多晶硅生产工艺流程及相关问题(附西门子法生产工艺)
西门子法多晶硅工艺

改良西门子法,三氯[wiki]氢[/wiki]硅在纯H2的还原条件下,在1050℃的硅芯发热体表面上沉积、生长[wiki]多晶硅[/wiki]。
该工艺目前是国内外成熟、稳定、安全、可靠、产品质量稳定的多晶硅生产工艺。
高纯氢气和精馏提纯的高纯三氯氢硅按适宜的摩尔配比进入还原炉,在硅芯发热体表面上沉积,生长多晶硅,得到产品。
还原炉尾气经干法回收得到三氯氢硅和四氯化硅混合液、氯化氢气体以及氢气。
分离的氯化氢经降膜吸收器吸收成为副产品盐酸。
降膜吸收后的尾气经喷淋水洗塔水洗后达标排空。
氢气返回还原炉生产多晶硅。
西门子工艺每生产1t多晶硅产品将产生近14t的副产物SiCl4,即年产1000t多晶硅,就有14000t副产SiCl4,一般通过四氯化硅氢化、四氯化硅综合利用(生产白炭黑),以达到四氯化硅的循环使用。
三氯氢硅和四氯化硅混合液送精馏分离,经连续精馏后得到的三氯氢硅送还原炉生产多晶硅,四氯化硅送氢化。
三氯氢硅粗馏、干法精馏和氢化粗馏得到的四氯化硅经连续提纯后,送四氯化硅氢化系统。
在温度400~500℃、压力1.2~l.5MPaG的条件下,四氯化硅转化成三氯氢硅,得到氢化产品。
氢化产品经连续粗馏后,得到三氯氢硅、四氯化硅和低沸物。
三氯氢硅送三氯氢硅精馏,四氯化硅送提纯系统,低沸物加以回收和综合利用。
还原过程产生大量的热能,用导热油循环冷却将热量用于工艺生产和生活中,使能量得到循环利用。
改良西门子法多晶硅生产工艺,其特点为闭路循环,包括四氯化硅氢化、大型还原炉、还原尾气干法回收等目前国内四氯化硅氢化的方法有两种,一种是冷氢化,就是一楼介绍的采用硅粉,氢气以及催化剂在400~500℃,较高压力下反应,另一种称为热氢化,即所谓“氯硅烷分离提纯工序精制的四氯化硅,送入四氯化硅汽化器,被热水加热汽化。
从氢气制备与净化工序送来的氢气和从还原尾气干法分离工序来的多余氢气在氢气缓冲罐混合后,也通入汽化器内,与四氯化硅蒸汽形成一定比例的混合气体。
多晶硅生产工艺流程?190411

多晶硅生产工艺流程 190411Sorry, your browser does not support embedded videos. 一、改良西门子法1955年,西门子公司成功开发了利用氢气还原三氯硅烷在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。
1、在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。
2、改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。
具体生产工艺流程见图1。
3、改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。
该方法通过采用大型还原炉,降低了单位产品的能耗。
通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗。
4、改良西门子法制备的多晶硅纯度高,安全性好,沉积速率为8~10μm/min,一次通过的转换效率为5%~20%,相比硅烷法、流化床法,其沉积速率与转换效率是最高的。
沉积温度为1100℃,仅次于SiCl4(1200℃),所以电耗也较高,为120 kWh/kg(还原电耗)。
改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。
SiHCl3还原时一般不生产硅粉,有利于连续操作。
该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。
因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产的多晶硅占当今世界总产量的70~80%。
二、硅烷法1、硅烷法以氟硅酸、钠、铝、氢气为主要原辅材料,通过SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取SiH4,然后将SiH4气提纯后通过SiH4热分解生产纯度较高的棒状多晶硅。
四氯化硅西门子法多晶硅生产工艺

四氯化硅西门子法生产工艺四氯化硅西门子法生产工艺主要是以四氯化硅为原料,使用氢、锌等作为还原剂与四氯化硅发生反应,还原出高纯硅。
SiCl4的分子量为169.90,常温下为无色透明液体,有窒息气味,对皮肤有腐蚀,密度为1.50g/cm3。
熔点−70℃。
沸点57.6℃。
潮湿受气中水解生成硅酸和氯化氢,同时产生白烟。
溶于四氯化碳、四氯化钛、四氯化锡等有机溶剂。
能与水发生激烈的水解作用,也能与醇类起作用。
干燥空气中加热生成氧氯化硅。
与氢及其他还原剂作用生成三氯甲硅烷和其他氯代硅烷,与胺、氨迅速反应生成氮化硅聚合物,与醇反应生成硅酸酯类,与有机金属化合物(如锌、汞、钠)反应生成有机硅烷等。
由于STC原料获取较为便利,在多晶硅发展初期,部分机构和企业研究以SiCl4为原料生产多晶硅,使用Zn、Al、Ca、Mg或H2等还原四氯化硅,制取高纯多晶硅。
(1)锌还原四氯化硅使用锌还原四氯化硅的主要化学反应方式如下,其工艺流程如图所示。
Si+2Cl2=SiCl4SiCl4+2Zn=Si+2ZnCl2ZnCl2=Zn+Cl2此种生产技术是利用Zn还原SiCl4,从而获得高纯多晶硅,生产过程主要分为3步。
1)工业粗硅氯化制备四氯化硅目前,SiCl4的工业制备方法,一般是采用直接氯化法,将工业粗硅在加热条件下直接与氯反应制得SiCl4。
工业上常用不锈钢(或石英)制的氯化炉,将硅铁装入氯化炉,从氯化炉底部通入氯气,加热至200℃~300℃时,就开始反应生成SiCl4,其化学反应为Si+2Cl2=SiCl4生成的SiCl4以气体状态从炉体上部转至冷凝器,冷却为液态后,再流入储料槽。
在生产中,一般将氯化温度控制在450℃~500℃,这样一方面可提高生产率,另一方面可保证质量。
因为温度低时不仅反应速度慢,而且有副产品Si2Cl6、Si3Cl8等生成,影响产品纯度,但若温度过高,硅铁中其他难挥发杂质氯化物也会随SiCl4一起挥发出来,影响SiCl4纯度。
西门子法多晶硅生产中的质量控制难点及措施

现稳 定 高质 量的 多晶硅 生产 。 关键 字 : 西门子法 ; 多 晶硅 ; 质量控 制
1 多 晶硅 质 量控 制的难 点
多晶硅企业的工艺流程及主要风险点

安装于炉内的导电硅芯 。硅芯制备过程中 , 需要用氢氟酸和硝酸对硅芯进行腐蚀处理 , 再用超纯水洗净硅芯 , 然后对硅芯进行干燥。产品整理: 用氢氟酸和硝酸对块状多晶硅进行腐蚀处理 , 再用超纯水洗净多晶硅块 , 然后对多晶硅块进行干燥。在还原炉内制得的多晶硅棒被从炉内取下 , 切断、破碎成块状的多晶硅 。用氢氟酸和硝酸对块状多晶硅进行腐蚀处理 , 再用超纯水洗净多 晶硅块 , 然后对多晶硅块进行干燥 。经检测达到规定的质量指标的块状多晶硅产品送去包装
艺可以保证制备高纯的用于多晶硅生产的三氯氢硅和四氯化硅(用于氢化)。(6) SiHCl3氢还原在原始硅芯棒上沉积多晶硅 。高纯H2和精制SiHCl3进入还原炉 ,在1050℃的硅芯发热 体表面上反应 。5SiHCl3+H2→2Si+2SiCl4+5HCl+ SiH2Cl2从三氯氢硅汽化器来的三氯氢硅与氢气的混合气体 ,送入还原炉内 。在还原炉内通电 的炽热硅芯/硅棒的表面 ,三氯氢硅发生氢还原反应 ,生成硅沉积下来 ,使硅芯/硅棒的直 径逐渐变大 ,直至达到规定的尺寸 。氢还原反应同时生成二氯二氢硅、四氯化硅、氯化氢 和氢气 , 与未反应的三氯氢硅和氢气一起送出还原炉 ,经还原尾气冷却器用循环冷却水冷 却后 ,直接送往还原尾气干法分离工序。还原炉炉筒夹套通入热水 , 以移除炉内炽热硅芯向炉筒内壁辐射的热量 ,维持炉筒内 壁的温度 。出炉筒夹套的高温热水送往热能回收工序 ,经废热锅炉生产水蒸汽而降温后, 循环回本工序各还原炉夹套使用。
谢谢 !
PPT文档内容仅供参考
一、概述二、工艺流程三 生产类 备
设消防设备主要风险点
四、五、
1 . 多晶硅直接制成多晶硅太阳能电池2 . 多晶硅提炼成单晶硅 , 制成单晶硅太阳能电池3 . 多晶硅提炼成单晶硅 , 切片制成晶圆
改良西门子法生产多晶硅工艺流程

改良西门子法生产多晶硅工艺流程1. 氢气制备与净化工序在电解槽内经电解脱盐水制得氢气。
电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。
除氧后的氢气通过一组吸附干燥器而被干燥。
净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。
电解制得的氧气经冷却、分离液体后,送入氧气贮罐。
出氧气贮罐的氧气送去装瓶。
气液分离器排放废吸附剂,氢气脱氧器有废脱氧催化剂排放,干燥器有废吸附剂排放,均由供货商回收再利用。
2. 氯化氢合成工序从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。
出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。
从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。
氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。
出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。
为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。
该系统保持连续运转,可随时接收并吸收装置排出的氯化氢气体。
为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。
必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。
该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。
3. 三氯氢硅合成工序原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。
硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。
供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。
多晶硅的三大生产工艺之比较

多晶硅的三大生产工艺之比较1.多晶硅的生产工艺:从西门子法到改良西门子法从西门子法到改良西门子法的演进是一个从开环到闭环的过程。
1955年,德国西门子开发出以氢气(H2)还原高纯度三氯氢硅(SiHCl3),在加热到1100℃左右的硅芯(也称“硅棒”)上沉积多晶硅的生产工艺;1957年,这种多晶硅生产工艺开始应用于工业化生产,被外界称为“西门子法”。
由于西门子法生产多晶硅存在转化率低,副产品排放污染严重(例如四氯化硅SiCl4)的主要问题,升级版的改良西门子法被有针对性地推出。
改良西门子法即在西门子法的基础上增加了尾气回收和四氯化硅氢化工艺,实现了生产过程的闭路循环,既可以避免剧毒副产品直接排放污染环境,又实现了原料的循环利用、大大降低了生产成本(针对单次转化率低)。
因此,改良西门子法又被称为“闭环西门子法”。
改良西门子法一直是多晶硅生产最主要的工艺方法,目前全世界有超过85%的多晶硅是采用改良西门子法生产的。
过去很长一段时间改良西门子法主要用来生产半导体行业电子级多晶硅(纯度在99.9999999%~99.999999999%,即9N~11N的多晶硅);光伏市场兴起之后,太阳能级多晶硅(对纯度的要求低于电子级)的产量迅速上升并大大超过了电子级多晶硅,改良西门法也成为太阳能级多晶硅最主要的生产方法。
2.改良西门子法生产多晶硅的工艺流程(改良西门子法工艺流程示意图)在TCS还原为多晶硅的过程中,会有大量的剧毒副产品四氯化硅(SiCl4,下文简称STC)生成。
改良西门子法通过尾气回收系统将还原反应的尾气回收、分离后,把回收的STC送到氢化反应环节将其转化为TCS,并与尾气中分离出来的TCS一起送入精馏提纯系统循环利用,尾气中分离出来的氢气被送回还原炉,氯化氢被送回TCS 合成装置,均实现了闭路循环利用。
这是改良西门子法和传统西门子法最大的区别。
CVD还原反应(将高纯度TCS还原为高纯度多晶硅)是改良西门子法多晶硅生产工艺中能耗最高和最关键的一个环节,CVD工艺的改良是多晶硅生产成本下降的一项重要驱动力。
多晶硅生产工艺—西门子法

西门子法生产多晶硅发展及展望西门子法生产多晶硅的工艺流程可分为三步:一是SiHCl3制备,二是SiHCl3还原制取多晶硅,最后为尾气的回收利用。
从图1、图2可见,左边的流床反应器即为由冶金级硅和HCl气体反应生成SiHCl3的部分;中间标有“高纯Si”的反应炉为制取多晶硅的部分;右边为尾气回收系统。
其中,SiHCl3氢还原制取多晶硅部分最为重要。
西门子法至今已有50多年的历史,多年前即发展成为生产电子级多晶硅的主流技术,现在生产技术已相当成熟。
这和它具有以下优点是密不可分的[20-22]:(1) SiHCl3比较安全,可以安全地运输,贮存数月仍能保持电子级纯度。
当容器打开后不像SiH4或SiH2Cl2那样会燃烧或发生爆炸,即使燃烧,温度也不高,可以盖上。
(2) 西门子法的有用沉积比为1×103,是硅烷法的100倍。
(4) 在现有方法中它的沉积速率最高,达8~10μm/min。
(5) 一次转换效率为5%~20%,在现有方法中也是最高的。
不足之处在于沉积温度较高,在1100℃左右,所以电耗高,达120kWh/kg。
1.3.1 发展历程1 第一代多晶硅生产流程[20]适用于100t/a以下的小型硅厂,以HCl气体和冶金级硅为原料,在300℃和0.45MPa下催化生成SiHCl3。
主要副产物为SiCl4和SiH2Cl2,含量分别为5.2%和1.4%,此外还有1.9%较大分子量的氯硅烷。
生成物经沉降器去除固体颗粒,再经冷凝器进行汽液分离。
分离出的H2压缩后返回流床反应器,液态产物SiCl4、SiH2Cl2、较大分子量的氯硅烷和SiHCl3则进入多级分馏塔进行分离,馏出物SiHCl3作为原料再次进入储罐。
SiHCl3在常温下是液体,由H2携带进入钟罩反应器,在1100℃左右的硅芯上沉淀。
反应为:SiHCl3+H2→Si+HCl (1)2SiHCl3→Si+SiCl4+2HCl(2)式(1)是希望发生的反应,但式(2)也同时进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多晶硅工程分析(附改良西门子法)这种方法的优点是节能降耗显著、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。
改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。
(1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅,其化学反应SiO2+C→Si+CO2↑(2)为了满足高纯度的需要,必须进一步提纯。
把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。
其化学反应Si+HCl→SiHCl3+H2↑反应温度为300度,该反应是放热的。
同时形成气态混合物(Н2,НСl,SiНСl3,SiCl4,Si)。
(3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiНС13,SiC14,而气态Н2,НС1返回到反应中或排放到大气中。
然后分解冷凝物SiНСl3,SiCl4,净化三氯氢硅(多级精馏)。
(4)净化后的三氯氢硅采用高温还原工艺,以高纯的SiHCl3在H2气氛中还原沉积而生成多晶硅。
其化学反应SiHCl3+H2→Si+HCl。
多晶硅的反应容器为密封的,用电加热硅池硅棒(直径5-10毫米,长度1.5-2米,数量80根),在1050-1100度在棒上生长多晶硅,直径可达到150-200毫米。
这样大约三分之一的三氯氢硅发生反应,并生成多晶硅。
剩余部分同Н2,НСl,SiНС13,SiC l4从反应容器中分离。
这些混合物进行低温分离,或再利用,或返回到整个反应中。
气态混合物的分离是复杂的、耗能量大的,从某种程度上决定了多晶硅的成本和该工艺的竞争力。
3.1多晶硅工艺技术方案3.1.1 工艺技术路线确定从多晶硅生产的主要工艺技术的现状和发展趋势来看,改良西门子工艺能够兼容电子级和太阳能级多晶硅的生产,以其技术成熟、适合产业化生产等特点,是目前多晶硅生产普遍采用的首选工艺,也是目前国内多晶硅生产的主要工艺技术。
因此本项目拟采用改良西门子法工艺。
3.1.2 生产方法和反应原理项目主要工序生产方法及反应原理如下:3.1.2.1 H2制备与净化在电解槽内经电解脱盐水制得氢气。
电解H20→H2+023.1.2.2 HCl合成在氯化氢合成炉内,氢气与氯气的混合气体经燃烧反应生成氯化氢气体,经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。
H2+Cl2→2HCl3.1.2.3 SiHCl3合成在SiHCl3合成炉内Si粉与HCI在280~300℃温度下反应生成三氯氢硅和四氯化硅。
同时,生成硅的高氯化物的副反应,生成Si n Cl2n+2系的聚氯硅烷及Si n H m Cl( 2n+2)-m类型的衍生物。
主反应Si+3HCl→SiHCl3+H2Si+4HCl→SiCl4+2H2副反应2SiHCl3→SiH2CI2+SiCl42Si+6HCl→Si2C16+3H22Si+5HCl→Si2HCl5+2H23.1.2.4合成气干法分离经三级旋风除尘器组成的干法除尘系统除去部分硅粉,经低温氯硅烷液体洗涤、分离成氯硅烷液体、氢气和氯化氢气体,分别循环回装置使用。
3.1.2.5氯硅烷分离、提纯氯硅烷的分离和提纯是根据加压精馏的原理,通过采用合理节能工艺来实现的。
该工艺可以保证制备高纯的用于多晶硅生产的三氯氢硅和四氯化硅(用于氢化)。
3.1.2.6 SiHCl3氢还原在原始硅芯棒上沉积多晶硅。
高纯H2和精制SiHCl3进入还原炉,在1050℃的硅芯发热体表面上反应。
5SiHCl3+H2→2Si+2SiCl4+5HCl+ SiH2Cl23.1.2.7还原尾气干法分离还原尾气干法分离的原理和流程与三氧氢硅合成气干法分离工序类似。
3.1.2.8 SiCl4氢化在三氯氢硅的氢还原过程中生成四氯化硅,在将四氯化硅冷凝和脱除三氯氢硅之后进行热氢化,转化为三氯氢硅。
四氯化硅送入氢化反应炉内,在400~500℃温度、1.3~1.5Mpa压力下,SiCl4转化反应。
主反应SiCl4+H2→SiHCl3+HCl副反应2SiHCl3→SiH2Cl2+SiCl43.1.2.9氢化气干法分离从四氯化硅氢化工序来的氢化气经此工序被分离成氯硅烷液体、氢气和氯化氢气体,分别循环回装置使用。
氢化气干法分离的原理和流程与三氯氢硅合成气干法分离工序类似。
3.1.2.10硅芯制备及产品整理(1)硅芯制备硅芯制备过程中,需要用氢氟酸和硝酸对硅芯进行腐蚀处理,再用超纯水洗净硅芯,然后对硅芯进行干燥。
(2)产品整理用氢氟酸和硝酸对块状多晶硅进行腐蚀处理,再用超纯水洗净多晶硅块,然后对多晶硅块进行干燥。
3.1.2.11废气及残液处理(1)工艺废气处理用NaOH溶液洗涤,废气中的氯硅烷(以SiHCl3为例)和氯化氢与NaOH发生反应而被去除。
SiHCl3+3H20=Si02·H20↓+3HCl+H2HC1+NaOH=NaC1+H20废气经液封罐放空。
含有NaCl、Si02的出塔底洗涤液用泵送工艺废料处理。
(2)精馏残液处理从氯硅烷分离提纯工序中排除的残液主要含有四氯化硅和聚氯硅烷化合物的液体以及装置停车放净的氯硅烷液体,加入Na0H溶液使氯硅烷水解并转化成无害物质。
水解和中和反应SiCl4+3H2O=SiO2·H2O↓+4HClSiHCl3+3H2O=SiO2·H2O↓+3HCl+H2SiH2Cl3+3H2O=SiO2·H2O↓+3HCl+H2NaOH+HCl=NaCl+H2O经过规定时间的处理,用泵从槽底抽出含SiO2、NaCI的液体,送工艺废料处理。
3.1.2.12酸洗尾气处理产品整理及硅芯腐蚀处理挥发出的氟化氢和氮氧化物气体,用石灰乳液作吸收剂吸收氟化氢;以氨为还原剂、非贵重金属为催化剂,将NOX还原分解成N2和水。
2HF+Ca(OH)2=CaF2↓+H206N02+8 NH3=7 N2↓+12 H206 N0+4 NH3=5 N2↓+6 H203.1.2.13酸洗废液处理硅芯制各及产品整理工序含废氢氟酸和废硝酸的酸洗废液,用石灰乳液中中和,生成氟化钙固体和硝酸钙溶液,处理后送工艺废料处理。
2HF+Ca(OH)2=CaF2↓+H2O2HNO3+Ca(OH)2=Ca(NO3)2+H2O3.2工艺流程及产污分析3.2.1 氢气制备与净化工序在电解槽内经电解脱盐水制得氢气。
电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。
除氧后的氢气通过一组吸附干燥器而被干燥。
净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。
电解制得的氧气经冷却、分离液体后,送入氧气贮罐。
出氧气贮罐的氧气送去装瓶。
气液分离器排放废吸附剂、氢气脱氧器有废脱氧催化剂排放、干燥器有废吸附剂排放,均供货商回收再利用。
3.2.2氯化氢合成工序从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。
出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。
从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。
氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。
出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。
为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。
该系统保持连续运转,可随时接收并吸收装置排出的氯化氢气体。
为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。
必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。
该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。
3.2.3三氯氢硅合成工序原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。
硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。
供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。
从氯化氢合成工序来的氯化氢气,与从循环氯化氢缓冲罐送来的循环氯化氢气混合后,引入三氯氢硅合成炉进料管,将从硅粉供应料斗供入管内的硅粉挟带并输送,从底部进入三氯氢硅合成炉。
在三氯氢硅合成炉内,硅粉与氯化氢气体形成沸腾床并发生反应,生成三氯氢硅,同时生成四氯化硅、二氯二氢硅、金属氯化物、聚氯硅烷、氢气等产物,此混合气体被称作三氯氢硅合成气。
反应大量放热。
合成炉外壁设置有水夹套,通过夹套内水带走热量维持炉壁的温度。
出合成炉顶部挟带有硅粉的合成气,经三级旋风除尘器组成的干法除尘系统除去部分硅粉后,送入湿法除尘系统,被四氯化硅液体洗涤,气体中的部分细小硅尘被洗下;洗涤同时,通入湿氢气与气体接触,气体所含部分金属氧化物发生水解而被除去。
除去了硅粉而被净化的混合气体送往合成气干法分离工序。
3.2.4合成气干法分离工序从三氯氢硅氢合成工序来的合成气在此工序被分离成氯硅烷液体、氢气和氯化氢气体,分别循环回装置使用。
三氯氢硅合成气流经混合气缓冲罐,然后进入喷淋洗涤塔,被塔顶流下的低温氯硅烷液体洗涤。
气体中的大部份氯硅烷被冷凝并混入洗涤液中。
出塔底的氯硅烷用泵增压,大部分经冷冻降温后循环回塔顶用于气体的洗涤,多余部份的氯硅烷送入氯化氢解析塔。
出喷淋洗涤塔塔顶除去了大部分氯硅烷的气体,用混合气压缩机压缩并经冷冻降温后,送入氯化氢吸收塔,被从氯化氢解析塔底部送来的经冷冻降温的氯硅烷液体洗涤,气体中绝大部分的氯化氢被氯硅烷吸收,气体中残留的大部分氯硅烷也被洗涤冷凝下来。
出塔顶的气体为含有微量氯化氢和氯硅烷的氢气,经一组变温变压吸附器进一步除去氯化氢和氯硅烷后,得到高纯度的氢气。
氢气流经氢气缓冲罐,然后返回氯化氢合成工序参与合成氯化氢的反应。
吸附器再生废气含有氢气、氯化氢和氯硅烷,送往废气处理工序进行处理。
出氯化氢吸收塔底溶解有氯化氢气体的氯硅烷经加热后,与从喷淋洗涤塔底来的多余的氯硅烷汇合,然后送入氯化氢解析塔中部,通过减压蒸馏操作,在塔顶得到提纯的氯化氢气体。
出塔氯化氢气体流经氯化氢缓冲罐,然后送至设置于三氯氢硅合成工序的循环氯化氢缓冲罐;塔底除去了氯化氢而得到再生的氯硅烷液体,大部分经冷却、冷冻降温后,送回氯化氢吸收塔用作吸收剂,多余的氯硅烷液体(即从三氯氢硅合成气中分离出的氯硅烷),经冷却后送往氯硅烷贮存工序的原料氯硅烷贮槽。