的组成
光子计数器的原理方框图如图3所示,图中ULD和LLD分别代表甄别器的上下阈值,即甄别电平。
图3典型的光子计数系统
(1)PMT
用于光子计数的PMT必须具有适合于实验中工作波段的光谱响应,要有适当的阴极面积,量子效率高,暗计数率低,时间响应快,并且阴极稳定性高。
(2)放大器
放大器的作用是将PMT阳极回路输出的光电子脉冲(连同其他噪声脉冲)线性地放大,放大器的增益可根据单光电子脉冲的高度和甄别器甄别电平的范围来选定。
用示波器观察光电倍增管阳极输出脉冲和甄别器输出脉冲的波形。
3.确定甄别器的阈值
测量PMT输出脉冲高度随电压的分布,微分曲线,在最小计数率电平附近更改阈值,计算信噪比,确定最佳甄别电平。
4.研究信噪比与测量时间和入射光功率的关系
将阈值设为最佳甄别电平。保持入射光功率,改变测量时间,研究信噪比与测量时间的关系;设定测量时间,改变入射光功率,信噪比与入射光功率的关系。
(4)光子计数系统的信噪比
在光子计数系统中,存在着光阴极和倍增极的热发射等引起的暗计数 。当用分别测量暗计数平均值 和总计数平均值 的方法测量信号的计数时,测量结果的信噪比为
三、实验内容
1.实验装置
实验装置采用天津港东GSZF-2A型单光子计数实验系统,示意图如图4所示。
图4实验装置示意图
2.观察波形
5.光子计数器的噪声和信噪比
测量弱信号最关心的是探测信噪比,因此,必须分析光子计数系统中的各种噪声来源。
(1)泊松统计噪声
用PMT探测热光源发射的光子,相邻的光子达到光阴机上的时间间隔是随机的,对于大量粒子的统计结果服从泊松分布。由于这种统计特性,测量到的信号计数中就有一定的不确定度,这种不确定度是一种噪声,称为统计噪声。统计噪声固有的信噪比为
其结构如图1所示,光阴极上发射出的电子,经聚焦和加速打在第一倍增极上面,将在第一倍增极上打出几倍于入射电子数目的二次电子。这些电子被加速后达到第二倍增极上,接连经过几个或十几个倍增极的增殖作用后,最后由阳极收集所有的电子,在阳极回路中形成一个电脉冲信号。
在非弱光测量中由于光子流量较大测得的PMT输出信号为连续信号。而在弱光测量,光子流量较小,相邻两光子间的时间间隔可达毫秒量级,阳极回路中输出的是一个个离散的尖脉冲,光子流量与这些脉冲的平均计数率成正比。只要用计数的方法测出单位时间内的光电子脉冲数,就相当于检测了光的强度。
(2)暗计数
PMT的光阴及各个倍增极还有热电子发射,即在没有入射光时,还有暗计数。以 表示无光照时测得的暗计数率,噪声成分将增加到 ,信噪比降为
(3)脉冲堆积效应
PMT输出的脉冲有一定的宽度 ,只有在从一个光电子脉冲产生时算起经过比 更长的时间间隔之后,PMT阳极回路才能接着输出另外一个光电子脉冲, 称为PMT的分辨时间。当后续光电子脉冲与前一个脉冲的时间间隔小于 时,阳极回路只输出一个脉冲,这种现象称为脉冲堆积效应。脉冲堆积效应也是计数率较高时的主要误差来源。
(2)各倍增极的热发射电子经受倍增的次数要比光阴极发射的电子经受的少,因此前者在阳极上形成的脉冲幅度要比后者低。所以途中脉冲幅度较小的部分主要是热噪声脉冲。
(3)各倍增极的倍增系数不是一定值,有一定统计分布,大体上遵守泊松分布。
所以,如果用脉冲高度甄别器将幅度高于谷底的脉冲加以甄别、输出并计数显示,就可能实现高信噪比的单光子计数,大大提高检测灵敏度。
关键词:单光子计数,甄别电平,光计数,暗计数,信噪比
一、引言
微弱光信号是时间上比较分散的光子流,因而由检测器(通常是光电倍增管,简称PMT)输出的将是自然离散化的电信号。针对这一特点发展起来的单光子计数技术,采用脉冲放大、脉冲甄别和数字计数技术,大大提高了弱光探测的灵敏度。光子计数技术有如下有点:1.有很高的信噪比;2.抗漂移性很好;3.有比较宽的线性动态范围。目前用于光子计数的探测器有常规的PMT,也有微多通道板PMT和雪崩光电二极管等新型器件。
单光子计数实验
【摘要】
本实验中,我们学习了以PMT为探测器的光子技术的基本实验方法并通过实验了解光子计数方法和弱光检测中的一些特殊问题。在实验过程中,我们先初步确定甄别电平的取值范围然后在这个范围里确定最佳甄别电平,进而研究了单光子计数信噪比SNR与测量时间t及入射光功率 的关系,以及暗记数率 随温度T的变化规律。
当光流强度小于 W时通常称为弱光,此时可见光的光子流量可降到1ms内不到一个光子,因此实验中要完成的将是对单个光子进行检测,进而得出弱光的光流强度,这就是单光子计数。
2.PMT输出的信号波形
PMT是一种从紫外到近红外都有极高灵敏度和超快时间相应的真空电子管类光探测器件,用于各种微弱光的测量。
图1 PMT的结构示意图
5.研究工作温度T对PMT的暗计数率 的影响
关闭入射光,打开半导体制冷仪,每隔 测量暗计数率,研究工作温度T对PMT的暗计数率 的影响。
本实验学习PMT为探测器的光子计数技术的基础实验方法,并通过实验了解光子计数方法和弱光检测中的一些特殊问题。
二、实验原理
1.光子流量和光流速度
光是有光子组成的光子流,单个光子的能量 与光波频率 的关系是
(1)
式中c是真空中的光速,h是普朗克常数, 是波长。光子流量可用单位时间内通过的光子数R表示,光流强度是单位时间内通过的光能量,常用光功率P表示。单色光的光功率P与光子流量R的关系是:
3.单光电子峰
将光电倍增管的阳极输出脉冲接到脉冲高度记录器作脉冲高度分布分析,可以得到单光电子峰分布,如图2所示。
脉冲幅度较小的主要是热发射噪声信号,而光阴极发射的电子形成的脉冲,其幅度集中在横坐标的中部,形成所谓“单光电子峰”。形成这种分布的原因是:
(1)光阴极发射的电子,包括光电子和热发射电子,都受到了所有倍增电极的增殖。因此它们的幅度大致接近。