数学规划模型的建立

合集下载

数学建模规划问题的经典案例

数学建模规划问题的经典案例

s.t.

x13 x34 x36 0; x12 x24 x25 0; x24 x34 x45 x47 0; x25 x45 x56 x57 0; x47 x57 x67 Q x36 x56 x67 0; xij 0, i , j 1,2,,7.
§2.4 案例
建立优化模型的一般步骤
1.确定决策变量 2.确定目标函数的表达式 3.寻找约束条件 例1:设某厂生产电脑和手机两种产品,这两种产品的生产需要 逐次经过两条装配线进行装配。电脑在第一条装配线每台需要2 小时,在第二条装配线每台需要3小时;手机在第一条装配线每 台需要4小时,在第二条装配线每台需要1小时。第一条装配线每 天有80个可用工时,第一条装配线每天有60个可用工时,电脑和 手机每台的利润分别为100元和80元。问怎样制定生产计划?
问题1
不允许缺货的存贮模型
配件厂为装配线生产若干种部件,轮换生产不
同的部件时因更换设备要付生产准备费(与生产数
量无关),同一部件的产量大于需求时因积压资金、 占用仓库要付存贮费。今已知某一部件的日需求量 100件,生产准备费5000元,存贮费每日每件1元。 如果生产能力远大于需求,并且不允许出现缺货,
A
T1
B
T
t
允许缺货模型的存贮量q(t)
一个周期内存贮费
c2
T1
0
Q2 QT1 c2 q(t )dt c2 2r 2
( rT Q )(T T1 ) 一个周期内缺货损失费 c3 q(t )dt c3 T1 2 ( rT Q )2 c3 一个周期的总费用 2r
T
Q ( rT Q ) C c1 c2 c3 2r 2r

数学建立模型知识点总结

数学建立模型知识点总结

数学建立模型知识点总结一、数学建立模型的基本概念1. 模型的定义模型是对于特定对象或系统的数学表达式或描述。

它是一个用来代表真实事物、预测未来情况或解决实际问题的简化抽象。

模型可以是数学方程、图表、图形或者计算机程序等形式。

2. 模型的分类根据模型的形式和特点,可以将模型分为不同的类别,主要包括数学模型、物理模型、统计模型、仿真模型等。

3. 建立模型的目的建立模型的目的是为了更好地理解现实世界中的复杂问题,预测未来的发展趋势,进行决策分析和问题求解等。

二、数学建立模型的方法1. 建立模型的一般步骤通常建立模型的一般步骤包括问题分析、模型建立、模型求解、模型验证和结果分析等。

2. 建立模型的数学方法建立数学模型的数学方法主要包括差分方程模型、微分方程模型、优化模型、概率模型和统计模型等。

三、数学模型的应用1. 数学模型在自然科学领域的应用数学模型在物理学、化学、生物学等领域都有着广泛的应用,例如在物理学中用来研究物体的运动规律、在生物学中用来研究生物体的生长和繁殖规律等。

2. 数学模型在社会科学领域的应用数学模型在经济学、管理学、社会学等领域也有很多应用,例如在经济学中用来研究市场供求关系、在管理学中用来研究企业运营规律等。

3. 数学模型在工程技术领域的应用数学模型在工程技术领域中常常用来研究工程结构、流体力学、材料科学等诸多问题,例如在建筑工程中用来研究房屋结构的稳定性、在交通工程中用来研究交通流量规律等。

四、数学建立模型的典型案例1. 鱼群扩散模型鱼群扩散模型是用来研究在外界环境条件下鱼群扩散的问题,通常采用微分方程模型进行描述。

2. 物体自由落体模型物体自由落体模型是用来研究物体在重力作用下的运动规律,通常采用差分方程模型进行描述。

3. 经济增长模型经济增长模型常用来研究经济系统的增长规律,通常采用优化模型进行描述。

五、数学建立模型的发展趋势1. 多学科交叉融合数学建立模型的发展趋势是多学科交叉融合,即将数学模型与物理、化学、生物、经济、管理等学科相结合,以更好地解决现实世界中的复杂问题。

线性规划的数学模型

线性规划的数学模型

线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。

本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。

线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。

线性规划的主要特点是目标函数和约束条件均为线性关系。

线性规划在工程、经济、物流、运输等领域都有广泛的应用。

它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。

线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。

这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。

通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。

希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。

本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。

决策变量在构建线性规划模型时,首先需要确定决策变量。

决策变量是用来表示决策问题中需要决定的未知量。

它们的取值将影响函数的输出结果。

在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。

目标函数确定决策变量后,下一步是确定目标函数。

目标函数是线性规划模型中需要最大化或最小化的函数。

它通常与问题的目标密切相关,并且能够量化问题的目标。

在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。

约束条件除了目标函数,线性规划模型还包括一系列约束条件。

约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。

约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。

在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。

实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。

这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。

优化模型一:线性规划模型数学建模课件

优化模型一:线性规划模型数学建模课件
题的求解过程。
混合整数线性规划问题求解
要点一
混合整数线性规划问题的复杂性
混合整数线性规划问题是指包含整数变量的线性规划问题 。由于整数变量的存在,混合整数线性规划问题的求解变 得更加困难,需要采用特殊的算法和技术来处理。
要点二
混合整数线性规划模型的求解方 法
为了解决混合整数线性规划问题,可以采用一些特殊的算 法和技术,如分支定界法、割平面法等。这些方法能够将 问题分解为多个子问题,并逐步逼近最优解,从而提高求 解效率。
目标函数的类型
常见的目标函数类型包括最小化、最大化等。
确定约束条件
约束条件
01
约束条件是限制决策变量取值的条件,通常表示为数学不等式
或等式。
确定约束条件的原则
02
根据问题的实际情况,选择能够反映问题约束条件的条件作为
约束条件。
约束条件的类型
03
常见的约束条件类型包括等式约束、不等式约束等。
线性规划模型的建立
也可以表示为
maximize (c^T x) subject to (A x geq b) and (x leq 0)。
线性规划的应用场景
生产计划
物流优化
在制造业中,线性规划可以用于优化生产 计划,确定最佳的生产组合和数量,以满 足市场需求并降低成本。
在物流和运输行业中,线性规划可以用于 优化运输路线、车辆调度和仓储管理,降 低运输成本和提高效率。
初始基本可行解
在线性规划问题中,一个解被称为基 本可行解,如果它满足所有的约束条 件。
在寻找初始基本可行解时,可以采用 一些启发式算法或随机搜索方法,以 快速找到一个可行的解作为起点。
初始基本可行解是线性规划问题的一 个起始点,通过迭代和优化,可以逐 渐逼近最优解。

建立动态规划数学模型的步骤

建立动态规划数学模型的步骤

例2(带回收的资源分配问题)某厂新购某种机床125台。据估计,这种设备5年后将被其它设备所代替。此机床如在高负荷状态下工作,年损坏率为1/2,年利润为10万元;如在低负荷状态下工作,年损坏率为1/5,年利润为6万元。问应如何安排这些机床的生产负荷,才能使5年内获得的利润最大?
解:以年为阶段,k=1,2,3,4,5 取k年初完好的机床数为状态变量xk 以k年初投入高负荷运行的机床数为决策变量uk,则低负荷运行机床数是xk-uk,于是状态转移方程为: xk+1=1/2uk+4/5(xk-uk)=0.8xk-0.3uk 以利润为目标函数,则k年利润为: 10uk+6(xk-uk)=4uk+6xk 记fk(xk)为k年至5年末最大总利润,则动态规划基本方程为: fk(xk)= max{ 4uk+6xk+fk+1(0.8xk-0.3uk)} 0≤uk≤xk f6(x6)=0 k=5,4,3,2,1
动态规划基本方程为: fk(xk)= max{ 4uk+6xk+fk+1(0.8xk-0.3uk)}
当k=2时 f2(x2)= max{ 4u2+6x2+f3(0.8x2-0.3u2)} 0≤u2≤x2 = max{ 4u2+6x2+18(0.8x2-0.3u2)} 0≤u2≤x2 = max{-1.4u2+20.4x2}=20.4x2 u2=0 0≤u2≤x2 当k=1时 f1(x1)= max{ 4u1+6x1+f2(0.8x1-0.3u1)} 0≤u1≤x1 = max{ 4u1+6x1+20.4(0.8x1-0.3u1)} 0≤u1≤x1 = max{ -2.12u1+22.32x1}=22.32x1 u1=0 0≤u1≤x1 =22.32×125=2790(万元)

建立数学模型的方法

建立数学模型的方法

建立数学模型的方法数学模型是指用数学语言和符号描述现实世界中某个问题的方法。

它是一种把复杂的现实问题转化为数学问题来进行研究和解决的手段。

建立数学模型的过程不仅需要数学知识,还需要对实际问题的深刻理解和把握。

本文将从以下几个方面介绍建立数学模型的方法。

一、分析问题建立数学模型的第一步是分析问题,要明确问题的性质、特点、目的和限制条件。

在分析问题的过程中,需要了解问题的背景和相关知识,明确问题的主要矛盾和关键因素,确定问题的量化指标和评价标准,以及考虑问题的可行性和实际性。

例如,对于一个生产企业来说,它需要分析如何提高生产效率,减少成本,同时保证产品质量和员工安全。

这就需要考虑生产设备的利用率、员工的工作效率、原材料的采购成本、产品的质量检测等因素,以及企业的资源和技术条件。

二、建立数学模型在分析问题的基础上,可以建立数学模型。

数学模型是用数学语言和符号来描述现实问题的形式化表达。

数学模型可以是代数方程、微分方程、差分方程、概率统计模型、图论模型、优化模型等等。

例如,对于上述生产企业的问题,可以建立一个生产效率的数学模型。

设生产效率为E,设生产设备的利用率为x1,员工的工作效率为x2,原材料的采购成本为x3,产品的质量检测为x4,则可以建立以下数学模型:E=f(x1,x2,x3,x4)其中,f为生产效率的函数。

可以根据实际情况选择不同的函数形式,例如线性函数、指数函数、对数函数、多项式函数等等。

三、模型求解建立数学模型后,需要进行模型求解。

模型求解是指利用数学方法和计算机技术来求解数学模型,得到问题的解答或决策。

例如,对于上述生产效率的数学模型,可以利用优化方法来求解。

假设企业的目标是最大化生产效率,同时满足设备利用率≥80%、员工工作效率≥90%、采购成本≤100万元、产品合格率≥95%等限制条件。

则可以建立以下优化模型:Max E=f(x1,x2,x3,x4)s.t. x1≥0.8, x2≥0.9, x3≤100, x4≥0.95其中,s.t.表示限制条件。

三维路径规划数学建模

三维路径规划数学建模

三维路径规划数学建模
三维路径规划数学建模是指在三维空间中寻找一条最优路径的
过程。

这个问题涉及到三维空间中的点和障碍物,以及路径的长度、曲率等因素。

在进行数学建模之前,我们需要定义一些基本概念和符号:
- 三维空间中的点可以使用三维坐标表示,例如 (x, y, z)。

- 障碍物也可以使用几何体表示,如球体、立方体等。

- 路径可以看作是一系列连接在一起的点的集合,我们可以用点的坐标来表示路径。

数学建模的过程包括下面几个步骤:
1. 定义目标:
- 确定起点和终点的位置。

- 确定路径长度、曲率等目标函数。

2. 建立数学模型:
- 将三维空间划分为离散的网格。

- 根据障碍物的位置,在网格中标记障碍物的位置。

- 使用图论算法,如A*算法、Dijkstra算法等,在离散网格中搜索最优路径。

- 可以通过调整网格分辨率和障碍物的大小来平衡计算复杂度和路径的精确性。

3. 求解最优路径:
- 根据建立的数学模型,在离散网格中搜索最优路径。

- 可以通过动态规划、贪心算法等方法求解。

- 通过计算路径长度、曲率等目标函数,评价路径的优劣。

- 可以通过调整模型参数和算法来优化路径的求解过程。

4. 优化路径:
- 根据求解得到的最优路径,对路径进行优化。

- 可以使用插值算法,如Bezier曲线、样条插值等,使路径更加平滑。

- 可以根据实际应用需求,进一步优化路径的特性,如避免突然变化的曲率、尽量避开障碍物等。

以上是三维路径规划数学建模的基本过程,具体建模方法和算法选用可以根据实际问题和需求进行调整和优化。

3建立数学模型方法和步骤

3建立数学模型方法和步骤

3建立数学模型方法和步骤建立数学模型是将实际问题转化为数学问题,以便进行定量分析和求解的过程。

建立数学模型能够帮助我们更好地理解问题背后的本质,为决策和预测提供依据。

下面将介绍建立数学模型的方法和步骤。

方法一:方程法方程法是一种常用的建立数学模型的方法,其基本步骤包括以下四个方面:1.确定问题的基本要素,包括变量、参数和指标。

变量是问题中可变的量,可以进行测量和观察,而参数是固定的量,通常是由以前的实验或者经验确定的。

指标是评价问题结果的标准。

2.建立数学方程或者不等式,用变量、参数和指标之间的关系来描述问题。

这些方程或者不等式可以是线性的,也可以是非线性的。

可以根据问题背景和要求,选择适当的数学模型,常见的数学模型包括数学规划模型、统计模型、差分方程模型等。

3.对建立的数学方程或者不等式进行求解,得到问题的解。

求解方法可以是数值求解,也可以是符号求解,具体方法取决于问题的特点和求解的难度。

4.对问题的解进行分析和解释,对模型的有效性进行验证。

通过对问题解的分析和解释,可以得出有关问题的结论,并对建立的模型的准确性和可靠性进行评估。

方法二:概率论和统计学方法概率论和统计学是建立数学模型的重要工具,其基本步骤如下:1.通过对问题的分析和理解,确定问题的基本要素,包括变量、参数和指标。

与方程法相似,变量是问题中可变的量,参数是固定的量,指标是评价问题结果的标准。

2.基于问题的特点和要求,选择适当的概率分布,建立数学模型。

常见的概率分布包括正态分布、泊松分布、指数分布等。

3.通过对问题相关数据的收集和分析,估计模型中的参数。

可以使用最大似然估计、矩估计等方法。

4.利用统计推断的方法对问题进行分析和预测。

可以通过置信区间、假设检验等方法对问题进行定量分析。

5.对模型的有效性和可靠性进行评估。

通过对实际数据和推断结果的比较,可以评估模型的准确性和可信度。

方法三:系统动力学模型系统动力学模型是一种常用的建立动态系统模型的方法,其基本步骤如下:1.确定问题的系统边界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
wij 0,i 1,2, ,m; j 1,2, ,n
容量限制 非负限制
第二个问题不便用微分法求解,可用数学规 划方法求解。
学习这一部分需注意的地方: 1. 对给定的实际问题,如何作合理的假设,并建立
模型。如何处理分段函数、矛盾约束等问题。 2. 怎样将一类模型化为另一类模型,易于求解。 3. 同一问题可建立不同模型
i 1
重要结论:
当供应量 ai 与需求量 bj 均为整数时, 模型的最优解 X 是整数解。
例2 自来水输送问题
某市有甲、乙、丙、丁四个居民区,自来水由A、B、 C由三个水库供应。四个区每天必须的基本生活用水 分别为30、70、10、10千吨,但三个水库每天最多只 能分别供应50、60、50千吨自来水。由于地理位置的 差别,自来水公司从各水库向各区送水所付出的引水 管理费不同(如表,其中C水库与丁区间无输水管 道),其它管理费均为450元/千吨。各区用户每千吨 收费900元。此外,各区用户都向公司申请了额外用 水量,分别为每天50、70、20、40千吨。问公司应如 何分配供水量,才能获利最多?
例1 把一根直径为 d 的圆木锯成矩形横梁。已知 横梁强度 z 与宽度 x 成正比,与高度 y 的平 方成正比。求宽、高各为多少时强度最大?
该问题的数学模型为: z kxy2 (k 0) x2 y2 d 2, x 0, y 0
用微分法容易求出其解。
数学规划模型格式: max z kxy2 (k 0) s.t. x2 y2 d 2 , x 0, y 0
S
约束条件 问题可行
问题不可行
X
最优解
z
最优目标值
特别: min z c1 x1 c2 x2 cn xn (或 max) s.t. a11 x1 a12 x2 a1n xn b1 (或 , b1) a21 x1 a22 x2 a2n xn b2 (或 , b2)
例2 施工点 j 的坐标为 (a j ,bj ), j 1,2, ,n 对某材料的需求量为 qj , j 1,2, ,n 第 i个料场的容量为 Mi 吨, i 1,2, , m. 求料场的位置及各料场向各施工点的供应量,使
材料运输的总吨公里最小。
解 设各料场到各施工点的距离为直线距离,且各施工
ai 160
i
50
生活用水
额外用水
30 50
70b
70
j
10 20
10 40
bj 300
j
问题分析:…可看成是“产小于销”的运输问题。
模型建立
பைடு நூலகம்
设 xij 分别表示水库A,B,C(i=1,2,3)向居民因区16甲0千,乙吨, 水须
丙,丁(j=1,2,3,4)的供水量。其中X34=0. 全部输出
等约束
X O
注: 1. 与
2. 与
min z CX M
s.t. AX b
X O
M是常数
min z CX s.t. AX b
X O
有相同的最优解
min z CX s.t. AX b
X O
max z0 CX 有相同的最优解
s.t. AX b X O
另外: 1. x j 取整数,称模型为整数规划模型
点可在不同料场取料。
设 ( xi , yi ) 为第 i 个料场坐标
wij
为料场 mn
i
向施工点
j
提供的材料数量

min z
wij ( xi a j )2 ( yi bj )2 总吨公里数
m i1 j1
s.t. wij q j , j 1,2, , n
需求限制
i n1
wij Mi ,i 1,2, ,m
Bn
产量
A1
c11 c12 c1n
a1
A2
c21 c22 c2n
a2
Am
cm1 cm2 cmn
am
需求量 b1 b2 bn
求使总运费最少的调运方案。试建模。
42

m
m
假设 ai bj 产销平衡
i 1
j 1
设 xij 为产地 Ai 到销地 Bj 的运量。 mn

min z
cij xij
2. x j中部分取整数,称模型为混合整数规划模型 3. x j只取0或1两个值,称为 0 — 1 规划模型 4. 目标函数或约束条件是非线性的,
称为非线性规划模型 5. 若目标函数只有一个,称为单目标规划模型;
若目标函数不只一个,称为多目标规划模型。
一、运输问题
例1
运 价 销地 产地
B1 B2
am1 x1 am2 x2 amn xn bm(或 , bm)
x j 0, j 1,2, ,n
n
线性规划模型

min z c j x j
n j1
s.t. aij x j (,)bi ,i 1,2, ,m
j 1
x j 0, j 1,2, ,n

min z CX
s.t. AX b
i1 j1
线
n
s.t. xij ai , i 1,2, ,m
性 规
mj 1

xij bj , j 1,2, , n

i 1

xij 0, i 1,2, ,m; j 1,2, ,n
n
注:若产大于销,则
xij ai , i 1,2, ,m
j 1
m
若产小于销,则
xij bj , j 1,2, ,n
引水管理费(元/千吨)
A B C
甲乙丙 丁
160 130 220 170 140 130 190 150 190 200 230 /

将有关数据整理列表:



居民区





供应量
水库
A 160 130 220 170
B 140 130 c1ij90 150
C 190 200 230 /
50
60 ai
II 数学规划模型的建立
数学规划模型的一般形式:
min z f ( X ) (或 max X S ( Rn) X ( x1, x2 , , xn )T
z f ( X ))
若能写出描述S的数学式子,则可直接写出。
例如: max z kxy2 (k 0)
s.t. x2 y2 d 2 ,
x 0, y 0
这里 S {(x, y) | x2 y2 d 2, x, y 0}
X ( x, y)T
几个概念:
目标函数
min z f ( X ) (或 max z f ( X ))
可行解
X S ( Rn) X ( x1, x2 , , xn )T
可行域 决策变量
描述S 的数学式子
相关文档
最新文档