单晶多晶硅片生产工艺流程详解

单晶多晶硅片生产工艺流程详解
单晶多晶硅片生产工艺流程详解

在【技术应用】单晶、多晶硅片生产工艺流程详解(上)中,笔者介绍了单晶和多晶硅片工艺流程的前半部分,概述了一些工艺流程和概念,以及术语的相关知识。而本文则是从切片工艺开始了解,到磨片和吸杂,看硅片如何蜕变。

切片

切片综述

当单晶硅棒送至硅片生产区域时,晶棒已经过了头尾切除、滚磨、参考面磨制的过程,直接粘上碳板,再与切块粘接就能进行切片加工了。

为了能切割下单个的硅片,晶棒必须以某种方式进行切割。切片过程有一些要求:能按晶体的一特定的方向进行切割;切割面尽可能平整;引入硅片的损伤尽可能的少;材料的损失尽量少。

碳板

当硅片从晶棒上切割下来时,需要有某样东西能防止硅片松散地掉落下来。有代表性的是用碳板与晶棒通过环氧粘合在一起从而使硅片从晶棒上切割下来后,仍粘在碳板上。

碳板不是粘接板的唯一选择,任何种类的粘接板和环氧结合剂都必须有以下几个特性:能支持硅片,防止其在切片过程中掉落并能容易地从粘板和环氧上剥离;还能保护硅片不受污染。其它粘板材料还有陶瓷和环氧。

石墨

是一种用来支撑硅片的坚硬材料,它被做成与晶棒粘接部位一致的形状。大多数情况下,碳板应严格地沿着晶棒的参考面粘接,这样碳板就能加工成矩形长条。当然,碳板也可以和晶棒的其它部位粘接,但同样应与该部位形状一致。碳板的形状很重要,因为它要求能在碳板和晶棒间使用尽可能少的环氧和尽量短的距离。这个距离要求尽量短,因为环氧是一种相当软的材料而碳板和晶棒是很硬的材料。当刀片从硬的材料切到软的材料再到硬的材料,可能会引起硅片碎裂。

这里有一些选择环氧类型参考:强度、移动性和污染程度。粘接碳板与晶棒的环氧应有足够强的粘度,才能支持硅片直到整根晶棒切割完成,因此,它必须能很容易地从硅片上移走,只有最小量的污染。

刀片

当从晶棒上切割下硅片时,期望切面平整、损伤小、沿特定方向切割并且损失的材料尽量小。有一个速度快、安全可靠、经济的切割方法是很值得的。

在半导体企业,两种通常被应用的方法是环型切割和线切割。环型切割通常是指内圆切割,是将晶棒切割为硅片的最广泛采用的方法。

内圆切割

内圆切割,切割的位置在刀片的表面。刀片是由不锈钢制成的大而薄的圆环。刀片的内侧边缘镀有带钻石颗粒的镍层。这一钻石-镍的镀层提供了用来切割晶棒的表面,对于150mm 的硅片,每刀用时3分钟。

内圆刀片的构成和厚度

对一典型的内圆刀片,其中心部位由约0.005英寸的不锈钢制成,镍-钻石涂层是不锈钢刀片边缘两侧约0.003英寸。内圆刀片的内侧边缘总厚度约为0.0125英寸。这样,材料损失厚度略大于刀片的最厚度,大概在0.013英寸左右。

镍-钻石涂层的厚度是内圆刀片的一个重要参数。很明显,这一厚度越小,刀片损失也就越少。但是,如果涂层太薄的话,刀片切下的路径太窄,刀片可能会有更大潜在可能冲击边缘,如果刀片发生任何偏差而撞击到边缘,硅片就会受到损伤,在接下来的步骤中就需要去除更多的材料。因此,有一个最适宜的镍-钻石涂层能得到最低的材料损失。

不锈钢有高的延展性能允许刀片有很大的张力,这种强的张力能使刀片绷的很紧很直,从而在切割时能保持刀片平直。另一个有利之处就是它很耐用,能额外使用同一刀片而不需更换,从而使硅片的生产成本降低。这是很重要的因为更换一把刀片需耗时1.5小时左右。

对于相同尺寸的晶棒,有一个办法能减小刀片的尺寸,就是在切割前将晶棒滚圆。这个安排有利之处在于内圆切片时,只要通过晶棒一半的路程,因此,不需要如此大的直径。但它会导致碎裂并使硅片中心产生缺陷。随着晶棒直径的增大,内圆切片变得越来越不实用。

切片损伤

当切片机在切割晶棒时,会引起很多损伤。这一过程会造成硅片产生许多细微破裂和裂纹,这种损伤层的平均厚度约为25-30μm。这样的损伤存在于刀片与晶棒接触的任何地方。因为切片接触的是硅片的表面,所以硅片表面存在着许多这样的损伤,这就意味着在接下来的过程中必须清除掉这些损伤,硅片才会有用。

刀片偏转

硅片弯曲和厚度偏差的主要根源在切片过程。影响硅片形状的最主要因素是切片过程中的刀片偏转。如果刀片在切片时发生振动,那么很有可能在刀片所在一侧的损伤层会比另一侧更深。不同的是,因刀片振动引起的损伤称为切片微分损伤。

碎片(刀片退出时)

无论任何方式,当刀片切割某种材料即将完成时,刀片在材料底部时,可能会引起材料碎裂,这种现象称为exitchip。碎片的发生是由于在切割的最后阶段,在材料的小区域中存在高的局部应力。当持续施加相同大小的压力在越来越薄的材料上,材料就无法再承受这样

的压力。这片材料就开始断裂,材料的碎片就会松散。

最小限度(碎片)

有两种方法防止碎片的发生,一种方法是在最后阶段,减小刀片施加在硅片上的压力。在最后,可以通过降低刀片进给速率来减小压力。另一个方法是在晶棒外侧位置贴上几片材料,使切割完成。外表面额外材料的增加提供载体有利于切片的完成。这样就减少了硅片较薄边缘的压力,硅片也不会碎裂了。

有一防止碎片的系统可供选择,可以消除任何碎片的发生。就是使晶棒直径生长的稍大一点,那么在切片时,即使发生碎片,滚磨去碎裂处,仍有足够的材料。这种方法的应用使晶棒直径大1.3mm左右。切片之后,多余的材料就会被磨去。

除了内圆切割外,还有线切割。

线切割使用研磨砂浆来切割晶棒,砂浆贴附在接触并进入晶棒的钢线上,钢线会产生压力压迫研磨剂与晶棒接触,这样在砂浆和晶棒间的压力接触使材料被磨去。

线切割基本结构很简单,一根小直径的钢线绕在几个导轮上使钢线形成梯形的形状。导轮上有凹槽能确保钢线以一定距离分隔开。一根连续的钢线集中绕导轮的一个个凹槽上,形成许多相同间隔的切割表面。线之间的空间决定了想要的硅片厚度。钢线的移动由线轴控制,整个系统只有一根钢线。线的两端分别绕在线轴上,晶棒慢慢向上(下)移动,穿过钢线,钢线能从晶棒上同时切割下许多硅片。如150mm硅片,整根晶棒的切割完成只需约5-8小时。

典型的线切割机使用的钢线直径约在0.006英寸。这么小的尺寸所造成的切片损失只有0.008英寸。单根线通常有100km长,绕在两个线轴上。如此长的钢线的应用使线的单个区域每次都不会与砂浆及晶棒接触很长时间。这种与砂浆接触时间的减少有利于延长钢线的寿命。典型的钢线进给速度在10m/s(22mph),即一根100km长的钢线经过一个方向需10,000秒或约2.75小时。其中一个线导轮由马达驱动,控制整个钢线系统。

钢线必须保持一定的张力能压迫砂浆中的磨砂研磨晶棒,并防止导轮上的钢线进给错误。

线切割机的钢线与晶棒接触,而砂浆沉积在钢线上。砂浆由碳化硅与油混合而成,或其他一些类似的坚硬材料与液体的混合物。通过钢线的带动,砂浆会对晶棒缓慢研磨,带走晶棒表面少许材料,形成凹槽。钢线的不断移动将凹槽中的材料不断带走,在钢线完全通过晶棒后,砂浆仍随钢线移动。

线切割的问题

有两种主要的失效模式:钢线张力的错误改变和钢线断裂。如果钢线的张力错误,线切割机就不能有效进行切割了。钢线有任何一点的松动,都会使其在对晶棒进行切割时发生摇摆,引起切割损失,并对硅片造成损伤。低的张力还会发生另一问题,会使钢线导轮发生错

误进给。这一错误可能造成对晶棒的错误切割或者使钢线断裂。在切割过程中,钢线可能会从一个凹槽跳到另一个凹槽中,使硅片切割进行到一半。钢线也可能因张力太大,达到它所能承受的极限,导致钢线断裂。如果钢线断裂,可能对硅片造成损伤,并使切割过程停止。断裂的钢线还可能造成众多硅片的断裂。

晶向

当进行切片时,必须按客户要求沿一个方向切割。所有的客户都希望硅片有一特定的晶向,无论是在一单晶平面还是如果特定的,与平面有特定数值的方向。就要尽可能使硅片的切割接近这一方向。一些制作过程要依靠晶向蚀刻,其它则需要基层的晶向准确。硅片晶向发生任何问题都会引起器件制造问题。因此,必须在切片开始时就检查硅片晶向的正确性。

当晶棒粘在切片机上时,以参考面为基础,将晶棒排好。然而,也不能保证切出来的硅片晶向正确,除非先切两片硅片,用X-ray机检查晶向是否正确。如果硅片的晶向错误,那么就要调整切片机上晶棒的位置。切片机有调整晶向的功能。

碳板清除

切片完成之后,粘在硅片上的碳板需要清除。使硅片与碳板粘合在一起的环氧剂能被轻易地清除。操作时应小心,使硅片边缘不会碎裂,并且保持硅片仍在同一顺序。

硅片的原始顺序必须被保持直至激光刻字。

激光刻字

经切片及清洗之后,硅片需用激光刻上标识。

激光标识一般刻在硅片正面的边缘处,用激光蒸发硅而形成标识。标识可以是希腊字母或条形码。条形码有一好处,因为机器能快速而方便地读取它,但是,人们很难读出。

因为激光标识在硅片的正面,它们可能会在硅片生产过程中被擦去,除非刻的足够深。但如果刻的太深,很可能在后面的过程中受到沾污。一般激光刻字的深度在175μm左右。

通常在激光刻字区域做的是另一任务是根据硅片的物理性能进行分类,通常以厚度进行分类。不符合标准的原因通常有崩边、破损、翘曲度太大或厚度超差太大。

边缘倒角

倒角使硅片边缘有圆滑的轮廓。这样操作的主要目的是消除切片过程中在硅片边缘尖利处的应力。边缘倒角另外的好处是能清除切片过程中一些浅小的碎片。

边缘倒角形态

硅片边缘的形状由磨轮形状决定。倒角磨轮有一个子弹头式的研磨凹槽。

硅片边缘的轮廓首先是由真空吸头将硅片吸住后旋转而完成的。硅片缓慢旋转,磨轮则以高速旋转并以一定力量压在硅片边缘。通过倒角磨轮沿着硅片边缘形状移动这样的系统来保持磨轮与硅片边缘的接触。这使得参考面也能通过磨轮进行倒角。在硅片旋转几次之后,硅片边缘就能得到磨轮凹槽的形状了。

既然硅片的参考面也同时倒角,就有一些问题发生。一个问题是当参考面进行倒角时,可能会被磨去一点。因为参考面是在某些过程中用来进行硅片对齐,这个参考需要被保持。

倒角磨轮

倒角磨轮是用来进行边缘倒角的一个金属圆盘,直径约为2-4英寸左右。磨轮约0.25英寸厚,有一子弹头式凹槽在圆盘边缘。磨轮的研磨表面是一层镍-钻涂层。

倒角原因

倒角一个普遍的因素是,这样的边缘能使硅片生产和器件制造阶段都有更高的产率。

崩边和断裂

当进行硅片边缘倒角时,硅片边缘高应力点被清除。硅片边缘应力的下降使硅片有更高的机械强度。这有利于在处理硅片时对崩边有更强的抵抗力。

外延边缘皇冠顶

当在硅片上生长外延时,外延层会在有微粒突出和高应力区域生长的更快些。因为在未进行倒角之前,这两种情况存在于硅片边缘,外延层就会趋向于在边缘生长的更快。这就导致在硅片边缘有小的隆起。这个隆起称为外延边缘皇冠顶并且会在以后的器件制作过程引起一些问题。如果硅片的边缘已经倒角,就不会再有高应力点或微粒突起在边缘使外延层得以生长,这就有利于防止外延边缘皇冠顶的形成。

边缘光刻胶小珠子

光刻胶应用到硅片时,是应用在旋转的硅片上,在硅片上的涂抗蚀剂后,旋转速度会上升,这样使得在硅片上的抗蚀剂甩出,形成均匀一致的薄膜。问题是由于光刻胶表面的张力作用会在硅片尖利的边缘形成小珠。如果硅片没有进行倒角,小珠子就会粘在硅片表面;如果已经倒角了,小珠子就不会在硅片表面形成。

术语表

切片微损伤(切片痕迹):是由刀片的振动引起的。在切片过程中,由于刀片的小小振动产生了这样的损伤,在沿着切口的方向留下小的脊状痕迹。

切片损失:是在切片过程中,因刀片会切去的材料损失的总量。

张力:是用来描述一种材料在负载下的伸展能力。从算术定义来讲,就是与原始长度相比,在长度上的变化程度。

应力:是指材料单位面积承受的力量。

Swarf:切屑,是指在切片开槽时,削去的材料。可以认为是切片垃圾。

抗张强度:是指材料在未完全失效情况下,所能承受的最大压力。

yieldpoint:指材料在没有永久变形情况下,能承受的最大压力。

磨片、热处理和相关工艺

经切片、标识和倒角后,就应准备抛光了。在硅片能进行抛光前,切片损伤必须被清除,接下来,硅片需要腐蚀,以去除磨片造成的损伤。吸杂工艺能抵消金属杂质的影响。硅片边缘的抛光能去除留在硅片边缘的腐蚀坑。然后进行硅片清洗和热处理,再退火以使抵抗稳定。背封工艺能随意采用,通过沉积在重掺杂硅片的背面以防止掺杂剂通常是硼在后面的热处理过程中的逸出。经过上述步骤之后,硅片就能进行抛光了。

磨片

是使用研磨砂来清除硅片表面的材料和前一步骤留下的损伤。在磨片过程中,在双面行星运动中硅片两面会被同时研磨,一定量的材料将被从两面磨去。这个机械研磨过程磨去硅片的两面的材料。

目的

磨片的主要目的是将硅片的切片微损伤去除。切片微损伤是对单晶的损伤,来自于切片过程。这种损伤在硅片两面都有,因为硅片的两面都经过了切割。损伤的平均深度大约为25-30μm,但有些损伤可能是它的2-3倍深。

磨盘的组成

磨盘一般由铸铁制成,但也可能是塑料制的。不考虑金属的沾污,使用铸铁可以耐用而且其机械特性能适合磨片。铸铁的硬度使研磨颗粒不会嵌入到盘中,如果颗粒嵌入到磨盘中,就会刮伤硅片表面。这些刮伤在后面的工序中很难去除,铸铁的磨盘也不能太硬,如果磨盘太硬,它会压迫研磨颗粒进入硅片,使硅片增加额外的损伤。

磨盘表面和磨液供应

磨盘是带齿轮的,齿轮有利于磨液的均匀分配,防止磨盘被淹没,并保持硅片紧贴表面。齿轮还能使磨液在硅片表面流动并均匀分配。如果磨盘上没有齿轮,磨液可能会流到磨盘上,如果磨盘与硅片间有太多的磨液,磨盘会浮在硅片表面的液体上。如果磨盘浮的里表面太远,

就不能研磨表面,也就不能将硅片表面的损伤去除掉。如果在磨盘与硅片间的磨液太少,磨盘就会在硅片表面引起新的损伤。所以,齿轮控制磨盘与硅片表面间的磨液量,并且上磨盘的齿轮能将下磨盘锁住。这样防止在磨盘最终分开时,硅片粘在上磨盘上。

磨盘旋转计数器

上下磨盘按相反方向旋转,磨盘的旋转带动硅片两侧以同样的速度旋转。目的,首先,既然硅片的两侧都以相同速度进行磨片,那么两侧都有相同的材料去除率。第二,硅片两侧有相同的转速相反的方向使硅片能固定位置。所以没有大的压力向一个方向移动硅片或另一个方向。硅片几乎不会因边缘的压力造成断裂。

上磨盘还有几个功能,首先是它有一些洞使磨液能流入磨片机。磨液从上磨盘流入,然后流入到机内。另一个功能是上磨盘提供压力给硅片,上磨盘通过气压下降压下,在磨片的第一个循环中,压力比较小,使硅片上高起的点先被磨去,使磨液均匀分配在机内。然后,压力逐步上升到正常操作的压力。

硅片厚度

为了更精确地控制磨片厚度,磨片机上有装一个厚度测试系统。

一种能在磨片时测试硅片厚度的方法是通过使用一压电材料与硅片同时研磨。因为压电材料的磨去率与硅片的相同,电讯号的频率就会发生变化。当频率对应到设定的厚度时,机器就会停止,但,每次磨完以后,必须将压电带放回原处,这样才会反映出硅片的厚度。

硅片表面的去除

使用一种含研磨砂的悬浮液组成的磨液来研磨硅片表面。典型的研磨砂是由9μm大小的经煅烧的氧化铝颗粒组成。这种颗粒悬浮在水和添加剂的混合液中,添加剂一般为丙三醇(甘油)。混合液有利于保持研磨砂的悬浮并均匀散布。

悬浮液中的研磨砂压迫硅片表面并使其磨损,去除硅片表面的物质,这样能将表层的切片损伤清除掉。整个过程会磨去75-100μm的表层。在最终磨片结束时,硅片的平整度是最平整的,以后的步骤都会使其平整程度下降。

磨片之后,硅片表面残留有许多磨片过程中产生的硅的颗粒,这种颗粒尺寸很小,并会引起一些问题。如果要烘干硅片,颗粒会粘在硅片表面,而一旦这样粘住,就很难再去除掉。所以,硅片必须保持湿润,直至表面颗粒被清除。

应力释放腐蚀

硅片磨片之后,仍有一薄层损伤层,还需通过其它方法来清除磨片带来的损伤。通常通过化学腐蚀硅片表面的方法来清除这种损伤。腐蚀的方法有两种:碱腐蚀和酸腐蚀。

当硅片进行腐蚀时,需要有一清洁的表面。如果硅片表面有沾污,会潜在地充当了腐蚀

的面具。当进行酸腐蚀时,酸先与表面的颗粒接触,将其慢慢腐蚀去除,因此就象一张面具影响了酸与硅快速接触。这就会使该区域与硅片表面其它区域腐蚀程度不一致。所以,硅片在腐蚀前必须进行清洗。典型的清洗方法是将硅片放在Teflon的片盒中,浸入含H2SO4和双氧水的溶液中,这会清除硅片表面的有机物;然后将硅片浸到氢氟酸中,HF会清除表面任何的硅末;在硅片进行清洗后,就可以进行腐蚀了,而且会腐蚀得均匀一致。

碱腐蚀

硅片腐蚀的一种方法是使用碱性氢氧化物如氢氧化钾(KOH)。用这种方法,硅片浸在45%的KOH和55%纯水的溶液中大约2分钟,通常在高温(约100℃)KOH溶液中。然后,再将硅片浸入纯水以阻断KOH与硅片表面之间的继续反应。

KOH与硅片的基本反应如下:

Si+2H2O+2KOH→2H2+Si(OH)2(O)2+2K+

酸腐蚀

用于酸腐蚀的一般混合物是HNO3和HF。在任何情况下,酸腐蚀是一个强烈的过程,而不会在某个平面存在自限制过程。酸浴的局部腐蚀速率会因局部化学品的损耗而变化。因为硅片的周围都在竞争酸液,硅片中心有腐蚀剂不充足的趋向,这会使供给硅片中心的酸液损耗,反应稍微降低。另一方面,靠近硅片边缘处,没有如此多的硅来竞争酸液,因此有充足的酸液提供,这就使反应速率在硅片边缘处达到一较高速率。这种在腐蚀速率上的差异会引起硅片象“枕头”,换句话说,硅片中心厚度略厚于边缘。

酸腐蚀(HNO3和HF)的基础反应如下:

Si(s)+4HNO3(l)→SiO2(s)+4NO2(g)+2H2O(l)SiO2(s)+6HF(l)→H2SiF6(aq)+2H2O(l)

这个反应的一个产物是NO2,是一种气体,所以,必须采取预防措施控制它的释放。为了满足环境法律,NO2通常会用化学淋洗来消除它的释放。

两种腐蚀方法都有各自的优缺点,表3.1列出了碱腐蚀和酸腐蚀的优缺点。

吸杂

简介

吸杂是一个将杂质和一些会延伸的点缺陷从硅片的器件制作区域移走的过程。最重要功能的是移走金属杂质,如金、铜、镍、铁等等来自硅片正表面—器件制作区域。金属杂质会降低影响器件性能的少数载流子的寿命。如果陷入,金属原子还会形成缺陷中心,使器件性能等级下降。所以,吸杂在半导体工艺中是一个重要的过程。

吸杂可广义地分为两类:1、外吸杂;2、内吸杂。

外吸杂:

是通过从外界导入一有效方法来完成。可以有不同手段,如:

a.背损伤

b.背面薄膜淀积(主要为多晶硅)

c.背面重磷扩散

内吸杂:

是由在热处理过程中氧原子影响形成的位错环产生。氧原子需有最小浓度,才能产生吸杂。其浓度约为1×1018atoms?cm-3。通过CZ法拉制出的硅单晶至少有这个氧含量。然而,用FZ拉制的硅单晶一般小于此浓度,在这种情况下,就不能提供内吸杂。

步骤

氧来吸杂有三个步骤。第一步是将硅加热到1100℃,使得在接近硅片表面形成一氧的耗尽层,称为耗尽层,器件就建立在正表面的这一区域上。显然,整根晶棒无法进行内吸杂,只能对单片硅片。整个过程可看作几个步骤的整体或者可从供应商处购到已吸杂的硅片。

第一步的加热温度是很重要的。在这温度,氧能从表面逸出因为硅片和外部的氧浓度的不同。可以观测到,如果温度低于1000℃,氧就会形成团,称为成核现象,和外扩散一起。在这阶段避免成核是很重要的,因为在活跃的器件区域会引起位错。

第二步是将硅片冷却到约650℃。在这过程中,氧开始成核,耗尽层仍不受影响,因为氧含量没有足够高到成核的程度。

第三步中,硅片加热到1000℃左右,在此温度上,晶核开始生长并且最终形成淀积和推垛层错。它们为金属杂质提供了吸杂点。淀积物有化学名为SiOx,x值接近于2。所以也称为氧化淀积。

镜面边缘抛光

进行边缘抛光是为了清除腐蚀过程留下的边缘腐蚀坑。这个过程不一定必须做。但进行边缘抛光有利于防止碎片或在后面的过程中产生裂纹。这一步骤完成使硅片边缘更均衡一致。另一个好处是在后道生产工序—HF清洗硅片时防止胶状硅粒飞跑形成条纹。

镜面边缘抛光方法是一个化学/机械过程。边缘的抛光是通过真空

吸头吸住硅片以一定角度使硅片的一侧边缘几乎垂直与抛光盘贴住。然后,抛光盘旋转,硅片边缘也随着一个鼓旋转。这个鼓表面贴有一种树脂抛光衬垫。当硅片与抛光衬垫接触时,还会在上面添加抛光砂。吸头吸住硅片然后慢慢的开动使硅片的边缘都充分与抛光衬垫接触得到抛光。硅片一侧边缘被抛光后,将硅片翻转,然后对硅片的另一侧以同样方式进行抛光。两侧完成后,硅片必须彻底清洗以清除残留的抛光砂。

在边缘抛光时使用的抛光砂是由胶状硅粒悬浮在水中组成,有高的PH值的化学物。高的PH值能氧化硅,然后硅粒又形成的氧化物去除。

抵抗稳定

硅单晶棒,作为一个结果,硅片从晶棒上切割下来,还有一重要参数—氧含量。CZ法生长的单晶氧含量接近1018cm-3等级。氧主要来自于硅融化时石英坩埚缓慢而稳定的分解。一部分的氧从熔融的SiO中分解逸出,但有一定量的氧与生长的晶体结合。由于熔融物和晶棒的旋转以及随着时间的推移,熔融物量的减少,氧含量沿着晶棒的长度方向会显示出一特性。

氧施主

单晶棒会经过一定的热条件,一些氧原子会作为施主或者说n型掺杂剂。这种掺杂剂的增加会扰乱既定的电阻率。在某些情况下,甚至掺杂剂的性质会发生改变,从而使p型晶棒转变为n型晶棒。

如果晶棒或硅片在300℃-500℃温度范围内,硅中的氧原子会扮演施主的角色,450℃是最起作用的温度。整根晶棒的剖面浓度分析,从顶部至底部,施主的浓度或氧含量呈下降趋势。

磷是n型掺杂剂,并且氧施主提高了掺杂浓度。应注意,籽晶末端的晶体包含了最高的氧含量,因此,在这端的n型掺杂剂浓度也更高即在大部分氧施主不再活动后,磷的浓度。

热处理前清洗

热处理前清洗可以以几种不同方式进行。一种典型的方法是使用SC-2洗液来去除金属沾污,然后将硅片浸入已非常稀释的高纯HF溶液中去掉氧化层。另一清洗方法是先用硫酸(H2SO4)和双氧水(H2O2)的混合溶液清洗。这种溶液以剧烈溶剂着称,能去除硅片表面大部分的有机污物和某些金属离子。同时,该溶剂能氧化硅片表面,一些金属离子(如铁和锌)会在氧化层生长时被氧化。然后硅片浸入到已稀释的高纯酸液中,去除氧化层。金属沾污也就随着氧化层的清除而被去除掉了。硅片进行纯水漂洗和甩干时,表面本质上已无金属离子存在并能放入炉子进行热处理了。

氧施主

经观测,硅进行任何的热处理,温度在500℃-900℃范围内,新的氧施主开始出现。氧施主的这个效应在450℃左右时,不会发生。根据一些资料,进行抵抗稳定时,要防止这类施主的产生,可以通过快速热处理过程,硅在650℃维持几秒钟而达到。

多晶硅生产工艺流程.doc

多晶硅生产工艺流程(简介) -------------------------来自于网络收集多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合 成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si (还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显著、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺

法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑ (2)为了满足高纯度的需要,必须进一步提纯。把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。 其化学反应Si+HCl→SiHCl3+H2↑ 反应温度为300度,该反应是放热的。同时形成气态混合物 (Н2,НС1,SiНС13,SiC14,Si)。 (3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiНС13,SiC14,而气态Н2,НС1返回到反应中或排放到大气中。然后分解冷凝物SiНС13,SiC14,净化三氯氢硅(多级精馏)。

多晶硅的三大生产工艺之比较

多晶硅的三大生产工艺之比较 从西门子法到改良西门子法的演进是一个从开环到闭环的过程。 1955年,德国西门子开发出以氢气(H2)还原高纯度三氯氢硅(SiHCl3),在加热到1100℃左右的硅芯(也称“硅棒”)上沉积多晶硅的生产工艺;1957年,这种多晶硅生产工艺开始应用于工业化生产,被外界称为“西门子法”。 由于西门子法生产多晶硅存在转化率低,副产品排放污染严重(例如四氯化硅SiCl4)的主要问题,升级版的改良西门子法被有针对性地推出。改良西门子法即在西门子法的基础上增加了尾气回收和四氯化硅氢化工艺,实现了生产过程的闭路循环,既可以避免剧毒副产品直接排放污染环境,又实现了原料的循环利用、大大降低了生产成本(针对单次转化率低)。因此,改良西门子法又被称为“闭环西门子法”。 改良西门子法一直是多晶硅生产最主要的工艺方法,目前全世界有超过85%的多晶硅是采用改良西门子法生产的。过去很长一段时间改良西门子法主要用来生产半导体行业电子级多晶硅(纯度在99.9999999%~99.999999999%,即9N~11N的多晶硅);光伏市场兴起之后,太阳能级多晶硅(对纯度的要求低于电子级)的产量迅速上升并大大超过了电子级多晶硅,改良西门法也成为太阳能级多晶硅最主要的生产方法。 2.改良西门子法生产多晶硅的工艺流程 (改良西门子法工艺流程示意图) 改良西门子法是一种化学方法,首先利用冶金硅(纯度要求在99.5%以上)与氯化氢(HCl)合成产生便于提纯的三氯氢硅气体(SiHCl3,下文简称TCS),然后将TCS精馏提纯,最后通过还原反应和化学气相沉积(CVD)将高纯度的TCS转化为高纯度的多晶硅。 在TCS还原为多晶硅的过程中,会有大量的剧毒副产品四氯化硅(SiCl4,下文简称STC)生成。改良西门子法通过尾气回收系统将还原反应的尾气回收、分离后,把回收的STC送到氢化反应环节将其转化为TCS,并与尾气中分离出来的TCS一起送入精馏提纯系统循环利用,尾气中分离出来的氢气被送回还原炉,氯化氢被送回TCS合成装置,均实现了闭路循环利用。这是改良西门子法和传统西门子法最大的区别。

改良西门子法生产多晶硅工艺流程

改良西门子法生产多晶硅工艺流程 1. 氢气制备与净化工序 在电解槽内经电解脱盐水制得氢气。电解制得的氢气经过冷却、分离液体后,进入除氧器,在催化剂的作用下,氢气中的微量氧气与氢气反应生成水而被除去。除氧后的氢气通过一组吸附干燥器而被干燥。净化干燥后的氢气送入氢气贮罐,然后送往氯化氢合成、三氯氢硅氢还原、四氯化硅氢化工序。 电解制得的氧气经冷却、分离液体后,送入氧气贮罐。出氧气贮罐的氧气送去装瓶。气液分离器排放废吸附剂,氢气脱氧器有废脱氧催化剂排放,干燥器有废吸附剂排放,均由供货商回收再利用。 2. 氯化氢合成工序 从氢气制备与净化工序来的氢气和从合成气干法分离工序返回的循环氢气分别进入本工序氢气缓冲罐并在罐内混合。出氢气缓冲罐的氢气引入氯化氢合成炉底部的燃烧枪。从液氯汽化工序来的氯气经氯气缓冲罐,也引入氯化氢合成炉的底部的燃烧枪。氢气与氯气的混合气体在燃烧枪出口被点燃,经燃烧反应生成氯化氢气体。出合成炉的氯化氢气体流经空气冷却器、水冷却器、深冷却器、雾沫分离器后,被送往三氯氢硅合成工序。 为保证安全,本装置设置有一套主要由两台氯化氢降膜吸收器和两套盐酸循环槽、盐酸循环泵组成的氯化氢气体吸收系统,可用水吸收因装置负荷调整或紧急泄放而排出的氯化氢气体。该系统保持连

续运转,可随时接收并吸收装置排出的氯化氢气体。 为保证安全,本工序设置一套主要由废气处理塔、碱液循环槽、碱液循环泵和碱液循环冷却器组成的含氯废气处理系统。必要时,氯气缓冲罐及管道内的氯气可以送入废气处理塔内,用氢氧化钠水溶液洗涤除去。该废气处理系统保持连续运转,以保证可以随时接收并处理含氯气体。 3. 三氯氢硅合成工序 原料硅粉经吊运,通过硅粉下料斗而被卸入硅粉接收料斗。硅粉从接收料斗放入下方的中间料斗,经用热氯化氢气置换料斗内的气体并升压至与下方料斗压力平衡后,硅粉被放入下方的硅粉供应料斗。供应料斗内的硅粉用安装于料斗底部的星型供料机送入三氯氢硅合成炉进料管。 从氯化氢合成工序来的氯化氢气,与从循环氯化氢缓冲罐送来的循环氯化氢气混合后,引入三氯氢硅合成炉进料管,将从硅粉供应料斗供入管内的硅粉挟带并输送,从底部进入三氯氢硅合成炉。 在三氯氢硅合成炉内,硅粉与氯化氢气体形成沸腾床并发生反应,生成三氯氢硅,同时生成四氯化硅、二氯二氢硅、金属氯化物、聚氯硅烷、氢气等产物,此混合气体被称作三氯氢硅合成气。反应大量放热。合成炉外壁设置有水夹套,通过夹套内水带走热量维持炉壁的温度。 出合成炉顶部挟带有硅粉的合成气,经三级旋风除尘器组成的干法除尘系统除去部分硅粉后,送入湿法除尘系统,被四氯化硅液体洗

光伏产业链流程及工艺设备

e光伏产业链流程及工艺设备

太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相

同,但工艺加工精度低于集成电路芯片的制造要求 晶体硅太阳能电池的制造工艺流程: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。 太阳能电池组件生产工艺 1、电池检测—— 2、正面焊接—检验— 3、背面串接—检验— 4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)—— 5、层压—— 6、去毛边(去边、清洗)—— 7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)—— 8、焊接接线盒—— 9、高压测试——10、组件测试—外观检验—11、包装入库

多晶硅生产工艺流程电子版本

多晶硅生产工艺流程

多晶硅生产工艺流程(简介) -------------------------来自于网络收集多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合 成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅 棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合 成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2--- SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而 来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺 技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、 用途、产品检测方法、过程安全等方面也存在差异,各有技术特点 和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺 有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流 的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技 术垄断封锁的局面不会改变。 西门子改良法生产工艺如下:

这种方法的优点是节能降耗显著、成本低、质量好、采用综合 利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子 工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾 床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏 塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、 清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站, 变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑ (2)为了满足高纯度的需要,必须进一步提纯。把工业硅粉碎并用无水氯化氢(HCl)与之反应在一个流化床反应器中,生成拟溶解的三氯氢硅(SiHCl3)。 其化学反应Si+HCl→SiHCl3+H2↑  反应温度为300度,该反应是放热的。同时形成气态混合物(Н2,НС1,SiНС13,SiC14,Si) 。 (3)第二步骤中产生的气态混合物还需要进一步提纯,需要分解:过滤硅粉,冷凝SiНС13,SiC14,而气态Н2,НС1返回到反应中

(完整版)多晶硅生产工艺学

多晶硅生产工艺学 绪论 一、硅材料的发展概况半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30 年。美国是从 1949?1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79 年来说,美国产量1620?1670 吨日本420

?440 吨。西德700?800 吨。预计到85 年美国的产量将达到2700 吨、日本1040 吨、西德瓦克化学电子有限公司的产量将达到3000 吨。 我国多晶硅生产比较分散,真正生产由58 年有色金属研究院开始研究,65 年投入生产。从产量来说是由少到多,到七七年产量仅达70?80吨,预计到85年达到300吨左右。 二、硅的应用半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径:为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS 集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施:在生产过程中,主要矛盾是如何稳定产品的质 量问题,搞好工艺卫生是一项最重要的操作技术,在生产实践中要树立

多晶铸锭生产工艺文件

多晶硅锭的生产流程 1. 生产工艺流程 (1) 制造工艺流程图 (2) 工艺流程简述 坩埚喷涂:其目的是为了在铸锭的过程中,防止坩埚的杂质混入硅料。喷涂 的Si 3N 4粉起到一个隔离杂质和防止粘埚的作用。 坩埚烧结:此过程是为了使喷涂在坩埚内表面的Si 3N 4粉牢固附着在坩埚上。 多晶炉铸锭:将盛好硅料的坩埚放入多晶炉中,经高温熔化定向凝固铸锭。 (3)反应副产物 生产过程中产生含Si 3N 4粉尘的空气,过滤除尘后排放大气;铸锭过程中排放的少量氩气,直接排放入大气;铸锭后产生的石英坩埚碎片作为废物处理。

多晶铸锭操作流程 1 目的 为了保证正确操作多晶硅铸锭炉,使铸锭过程规范、有效地进行,并确保铸锭成功。 2 适用范围 多晶铸锭车间 3 规范性引用文件 无 4 职责 4.1 生产部负责铸锭的整个过程。 4.2 工厂工程部负责整个外围设施条件,以保证多晶炉正常运行的环境条件 要求。 5 术语和定义 5.1 坩埚喷涂: 在坩埚的内表面均匀喷涂Si 3N 4粉溶液,以防止在铸锭时坩埚和硅锭烧结在一起。其目的是为了在铸锭过程中,防止坩埚内的杂质扩散入硅锭。喷涂Si 3N 4粉起到了一个隔离杂质和防止粘埚的作用。 5.2 涂层烧结: 此过程是为了使喷涂在坩埚内表面的Si 3N 4涂层牢固地附着在坩埚上。 5.3 多晶炉铸锭: 将硅料放入坩埚,并一起放入多晶炉中,硅料经高温熔化、定向凝固成为硅锭。 5.4 定向凝固: 在梯度热场中,液体朝一个方向凝固,固液界面近似于平面的凝固过程。

6 多晶炉工艺过程 6.1 准备石英坩埚 检查石英坩埚表面,不能有裂纹,内部不能有超过2mm 的划痕、凹坑、突起。 6.1.1 用压缩空气和去离子水清洁坩埚的内表面。 6.1.2 坩埚喷涂: 取250g 的Si 3N 4粉末,用滤网筛滤。然后取1000ml 的去离子水,将Si 3N 4粉末溶解到去离子水中,用气动搅拌泵搅拌均匀。喷涂时喷枪要距离坩埚内壁30cm 左右,只喷涂坩埚底部和侧壁3/4的地方,要均匀不要使液体凝聚。喷涂过程中要检测坩埚内表面的温度,应为80±5℃,不断用去油的压缩空气吹去掉落的颗粒。 6.1.3 将坩埚放在烧结炉中进行烘烤。 设定程序,用10分钟升到40℃,然后用6小时升到1000℃,在1070℃保温2∽3小时,然后等坩埚冷却后待用。 6.2 填料 将坩埚放在石墨板上,并一起放在磅秤上称量(磅秤必须归零)。要保证坩埚处于石墨板的中央,距石墨板周围4.3cm 左右,误差不得超过2mm 。向坩埚中填料240kg 左右。(特别注意:在填料的过程中尽量少走动,以免扬起灰尘)。 6.3 外围设施基本条件的准备 6.3.1 启动设备前,检查水、电、气。冷却水、气、电源检查没有问题后, 方可进行。 6.3.2 密切监视室内的温度和湿度,冷却水进水温度25±1℃,室温下相对 湿度不超过65%。

多晶硅生产工艺流程定稿版

多晶硅生产工艺流程 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

多晶硅生产工艺流程(简介) -------------------------来自于网络收集 多晶硅生产工艺流程,多晶硅最主要的工艺包括,三氯氢硅合成、四氯化硅的热氢化(有的采用氯氢化),精馏,还原,尾气回收,还有一些小的主项,制氢、氯化氢合成、废气废液的处理、硅棒的整理等等。 主要反应包括:Si+HCl---SiHCl3+H2(三氯氢硅合成);SiCl4+H2---SiHCl3+HCl(热氢化);SiHCl3+H2---SiCl4+HCl+Si(还原)多晶硅是由硅纯度较低的冶金级硅提炼而来,由于各多晶硅生产工厂所用主辅原料不尽相同,因此生产工艺技术不同;进而对应的多晶硅产品技术经济指标、产品质量指标、用途、产品检测方法、过程安全等方面也存在差异,各有技术特点和技术秘密,总的来说,目前国际上多晶硅生产主要的传统工艺有:改良西门子法、硅烷法和流化床法。改良西门子法是目前主流的生产方法,采用此方法生产的多晶硅约占多晶硅全球总产量的85%。但这种提炼技术的核心工艺仅仅掌握在美、德、日等7家主要硅料厂商手中。这些公司的产品占全球多晶硅总产量的90%,它们形成的企业联盟实行技术封锁,严禁技术转让。短期内产业化技术垄断封锁的局面不会改变。 西门子改良法生产工艺如下: 这种方法的优点是节能降耗显着、成本低、质量好、采用综合利用技术,对环境不产生污染,具有明显的竞争优势。改良西门子工艺法生产多晶硅所用设备主要有:氯化氢合成炉,三氯氢硅沸腾床加压合成炉,三氯氢硅水解凝胶处理系统,三氯氢硅粗馏、精馏塔提纯系统,硅芯炉,节电还原炉,磷检炉,硅棒切断机,腐蚀、清洗、干燥、包装系统装置,还原尾气干法回收装置;其他包括分析、检测仪器,控制仪表,热能转换站,压缩空气站,循环水站,变配电站,净化厂房等。 (1)石英砂在电弧炉中冶炼提纯到98%并生成工业硅, 其化学反应SiO2+C→Si+CO2↑

多晶硅生产工艺学

多晶硅生产工艺学

绪论 一、硅材料的发展概况 半导体材料是电子技术的基础,早在十九世纪末,人们就发现了半导体材料,而真正实用还是从二十世纪四十年代开始的,五十年代以后锗为主,由于锗晶体管大量生产、应用,促进了半导体工业的出现,到了六十年代,硅成为主要应用的半导体材料,到七十年代随着激光、发光、微波、红外技术的发展,一些化合物半导体和混晶半导体材料:如砷化镓、硫化镉、碳化硅、镓铝砷的应用有所发展。一些非晶态半导休和有机半导休材料(如萘、蒽、以及金属衍生物等)在一定范围内也有其半导休特性,也开始得到了应用。 半导休材料硅的生产历史是比较年青的,约30年。美国是从1949~1951年从事半导体硅的制取研究和生产的。几年后其产量就翻了几翻,日本、西德、捷克斯洛伐克,丹麦等国家的生产量也相当可观的。 从多晶硅产量来看,就79年来说,美国产量1620~1670吨。日本420~440吨。西德700~800吨。预计到85年美国的产量将达到2700吨、日本1040吨、西德瓦克化学电子有限公司的产量将达到3000吨。 我国多晶硅生产比较分散,真正生产由58年有色金属研究院开始研究,65年投入生产。从产量来说是由少到多,到七七年产

量仅达70~80吨,预计到85年达到300吨左右。 二、硅的应用 半导体材料之所以被广泛利用的原因是:耐高压、硅器件体积小,效率高,寿命长,及可靠性好等优点,为此硅材料越来越多地应用在半导体器件上。硅的用途: 1、作电子整流器和可控硅整流器,用于电气铁道机床,电解食盐,有色金属电解、各种机床的控制部分、汽车等整流设备上,用以代替直流发电机组,水银整流器等设备。 2、硅二极管,用于电气测定仪器,电子计算机装置,微波通讯装置等。 3、晶体管及集成电路,用于各种无线电装置,自动电话交换台,自动控制系统,电视摄相机的接收机,计测仪器髟来代替真空管,在各种无线电设备作为放大器和振荡器。 4、太阳能电池,以单晶硅做成的太阳能电池,可以直接将太阳能转变为电能。 三、提高多晶硅质量的措施和途径: 为了满足器件的要求,硅材料的质量好坏,直接关系到晶体管的合格率与电学性能,随着大规模集成电路和MOS集成电路的发展而获得电路的高可靠性,适应性。因此对半导体材料硅的要求越来越高。 1、提高多晶硅产品质量的措施: 在生产过程中,主要矛盾是如何稳定产品的质量问题,搞好

单晶多晶硅片生产工艺流程详解word版本

在【技术应用】单晶、多晶硅片生产工艺流程详解(上)中,笔者介绍了单晶和多晶硅片工艺流程的前半部分,概述了一些工艺流程和概念,以及术语的相关知识。而本文则是从切片工艺开始了解,到磨片和吸杂,看硅片如何蜕变。 切片 切片综述 当单晶硅棒送至硅片生产区域时,晶棒已经过了头尾切除、滚磨、参考面磨制的过程,直接粘上碳板,再与切块粘接就能进行切片加工了。 为了能切割下单个的硅片,晶棒必须以某种方式进行切割。切片过程有一些要求:能按晶体的一特定的方向进行切割;切割面尽可能平整;引入硅片的损伤尽可能的少;材料的损失尽量少。 碳板 当硅片从晶棒上切割下来时,需要有某样东西能防止硅片松散地掉落下来。有代表性的 是用碳板与晶棒通过环氧粘合在一起从而使硅片从晶棒上切割下来后,仍粘在碳板上。 碳板不是粘接板的唯一选择,任何种类的粘接板和环氧结合剂都必须有以下几个特性:能支持硅片,防止其在切片过程中掉落并能容易地从粘板和环氧上剥离;还能保护硅片不受 污染。其它粘板材料还有陶瓷和环氧。 石墨 是一种用来支撑硅片的坚硬材料,它被做成与晶棒粘接部位一致的形状。大多数情况下, 碳板应严格地沿着晶棒的参考面粘接,这样碳板就能加工成矩形长条。当然,碳板也可以和 晶棒的其它部位粘接,但同样应与该部位形状一致。碳板的形状很重要,因为它要求能在碳板和晶棒间使用尽可能少的环氧和尽量短的距离。这个距离要求尽量短,因为环氧是一种相 当软的材料而碳板和晶棒是很硬的材料。当刀片从硬的材料切到软的材料再到硬的材料,可能会引起硅片碎裂。 这里有一些选择环氧类型参考:强度、移动性和污染程度。粘接碳板与晶棒的环氧应有足够强的粘度,才能支持硅片直到整根晶棒切割完成,因此,它必须能很容易地从硅片上移走,只有最小量的污染。 刀片 当从晶棒上切割下硅片时,期望切面平整、损伤小、沿特定方向切割并且损失的材料尽量小。有一个速度快、安全可靠、经济的切割方法是很值得的。 在半导体企业,两种通常被应用的方法是环型切割和线切割。环型切割通常是指内圆切 割,是将晶棒切割为硅片的最广泛采用的方法。 内圆切割

多晶硅制备及工艺

多晶硅制备及工艺 蒋超 材料与化工学院 材料1103班 【摘要】工业硅是制造多晶硅的原料,它由石英砂(二氧化硅)在电弧炉中用碳还原而 成。化学提纯制备高纯硅的方法有很多,其中SiHCl3 氢还原法具有产量大、质量高、成本低等优点,是目前国内外制取高纯硅的主要方法。硅烷法可有效地除去杂质硼和其他金属杂质,无腐蚀性、不需要还原剂、分解温度低和收率高,所以是个有前途的方法。下面介绍SiHCl3 氢还原法(改良西门子法)和硅烷法。 【关键词】改良西门子法硅烷法高纯硅 改良西门子法 1955年,西门子公司成功开发了利用氢气还原三氯硅烷(SiHCl3)在硅芯发热体上沉积硅的工艺技术,并于1957年开始了工业规模的生产,这就是通常所说的西门子法。 在西门子法工艺的基础上,通过增加还原尾气干法回收系统、SiCl4氢化工艺,实现了闭路循环,于是形成了改良西门子法——闭环式SiHCl3氢还原法。 改良西门子法的生产流程是利用氯气和氢气合成HCl(或外购HCl),HCl和冶金硅粉在一定温度下合成SiHCl3,分离精馏提纯后的SiHCl3进入氢还原炉被氢气还原,通过化学气相沉积反应生产高纯多晶硅。具体生产工艺流程见图1。 改良西门子法包括五个主要环节:SiHCl3合成、SiHCl3精馏提纯、SiHCl3的氢还原、尾气的回收和SiCl4的氢化分离。该方法通过采用大型还原炉,降低了单位产品的能耗。通过采用SiCl4氢化和尾气干法回收工艺,明显降低了原辅材料的消耗。 图1:改良西门子法生产工艺流程图

改良西门子法制备的多晶硅纯度高,安全性好,沉积速率为8~10μm/min,一次通过的转换效率为5%~20%,相比硅烷法、流化床法,其沉积速率与转换效率是最高的。沉积温度为1100℃,仅次于SiCl4(1200℃),所以电耗也较高,为120 kWh/kg(还原电耗)。改良西门子法生产多晶硅属于高能耗的产业,其中电力成本约占总成本的70%左右。SiHCl3还原时一般不生产硅粉,有利于连续操作。该法制备的多晶硅还具有价格比较低、可同时满足直拉和区熔要求的优点。因此是目前生产多晶硅最为成熟、投资风险最小、最容易扩建的工艺,国内外现有的多晶硅厂大多采用此法生产SOG硅与EG硅,所生产的多晶硅占当今世界总产量的70~80%。 硅烷法 1956年,英国标准电讯实验所成功研发出了硅烷(SiH4)热分解制备多晶硅的方法,即通常所说的硅烷法。1959年,日本的石冢研究所也同样成功地开发出了该方法。后来,美国联合碳化合物公司采用歧化法制备SiH4,并综合上述工艺且加以改进,便诞生了生产多晶硅的新硅烷法。 硅烷法以氟硅酸、钠、铝、氢气为主要原辅材料,通过SiCl4氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取SiH4,然后将SiH4气提纯后通过SiH4热分解生产纯度较高的棒状多晶硅。硅烷法与改良西门子法接近,只是中间产品不同:改良西门子法的中间产品是SiHCl3;而硅烷法的中间产品是SiH4. 图2:硅烷法生产工艺流程图 硅烷法存在成本高、硅烷易爆炸、安全性低的缺点;另外整个过程的总转换效率为0.3,转换效率低;整个过程要反复加热和冷却,耗能高;SiH4分解时容易在气相成核,所以在反应室内生成硅的粉尘,损失达10%~20%,使硅烷法沉积速率(3~8μm/min)仅为西门子法

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

多晶硅铸锭的晶体生长过程

多晶硅铸锭的晶体生长过程 在真空熔炼过后,还要经过一个降温稳定,就进入定向凝固阶段。这个过程既是多晶硅的晶体生长过程,也能够对回收料和冶金法多晶硅料中含有的杂质进行进一步的提纯。 (一)定向凝固与分凝现象 硅液中的杂质在硅液从底部开始凝固的时候,杂质趋向于向液体中运动,而不会停留在固体中。这个现象叫做分凝现象。 在固液界面稳定的时候,杂质在固体中的数量与在液体中的数量的比值,叫做分凝系数。分凝系数小于1的杂质,在进行定向凝固的时候,都会趋向于向顶部富集。富集的数量和程度,取决于分凝系数的多少。一般来说,金属杂质的分凝系数都在10-3以下(铝大约是0.08),所以,定向凝固方式除杂,对于金属杂质比较有效;而硼和磷的分凝系数分别为0.8和0.36,因此,硼和磷的分凝现象就不是太明显。 在定向凝固提纯的同时,考虑硅的长晶工艺,使得定向凝固后的硅能够成为多晶硅锭而直接进行切片,这就是将提纯与铸锭统一在一个工艺流程中完成了。这也是普罗的提纯铸锭炉的重要提纯手段。由于含有杂质的硅料和高纯料的结晶和熔液的性质都不太一样,因此,提纯铸锭炉所采用的热场与纯粹铸锭炉的热场是有区别的。 普罗新能源公司目前采用自己研制的提纯铸锭一体化的专利设计,比较成功地解决了这个问题,使得真空熔炼与铸锭是在一次工艺里完成的,既较好地解决了提纯的问题,也圆满地完成了铸锭的要求。 (二)晶体生长过程

定向凝固分为以下四个阶段,包括:晶胚形成、多晶生长、顶部收顶、退火冷却。 晶胚形成 在熔炼过后,要把硅溶液的温度降低到1440℃左右,并保持一段时间,然后,使坩埚底部开始冷却,冷却到熔点以下6-10℃左右,即1404-1408℃左右。 RDS4.0型的炉体降低底部温度的方法是降低底部功率,和逐渐打开底部热开关的方式。与常规铸锭炉的提升保温体和加热体方式相比,由于不存在四周先开始冷却然后才逐步到中央的过程,因此,底部温度要均匀得多。 铸锭时,底部红外测温的数据不完全是硅液底部的温度,因为,该测点与坩埚底部的硅液还隔了至少一层坩埚,因此,红外温度仅能参考,还是要根据每台炉子各自的经验数据。这时,底部会形成熔点以下的过冷液体,由于坩埚底部的微细结构的不均匀,在一些质点上会形成晶核,即这些质点会首先凝固,形成结晶。这些质点可能是坩埚上突出的不均匀点,可能是坩埚的凹陷,由于位置比其它位置低,所以在降温的时候,温度也会较低。 晶核形成后,由于太阳能电池需要的是径向尺寸较大的柱状晶,因此,最好不要让晶核一旦形成就立刻向上生长,这样会导致晶粒过细;而是首先要让晶核形成后,先在坩埚底部横向生长,等长到一定的尺寸后,再向上生长。这样,要求坩埚底部的温度在下降到熔点稍低后,就保持平稳,不再下降。这样,坩埚底部晶核形成后,由于向上生长时,温度太高,无法生长,因此,只能横向生长。 开始形成晶核时,由于坩埚底部的不均匀,晶核的形成也不均匀,有的地方密,有的地方稀疏。在这些晶核横向生长时,长到一定的程度,就会相遇,相遇后由于有生长的动力,在遇到其它晶片时,则遇到了阻力,当晶片遇到的阻力过大时,就会停止生长。有的时候,这种阻力可能会使与坩埚底部结合不牢固的晶片脱落,这样,比较牢固的就会在脱落掉的晶片留下的空隙继续生长,直到整个底部都布满晶片后,相互挤压,所有的晶片就只能开始向上生长。这时,各个开始向上长的片状晶体,就称之为晶胚。这就是晶胚形成的过程。

多晶硅的用途与生产工艺简介

多晶硅产品 的用途与生产工艺简介 黎展荣编写 2008-03-15 多晶硅产品的用途与生产工艺简介 讲课提纲: 一、多晶硅产品的用途 二、国内外多晶硅生产情况与市场分析 三、多晶硅生产方法 四、多晶硅生产的主要特点 五、多晶硅生产的主要工艺过程 讲课想要达到的目的: 通过介绍,希望达到以下几点目的: 1,了解半导体多晶硅有关基本概念与有关名词,为今后进一步学习、交流与提高打下基础; 2,了解多晶硅的主要用途与国内外多晶硅的生产和市场情况,热爱多晶硅事业与行业; 3,了解多晶硅生产方法和多晶硅生产的主要特点,加深对多晶硅生产工艺流程的初步认识; 4,了解公司3000吨/年多晶硅项目的主要工艺过程、工厂的概况、规模、车间工序的相互关联,有利于今后工作的开展。 一、多晶硅产品的用途 在讲多晶硅的用途前,我们先讲一讲半导体多晶硅的有关概念和有关名词。 1,什么是多晶硅? 我们所说的多晶硅是半导体级多晶硅,或太阳能级多晶硅,它主要是用工业硅或称冶金硅(纯度98-99%)经氯化合成生产硅氯化物,将硅氯化物精制提纯后得到纯三氯氢硅,再将三氯氢硅用氢进行还原生成有金属光泽的、银灰色的、具有半导体特性产品,称为半导体级多晶硅。 2,什么是半导体? 所谓半导体是界于导体与绝缘体性质之间的一类物质,导体、半导体与绝缘体的大概分别是以电阻率来划分的,见表1。 3,纯度表示法 半导体的纯度表示与一般产品的纯度表示是不一样的,一般产品的纯度是以主体物质的含量多少来表示,半导体的纯度是以杂质含量与主体物质含量之比来表示的。见表2。 表2 纯度表示法

外购的工业硅纯度是百分比,1个九,“1N”,98%,两个九,“2N”,99%,是指扣除测定的杂质元素重量后,其余作为硅的含量(纯度)。如工业硅中Fe≤0.4%,AL≤0.3%,Ca≤0.3%,共≤1%, 则工业硅的纯度是:(100-1)X100%=99% 。 2),半导体纯度 工业硅中的B含量是0.002%(W),则工业硅纯度对硼来说被视为99.998%,即4N(对B来说)。 半导体硅中的B含量,如P型电阻率是3000Ω.Cm时,查曲线图得B的原子数为4.3X1012原子/Cm3,则半导体的纯度是:4.3X1012 /4.99X1022=0.86X10-10=8.6X10-11(~11N,0.086PPba),或(4.3X1012 X10.81) /(4.99X1022X28)=0.33X10-10=0.033PPbw=3.3X10-11(~11N)。 对B来说,从工业硅的4N提高到11N,纯度提高7个数量级(,千万倍)即B杂质含量要降低6个数量级(1000000,百万倍),因此生产半导体级多晶硅是比较困难的。 3),集成电路的元件数 集成电路的元件数的比较,列于表3。集成电路的集成度越高,则对硅材料纯度的要求越高。 表3 集成电路的元件数比较 据报导:日本在6.1X5.8 mm的硅芯片上制出的VLSI有15万6千多个元件 4),硅片(单晶硅)发展迅速 硅片(单晶硅)发展迅速,见表4。 大规模生产中多晶硅直径一般公认为是120-150 mm比较合适,也研发过200-250 mm。 5),多晶硅、单晶硅、硅片与硅外延片 多晶硅:内部硅原子的排列是不规则的杂乱无章的。 单晶硅:内部硅原子的排列是有规则的(生产用原料是多晶硅)。 硅片:单晶硅经滚磨、定向后切成硅片,分磨片与抛光片。 硅外延片:抛光片经清洗处理后用CVD方法在其上再生长一层具有需求电阻率的单晶硅层,目前

多晶硅硅片生产流程

多晶硅硅片生产流程 (1)洗料 为得到纯净的多晶硅原料,须将多晶硅原料清洗,去除杂质和油污。将多晶硅料放入氢氟酸和硝酸中浸泡,然后用高纯水多次清洗,清洗干净后进入下一道工序。 b、烘料 将清洗干净的多晶硅原料放入烘箱中烘干。 c、装袋 烘干后的多晶硅原料按型号、电阻率分别包装。 d 、配料 根据生产需要将不同电阻率的多晶硅料加入母合金配制成符合要求的原料。(2)多晶铸锭阶段 a、准备阶段 经减压、放气后打开炉盖,清洁炉壁及石墨件,将清洗好的石英坩埚装入炉内。 b、投料 将配制好的多晶硅料500 公斤装入石英坩埚中,合上炉盖。检查水和泵油情况,正常后进入下一工序。 c、抽真空 密封炉盖后启动真空泵,将炉体内抽成真空,然后充入氩气。 d、化料 将坩埚加热到1420℃以上将多晶料融化。 e、定向凝固 多晶料全部融化后开始凝固多晶,开始时多晶每分钟生长0.8 mm~1.0 mm,长晶速度由工作台下移速度及冷却水流量控制,长晶速度近于常速,硅锭长度受设备及坩埚高度限制,当硅锭达到工艺要求时,凝固结束。停机使多晶炉降,约四个小时后将多晶锭取出。 f、检验

检验多晶锭的电阻率、寿命及氧炭含量,合格的进入下一道工序,不合格的作标记切断,部分可以回收重新铸锭。 (3)切片 a.多晶硅锭 将铸锭生产工序检测的硅锭清洗干净 b.切方 将硅锭固定在切方机上,要完全水平。固定好后切成方棒(6 英寸125mm×125m m;8 英寸156mm×156mm)。 c.抛光 将切好的方棒在抛光机上抛光。 e.清洗粘胶 将切方抛光好的方棒用超声波清洗机清洗干净后,粘在工件板的玻璃板上。 f.切片 将粘好硅棒的工件板按在切片机上(4 根),将硅片切成180微米厚的硅片。 g.脱胶 将切割好的粘在玻璃板上的硅片用70 度的热水将硅片与玻璃板分离 h.清洗 将脱过胶的硅片插在硅片盒中在超声波清洗机中清洗。清洗时先在常清水中清洗,然后在放有清洗剂的70度热水中清洗,最后在常清水中清洗。 i.甩干 将经过清洗的硅片连盒插在甩干机的甩干工位上甩干。 j.检片 将甩干好的硅片检测硅片TV 和TTV 及表面洁净度,并将硅片按等级分类。k.包装 该工艺方案具有简单,易操作,产品成品率高等特点。

多晶硅清洗

多晶硅项目设备清洗建议书 多晶硅清洗详细信息如下:多晶硅生产对环境及设备的清洁要求十分高。生产工艺过程比较复杂。尤其是塔器设备,对产品的质量影响极为重要。为了保证一次性开车投产顺利,保证产品质量,在设备的安装过程中,对设备及管线等重要设备的清洗工作十分严谨。在清洗过程中,使每个环节质量都达到标准。避免开车质量事故的发生。最大限度地降低调试费用,必须做好工艺设备和工艺管道安装前的清洗处理。针对不同的工艺要求、不同的设备材质以及不同的设备类型,清洗处理要求和达到的基本标准(要求达到无油、无水与无尘的三无要求)也不同。同时符合《脱脂工程施工及验收规范》和《工业设备化学清洗质量标准》并根据业主和成达公司的具体要求可分为一般清洗和洁净清洗。多晶硅设备的清洗主要工艺为酸洗、脱脂、钝化、干燥等,其中最关键是脱脂工艺和干燥技术。油脂和水对多晶硅的产品有巨大影响。因此在多晶硅设备的清洗中,以脱脂工艺和干燥工艺为要点。主要清洗还原炉、氢化炉、CDI设备、合成车间、还原氢化车间、精馏系统、中间罐、管道等主要设备。并且为了保证脱脂和干燥的质量,多晶硅设备清洗需要对单台设备进行单台清洗并验收后,再进行安装. 一、概述 多晶硅生产对环境及设备的清洁要求十分高。生产工艺过程比较复杂。尤其是塔器设备,对产品的质量影响极为重要。为了保证一次性开车投产顺利,保证产品质量,在设备的安装过程中,对设备及管线等重要设备的清洗工作十分严谨。在清洗过程中,使每个环节质量都达到标准。避免开车质量事故的发生。最大限度地降低调试费用,必须做好工艺设备和工艺管道安装前的清洗处理。针对不同的工艺要求、不同的设备材质以及不同的设备类型,清洗处理要求和达到的基本标准(要求达到无油、无水与无尘的三无要求)也不同。同时符合《脱脂工程施工及验收规范》和《工业设备化学清洗质量标准》并根据业主和成达公司的具体要求可分为一般清洗和洁净清洗。 多晶硅设备的清洗主要工艺为酸洗、脱脂、钝化、干燥等,其中最关键是脱脂工艺和干燥技术。油脂和水对多晶硅的产品有巨大影响。因此在多晶硅设备的清洗中,以脱脂工艺和干燥工艺为要点。主要清洗还原炉、氢化炉、CDI设备、合成车间、还原氢化车间、精馏系统、中间罐、管道等主要设备。并且为了保证脱

多晶硅太阳能电池生产工艺.docx

太阳能电池光电转换原理主要是利用太阳光射入太阳能电池后产生电子电洞对,利用P-N 接面的电场将电子电洞对分离,利用上下电极将这些电子电洞引出,从而产生电流。整个生产流程以多晶硅切片为原料,制成多晶硅太阳能电池芯片。处理工艺主要有多晶硅切片清洗、磷扩散、氧化层去除、抗反射膜沉积、电极网印、烧结、镭射切割、测试分类包装等。 生产工艺主要分为以下过程: ⑴ 表面处理(多晶硅片清洗、制绒) 与单晶硅绒面制备采用碱液和异丙醇腐蚀工艺不同,多晶硅绒面制备采用氢氟酸和硝酸配成的腐蚀液对多晶硅体表面进行腐蚀。一定浓度的强酸液对硅表面进行晶体的各相异性腐蚀,使得硅表面成为无数个小“金字塔”组成的凹凸表面,也就是所谓的“绒面”,以增加了光的反射吸收,提高电池的短路电流和转换效率。从电镜的检测结果看,小“金字塔”的底边平均约为10um 。主要反应式为: 32234HNO 4NO +3SiO +2H O Si +???→↑氢氟酸 2262SiO 62H O HF H SiF +→+ 这个过程在硅片表面形成一层均匀的反射层(制绒),作为制备P-N 结衬底。处理后对硅片进行碱洗、酸洗、纯水洗,此过程在封闭的酸蚀刻机中进行。碱洗是为了清洗掉硅片未完全反应的表面腐蚀层,因为混酸中HF 比例不能太高,否则腐蚀速度会比较慢,其反应式为:2232SiO +2KOH K SiO +H O →。之后再经过酸洗中和表面的碱液,使表面的杂质清理干净,形成纯净的绒面多晶硅片。 酸蚀刻机内设置了一定数量的清洗槽,各股废液及废水均能单独收集。此过程中的废酸液(L 1,主要成分为废硝酸、氢氟酸和H 2SiF 6)、废碱液(L 2,主要成分为废KOH 、K 2SiO 3)、废酸液(L 3,主要成分为废氢氟酸以及盐酸)均能单独收集,酸碱洗后均由少量纯水洗涤,纯水预洗废液(S 1、S 2、S 3)和两级纯水漂洗废水(W 1),收集后排入厂区污水预处理设施,处理达标后通过专管接入清流县市政污水管网。 此过程中使用的硝酸、氢氟酸均有一定的挥发性,产生的酸性废气(G 1-1、G 1-2),经设备出气口进管道收集系统,经厂房顶的碱水喷淋系统处理达标后排放。G 1-2与后序PECVD 工序产生的G 5(硅烃、氨气)合并收集后经过两级水吸收处理后经排气筒排放。

相关文档
最新文档