移相全桥零电压开DCAC-ACD变换器共30页
一种新型零电压零电流开关移相全桥变换器

全 桥 变 换 器 拓 扑 是 目前 D / 变 换 器 中最 常 CDC
滞 后桥 臂轻 负 载时 的零 电压开 通 和重负 载 时的零 电流开 通 . 电感 和 电解 电容 C 、 2 。 C 是辅 助 电路 的主要 组成 部 分 .
用 的电路 拓扑 之一 , 是 应用 最广 泛 的全桥 移 相 也 变换器 . J目前采用的有限双极性控制方式的Z Z S V C
2 稳 态分析
图2 为新 型 Z Z S 相 全桥 变换 器 的工作 波 V C 移 形 .为 了分析 稳定 状态 时 变换 器 的工作 过程 ,假 设 : 所 有 开关管 , ① 二极 管均 为无 损 耗理 想器 件 ; ② 所 有 电感 、电 容 和 变 压 器 均 为 无 损 耗 理 想 元 件 ;③ C =G: :G, =C , 8= =C ;④ 2 = s C a 个变 压器 的转换 比、 磁 电感和 漏感 相 同 , : 励 即
摘
要 : 了解 决传 统 零 电压 零 电流 开 关 (V C ) WM D / 为 Z Z SP CDC变换 器 滞后 桥 臂 零 压 范 围较 小 、 流 损 耗 环
大 的 问题 , 用 串联 双 变压 器 、 后 桥 臂 带辅 助 网络 和 倍 压 整 流 电路 , 出 了一 种新 型零 电压 零 电 流移 相 全 桥 采 滞 提 变换 器. 先 分析 了变换 器在 稳 态下 的各 种 工 作 状 态 , 出 了相 关计 算 公 式 , 制作 了一 台 实验 样 机 进 行 原 理 首 给 并 验证. 实验 结 果 表 明 : 变换 器 能 够在 较 宽 的 负载 范 围 内 实现 滞后 桥 臂 的 零 电压 开通 , 载 下 实现 零 电流 开通 , 该 重
从 而极 大地 降 低 高频 电路 初 级 开 关 损 耗 和 次 级 电磁 干 扰 .
第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器

loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。
ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead
在
C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即
基于移相全桥技术的PFC三相四线AC_DC变换器

− t6 )
(23)
i L3
=
iL3m
+
Vc (nT ) L
(t
− t6 )
(24)
由式(5)、式(21)可知,在第 n 个交流电周
期内平均,注意到 Va = E sin(nωT ) << V,则平均看
这样 VT1 的反并联二极管 VD1 自然导通,状态 2 结 束。 t3 时变压器一次侧电压变为 0。
图 4 工作状态 3 Fig.4 Operation state3
2.4 状态 4( t3 ~ t4 时刻) 如图 5 所示。b 相仍断开, iL1 、 iL3 继续线性上
升,但 VT1 未导通,直到 t4 时刻。
Abstract Based on the phase shift full bridge(PSFB)technique for a full-bridge converter, a three-phase four-wire AC/DC converter is presented. In this converter, the isolation of the DC output from the AC input is obtained. The FB has two functions: chopping line voltages and inverting rectified voltage. The input inductors can both track line voltages and improve soft-switching of the lagging arm. Analysis is given for the basic converter. It is shown this converter has a good power factor corrector (PFC)effect and soft-switching enhancement of the lagging arm is obvious. Experimental results are given to confirm the theory.
一种全功率范围零电压开通的电流型双向隔离DC-DC变换器

中国博士后科学基金(2014M550582),国家自然科学基金(51677162)和河北省自然科学基金(E2015203407、QN20131041)资助项目。 收稿日期 2016-09-19 改稿日期 2017-02-22
关键词:宽输入电压范围 电流型双向隔离 DC-DC 变换器 移相+PWM 控制 零电压开通 中图分类号:TM46
A Novel Current-Fed Bidirectional Isolated DC-DC Converter with Full-Operating-Range ZVS
Sun Xiaofeng1 Wu Xiaoying1 Shen Yanfeng1 Cui Mingyong1 Li Xin1,2 (1. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province
第 33 卷第 10 期
孙孝峰等 一种全功率范围零电压开通的电流型双向隔离 DC-DC 变换器
2283
0 引言
近年来风能、太阳能、燃料电池等可再生能源 在供电系统[1]、混合动力汽车[2-4]等方面得到了广泛 应用。太阳能、风能等易受气候、季节、地理环境 等因素的影响,输出功率产生波动[5,6],因此需要储 能单元来保证供电的质量与可靠性。
储能单元的输出电压范围宽且对输入电流纹波 要 求 高 [7] , 因 此 应 用 在 储 能 系 统 中 的 双 向 隔 离 DC-DC 变换器应满足上述要求。双向隔离 DC-DC 变换器分为电压型[8,9]和电流型[10-19]。电流型双向隔 离 DC-DC 变换器的输入端有电感滤波,使得输入 电流纹波比电压型双向隔离 DC-DC 变换器的输入 电流纹波小[10,11],延长了储能单元的使用寿命[12]。 此外,电流型双向隔离 DC-DC 变换器中 Boost 电感 的存在使变换器具有高电压增益[13],输入电压范围 得以拓宽。因此电流型双向隔离 DC-DC 变换器更 适用于储能系统。然而,电流型双向隔离 DC-DC 变换器存在无法实现全功率范围软开关和由变压器 漏感造成的低压侧开关管的高电压尖峰问题[14],因 此限制了电流型双向隔离 DC-DC 变换器在储能系 统中的应用。
移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。
关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。
ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。
图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。
即当原边电流减小到零后,不允许其继续反方向增长。
原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。
图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。
图4 1)NhoE.C. 电路如图1所示[1]。
该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。
这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。
变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。
一种移相全桥软开关DC-DC开关电源设计【开题报告】

毕业设计开题报告测控技术与仪器一种移相全桥软开关DC-DC开关电源设计1选题的背景、意义近年来,电力电子技术发展迅速,直流开关电源广泛应用于计算机、航空航天等领域。
过去,笨重型、低效电源装置已被小型、高效电源所取代,但是要实现电源装置的高性能、高效率、高可靠性并减小体积和重量,就必须实现开关电源的高频化。
开关电源的高频化不仅减小了功率变换器的体积,增大了变换器的功率密度和性能价格比,而且极大地提高了瞬时响应速度,抑制了电源所产生的音频噪声,从而已成为新的发展趋势。
然而功率变换器开关频率的进一步提高(传统PWM变换器中开关器件工作在硬开关状态),受以下因素的限制:(1)开通和关断损耗大;(2)感性关断问题;(3)容性开通问题;(4)二极管反向恢复问题;(5)剧烈的di/dt和du/dt冲击及其产生的电磁干扰(EMI)。
而软开关技术是使功率变换器得以高频化的重要技术之一,它应用谐振的原理,使开关器件中的电流(或电压)按正弦或准正弦规律变化。
当电流自然过零时,使器件关断(或电压为零时,使器件开通)从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题,而且还能解决由硬开关引起的EMI等问题。
[1]软开关电源是相对于硬开关电源而言的。
人们通常所说的开关电源,指的是硬开关电源,它是在承受电压或电流的情况下接通或断开电路的,因此在接通和关断的过程中会产生较大的损耗,并且开关频率越高,产生的损耗也越大。
而软开关电源的开关器件在开通或关断的过程中,或者加于其上的电压为零,或者加于其上的电压为零,或者电压电流都为零。
这种开关方式显著地减小了开关损耗在开关过程中激起的震荡,可以大幅度地提高开关频率,为开关电源小型化、高效率创造了条件。
将一个恒定的直流电压通过电力电子器件的开关作用变换成直流电压的过程,称为直流-直流变换(DC-DC变换)DC-DC变换具有体积小、效率高、重量轻、成本低等优点,主要应用于开关电源,如通信电源、笔记本电脑、移动电话、远程控制器电源等,具有极其重要的意义。
一种新型零电压、零电流全桥PWM DCDC变换器的研制.

江苏大学硕士学位论文一种新型零电压、零电流全桥PWM DC/DC变换器的研制姓名:凌俊杰申请学位级别:硕士专业:电力电子与电力传动指导教师:刘星桥20050611江苏大学硕士学位论文摘要移相全桥零电压、零电流(PS-FB.ZVZCSPWM)变换器在原边电压过零期间复位原边电流,实现超前桥臂零电压开关,滞后桥臂零电流开关,从而克服了移相全桥零电压(PS.FB—Zvs.PwM)变换器的明显不足。
国内外先后提出了多种不同的拓扑结构,但都尚存在诸如:损耗增加、控制困难、制造工艺复杂等问题。
本文提出的一种利用耦合输出电感的新型次级箝位ZVZCS—PWM变换器与目前各,中zvzcs.PWM电路拓扑相比较:采用了无损耗元件及有源开关的简单辅助电路;副边整流二极管的电压应力和传统的硬开关电路一样小;轻载时筘位电容的充、放电电流能根据负载情况自动调整,可保证在很宽的负载范围内变换器都有高效率;辅助回路二极管D可以实现软关断,因而反向恢复影响小。
论文分析了该新型变换器的工作原理,提出了参数设计依据,进而推导了变换器各种状态时的参数计算方程;运用Pspicc9.2电路专用仿真软件成功地对变换器工作特性进行了仿真,分析了各参数对变换器性能的影响,并得出了变换器的优化设计参数;最后研制出基于该新型拓扑的1千瓦移相控制零电压、零电流软开关电源,给出了其主电路、控制电路、保护电路及高频变压器等的设计过程,并在实验样机上测量出实际运行时的波形及变换器效率。
理论分析与实验结果证明:该变换器拓扑能在1/3负载以上范围内实现超前桥臂的零电压开关,在任意负载下实现滞后桥臂的零电流开关;在很宽的负载范围内都具有商效率:尤其适合以IGBT作为主功率开关管的高电压、大功率功率变换,具有广泛的应用前景和巨大的经济价值。
关键词:软开关零电压.零电流开关(ZVZCS)移相控制全桥变换器江苏大学硕士学位论文ABSTRACTFhase—shiftedfull—bridgezero・voltageandconverterzero-current—switching(ZVZCS)PWMtorealizetheZVSresetstheprimarycur/eatduringthefreewheelingperiodandtheZCSofofleading-legslagging・legs,whichovercomesSOmeobviousdisadvantagesofphase-shiftedfull-bridgezero-voltage・switching(ZVS)converter.Atpresent.theexistingmethodstoresetprimarycurrenthavesomelimitationssuch船lossincreasing,difficultcontrolandcomplicatedmanufacturingtechnnology,etc—AnovelZVZCSconverterisproposedwhichComparedwiththepreviouslyproposedconsistsofneitherlossycomponentsnorusesacoupledoutputinductor.auxiliarycircuitthatstresstopologies.asimpleactiveswitchingsisused.ThevoltageofthesecondaryrectifierdiodeiskeptaS.smallaS.thatofhard—switchingconverter.Thecurrenttochargeclampingcapacitanceisself-adjustedoverinaccordancewiththeloadatlightcondition,whichguaranteeshighefficiencywideloadrange.Diode现ofauxiliarycircuitissoftlycommutatedandit’Sofreverserecoveryisminimized.Theprincipleofthenovelconverterisanalyzed,andthefoundationsofparameter-designarepresented.Futhermore,parametercalculationformulasatperformedsuccessfullytodifferentmodesarededuced.AsimulatiOil.isanalyzeontheconverter’SworkmgcharacteristicsusingPspice9.2,differentparameters’effectsconverterareperformanceofanalyzedandtheoptimizedparametersonhavebeenobtained.OneIKWZVZCSsoft—switchingpowersupplybasedthistopologyisdeveloped,andthedesignprocessofmaincircuit,controlcircuit,protectioncircuittransformerarcpresented,lastly,workingmeasuredonandhi曲。
通信电源DC-DC变换器的移相全桥电路分析

通信电源DC-DC变换器的移相全桥电路分析通信电源DC/DC变换器的移相全桥电路分析本文针对通信电源中DC/DC变换器的移相全桥主电路进行了分析及研究,并提出了采用改进型倍流整流移相全桥电路,来克服传统ZVS PWM全桥变换器存在的一些问题。
1 集中供电方式通信电源系统为了保证稳定、可靠、安全供电,通信电源系统可采用集中供电、分散供电、混合供电或一体化供电方式。
其中集中供电方式通信电源系统的组成框图如图1 所示。
图1 集中供电通信电源系统示意图目前,国内外通信电源仍然大都采用模拟和数字相结合的控制方式,大量应用数字化技术的还主要是保护和监控电路以及与系统的通信,完成电源的起动、输入与输出的过、欠压保护,输出的过流与短路保护及过热保护等,通过特定的界面电路,也能完成与系统间的通信与显示,但PWM 部分仍然采用专门的模拟芯片。
如中兴和华为目前还是采用传统的模拟技术,艾默生已有部分产品采用了全数字的控制,但其EMC、环路稳定性等问题还有待于改善。
本文针对通信电源的特点及现状,采用倍流整流的移相全桥变换器作为主电路,进行了关键参数的计算,并设计出样机进行分析仿真结果。
2 改进型倍流整流移相全桥变换器关键参数设计倍流整流主电路结构如所图2 示。
该电路由全桥逆变和倍流整流电路组成,根据负载大小的不同,该电路可工作在断续和连续模式,在断续状态下,副边二极管自然换流,没有反向恢复引起的电压尖峰,也没有占空比丢失的情况发生,但占空比较小,效率较低。
图2 倍流整流主电路在连续模式下(如图3 所示),要从实现副边整流二极管的自然换流以及实现滞后管ZVS 两个方面着手。
而实现这两点的关键在于阻断电容和输出滤波电感的优化设计。
图3 电路连续模式波形图下面对这两个元件的选择作出分析。
2.1 阻断电容设计阻断电容上的电压使得原边电流在零电平时快速下降,所以副边整流二极管在副边电压为零阶段能换流结束,从而避免了二极管的反向恢复问题,并且二极管换流结束后,由于二极管的自然阻断能力,电感上的电流反向后可以流经副边,从而折射回原边给滞后管提供能量实现ZVS。