高等数学不定积分重点难点复习

合集下载

不定积分学习指导

不定积分学习指导

不定积分学习指导第四章不定积分1学习指导1.基本要求⑴正确理解原函数与不定积分的概念,熟悉原函数与不定积分的关系;⑵掌握并能推证不定积分的性质,牢记并能熟练运用基本积分公式;⑶熟练掌握求简单函数不定积分的直接方法;⑷掌握不定积分的换元积分法与分部积分法;⑸了解有理函数、简单无理函数、三角函数有理式的不定积分;⑹掌握求典型初等函数不定积分的方法;⑺掌握积分表的使用方法。

2.重点与难点重点不定积分的概念,基本积分公式,换元积分法,分部积分法;难点换元积分法。

3.学习方法⑴不定积分与微分互为逆运算,“积分法”是在“微分法”的基础上建立起来的。

由初等函数的微分法可推出求不定积分的法则。

如由复合函数的求导法则可以得到换元积分公式,由乘积的求导法则可以得到分部积分公式。

⑵求不定积分的方法是,设法将所求的积分化为基本积分表中已有的积分形式,以便运用公式求不定积分,具体转化时,可以利用积分性质、换元积分法、分部积分法及代数三角恒等变形等方法。

常用的三角恒等式包括平方和(差)等于1、倍角的正弦及余弦公式、和差化积及积化和差公式。

下面列出常用的求不定积分的方法。

①直接积分法这种方法是将被积函数作代数、三角恒等变形,直接利用基本积分公式或不定积分的线性运算性质进行求解。

②第一类换元积分法(凑微分法)这类积分法主要解决被积函数为复合函数的积分。

求不定积分()?dx x g ,关键是将被积表达式()dx x g 凑成复合函数的微分()()()dx x x f '的形式,再由()()x d dx x ??='得()()()()()==du u f dx x x f dx x g '??,即将积分()?dx x g 转化为()du u f ?,若能求得()u f 的原函数,就得到了()x g 的不定积分,因此熟悉常见的凑微分形式非常重要。

应注意,利用第一类换元法求不定积分时,有时不必写出换元积分变量,而将()x ?视为整体变量μ直接计算。

不定积分考点要求

不定积分考点要求

不定积分关键知识点:1. 原函数,不定积分[F(x)+C]'=f(x)⎰+=C x F dx x f )()( 2. 不定积分性质(1)⎰⎰=dx x f k dx x kf )()( (2)[]⎰⎰⎰±=±dx x d dx x f dx x g x f )()()()(3. 基本积分公式(1)⎰+=C x dx (2)⎰x a dx=11+x x a+1+C (3) ⎰=dx x 1ln |x|+C (4)⎰a x dx=aln 1a x +C (5) ⎰e x dx=e x +C (6)⎰sinxdx=-cosx+C (7)⎰cosxdx=sinx+C (8)⎰sec 2xdx=tanx+C (9) ⎰csc 2xdx=-cotx+C (10) ⎰C x dx +=+arctan x 112(11) ⎰C x dx x +=-arcsin 1124.重要公式(1)⎰=xdx sec ln|secx+tanx|+C(2)⎰=xdx csc ln|cscx -cotx|+C(3)C ax a dx x a +=+⎰arctan 1122 (4)C ax dx x a +=-⎰arcsin 122 (5)⎰=xdx tan -ln|cosx|+C (6) ⎰=xdx cot ln|sinx|+C(7)⎰=-dx a x 221a 21ln|a x a x +-|+C (8)⎰=±dx a x 221ln(x+22a x ±)+C换元积分法:就是通过适当的变量代换,把积分转化为积分表中的类型或容易积分的形式。

5.第一类换元积分法(也称凑微分法,关键是选择变量代换u=∂(x),使[][](x )dF (x )dx '(x )∂=∂⋅∂f ,并注意将新变量还原,一般计算可以省略这种代换,直接计算。

(1)⎰f(ax+b)dx=⎰++)()(1b ax d b ax f a(2))()(1)(1b ax d b ax f nadx b ax f x n n n n ++=+⎰- (3)x x x x de e f dx e f e )()(⎰⎰=(4))(ln )(ln )(ln 1x d x f dx x f x ⎰⎰=(5) ⎰⎰inx)f(sinx)d(s =f(sinx)dx cosx(6)⎰⎰-=x d x f dx x xf cos )(cos )(cos sin (7))(tan )(tan )(tan cos 12x d x f dx x f x ⎰⎰= (8))(cot )(cot )(cot sin 12x d x f dx x f x⎰⎰-= (9)cscx=x sin 1 (10)secx=xcos 1(11)x x 22sec 1tan =+6.第二类换元积分法(1)被积函数为 f(n m x x ,),令mn t x =。

2023考研高等数学全考点精讲-第七讲 不定积分考点

2023考研高等数学全考点精讲-第七讲 不定积分考点

第七讲 不定积分考点【考试要求】1.理解原函数的概念,理解不定积分概念.2.掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.考点:原函数与不定积分的概念、基本积分公式 1.原函数与不定积分的概念()()()()()()()(),,,.,I F x f x x I F x f x F x f x I F x F x ∀∈'=如果在区间上某可导函数的导数为即对有,那么称此为在区间上的一个原函数由于原函数是可导的因而原函数必定是连续的.定义1注:()()()()()()()(),,.f x I f x I f x dx f x f x dx F x C F x f x I =+⎰⎰在区间上的所有原函数称为在区间上的不定积分,记为这里称为被积函数,且其中是在上的一个原函数定义2()()()()()()()()()()()()()()()()()()()()222221,11,ln ,11,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x f x f x F x x x x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧-<=⎡⎤⎨⎣⎦≥⎩⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩例设则的一个原函数是____.()()()()()()2sin ,____.1sin 1sin 1cos 1cos f x x f x A x B x C x D x⎡⎤⎣⎦+-+-例若的导函数是则有一个原函数为2.原函数的存在定理()()()()()222,,sin cos 1;;;sin ;cos ;.ln x f x I f x I f x I f x I f x x x e dx dx dx x dx x dx dx x x x±⎰⎰⎰⎰⎰⎰如果在区间上连续那么在区间上必有原函数;如果在区间上有第一类间断点那么在区间上必没有原函数.虽然很多确有原函数,但其原函数未必都是可求的,如等定理1定理2注:()()2111sin ,02sin cos ,03?0,00,0x x x x F x f x x x x x x ⎧⎧≠-≠⎪⎪==⎡⎤⎨⎨⎣⎦⎪⎪==⎩⎩例问:是否是的原函数3.基本积分公式11.,2.ln ,13.+,4.+,ln 5.sin cos , 6.cos sin ,7.tan ln cos ,8.cot ln sin ,9.sec ln sec tan ,10.csc ln csc cot ,11.sec tan se xx xxx dxx dx C x C xa e dx e C a dx C a xdx x C xdx x C xdx x C xdx x C xdx x x C xdx x x C x xdx μμμ+=+=++===-+=+=-+=+=++=-+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222222c ,12.csc cot csc ,13.sec tan +,14.csc cot ,115.arcsin ,16.arctan ,11117.arcsin,18.arctan ,1119.ln ,20.2x C x xdx x C xdx x C xdx x C x C dx x C xx xC dx C aa x a ax adx C x a a x a +=-+==-+=+=++=+=++-=+-+⎰⎰⎰⎰⎰⎰(ln +21.ln .x C x C =+=,()()()22241ln ,ln ,.2x f x f x x x dx x ϕϕ-==⎡⎤⎡⎤⎣⎦⎣⎦-⎰例设且求()()()()()5,,00.xf x e f x dx F f x F x -==⎡⎤⎣⎦⎰例设求不定积分及满足的的原函数考点:凑微分法求不定积分()()()()()()(),.f x dx F x C f x x dx f x d x F x C ϕϕϕϕϕ=+'==+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰⎰设则()()()()2222211002111,ln 2cos sin sin cos ,cos sin sin cos sec tan ,csc cot ,sec tan sec ,csc cot csc 11x x dx d ax b a xdx d ax b a a ae dx de dx d x dx d x x x xdx d x xdx d x x x dx d x x xdx d x x d x x x d x x x d x d x =+≠=+≠===-===-±=±==-==-+(1)常用的凑微分有(),();,,;;注:()()()222arctan arcsin ;2sin sin sin sin 22sin cos cos 2cos sin 2cos cos cos 1111ln ln ;,x d x d x xd x d x xdx x xdx xdx d x x xd x d xdx d x x dx d x x x x ==⎧===⎨-=-⎩⎛⎫⎛⎫±=+= ⎪ ⎪⎝⎭⎝⎭,;;(2)对被积函数复杂部分求导再试图凑微分.()125112.12ln xdx dx x x x ⎡⎤⎣⎦+⎰⎰例求下列不定积分:();()2.⎡⎤⎣⎦例求不定积分()21ln ln tan 312.cos sin ln xxdx dx x xx x +⎡⎤⎣⎦⎰⎰例求下列不定积分:();()14.1x dx e ⎡⎤⎣⎦+⎰例求不定积分考点:换元法求不定积分()()()()()()()()110,,t x x t t f x dx f t t dtt x x t ϕϕϕϕϕϕϕ--='=≠'===⎡⎤⎣⎦⎰⎰设单调、可导数且则这里的是的反函数.sin ,,22tan ,,22sec ,0.2.1.x a t t x a t t x a t t t t x tπππππ→=-<<→=-<<→=<<==常用的换元有(1)三角代换(2)根式代换:,(3)倒代换:被积函数分母的幂次比分子的幂次高两次及以上时,可考虑作倒带换注:1⎡⎤⎣⎦例求不定积分2.⎡⎤⎣⎦例求不定积分()713.2dx x x ⎡⎤⎣⎦+⎰例求不定积分考点:分部积分法求不定积分()()()()()().1a sin ;cos ;b ln arcsin ;arctan ;c sin cos .2.x n n n n n n x x udv uv vdu P x e dx P x xdx P x xdx P x xdx P x xdx P x xdx e xdx e xdx u αααααααββ=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()对两类不同函数乘积在一起的积分优先考虑使用分部积分,比如,();();();()使用分部积分时往往按照"反、对、幂、三、指"的顺序保留作公式中的分部积分公式:注:11arctan 2arctan .xdx x xdx ⎡⎤⎣⎦⎰⎰例(直接用分部积分)求下列不定积分:();()()32ln 2.x dx x ⎡⎤⎣⎦⎰例(多次用分部积分)求不定积分3sin .x e xdx ⎡⎤⎣⎦⎰例(循环积分)求不定积分()224tan 1.xe x dx +⎡⎤⎣⎦⎰例(相消积分)求不定积分()()()51sin ln .x x f x xf x dx '+⎡⎤⎣⎦⎰例已知是的一个原函数,求考点:有理函数的积分()()()()()()()()()()()()()()()1222211222222,120.nnnnn nnP x Q x Q x Q x x a P x A A A Q x x a x a x a Q x x px q p q P x A x B A x B A x B Q x x px q x px q xpx q -+++---++<++++++++++++设有真分式这里假设已被因式分解,则()若分母中有一个因子,则的分解式中有;()若分母中有一个因子(-4),则的分解式中有()()231.11x dx x x -⎡⎤⎣⎦--⎰例求不定积分()()22362201910.11x dx x xx +⎡⎤⎣⎦-++⎰例(数二,分)求不定积分()()213.11dx x x⎡⎤⎣⎦+-⎰例求不定积分2414.1x dx x +⎡⎤⎣⎦+⎰例求不定积分考点:三角函数的积分及不定积分的综合计算433cos 12112.sin sin cos xx dx dx x x x ⎡⎤⎣⎦⎰⎰例求下列不定积分:();()222212,,0.sin cos I dx a b a x b x =⎡⎤⎣⎦+⎰例计算其中是不全为的非负常数3sin 2cos 3.2sin 3cos x x dx x x +⎡⎤⎣⎦+⎰例求不定积分14.1sin cos dx x x ⎡⎤⎣⎦++⎰例求不定积分5ln 10.dx x ⎛>⎡⎤ ⎣⎦ ⎝⎰例求不定积分()6.x ⎡⎤⎣⎦例求不定积分。

高中数学知识点归纳不定积分基础知识

高中数学知识点归纳不定积分基础知识

高中数学知识点归纳不定积分基础知识高中数学知识点归纳:不定积分基础知识在高中数学学科中,不定积分是一个重要的概念和工具。

它与定积分密切相关,并且在微积分学中具有广泛的应用。

本文将归纳和总结高中数学中关于不定积分的基础知识点,帮助学生们更好地理解和掌握这一概念。

一、不定积分的定义和性质不定积分是定积分的逆运算,它可以表示为∫f(x)dx = F(x) + C,其中f(x)为被积函数,F(x)为f(x)的一个原函数,C为常数。

不定积分具有以下性质:1. 线性性质:对于任意常数a、b和函数f(x),有∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。

2. 累次积分法:如果F(x)是f(x)的一个原函数,则对于任意常数C,有∫f(x)dx = F(x) + C。

3. 整体常数原则:不定积分无法确定具体的数值,只能确定一个函数族,因此在不定积分结果上需要添加一个常数C。

二、基本不定积分公式在高中数学中,有一些基本的不定积分公式经常被使用,它们是计算不定积分的重要工具。

下面列举几个常见的基本不定积分公式:1. ∫x^n d x = (x^(n+1))/(n+1) + C,其中n不等于-1。

2. ∫cosx dx = sinx + C。

3. ∫sinx dx = -cosx + C。

4. ∫1/x dx = ln|x| + C,其中x不等于0。

5. ∫e^x dx = e^x + C。

三、换元积分法换元积分法是不定积分中常用的一种方法,通过变量代换来求解较复杂的积分。

其基本思想是将被积函数中的自变量用一个新的变量来表示,从而简化积分过程。

换元积分法的步骤如下:1. 选取适当的换元变量,通常选择与被积函数中的某部分形式相同或相似的变量。

2. 计算出新的微元,并将原来的被积函数用新的变量表示。

3. 计算新的不定积分。

4. 将新的变量换回原来的自变量,得到最终的不定积分结果。

四、分部积分法分部积分法是求解一类积分的常用方法,它通过将不定积分转化为一个乘积的形式,从而简化求解过程。

高数期末复习第四章 不定积分

高数期末复习第四章 不定积分


高数高上数第四章重点
数 高
郭啸龙主编

帮 《不定积分》


本章说明


汇总了求不定积分的所有方法与题型,含所有公式
帮 数 高
帮 数 高

帮 第四章 不定积分重要知识点
考点
重要程度
分值
1.直接积分 2.凑积分 3.换元法
数必考
0~3
4.分部积分法
6~10
5.有理化积分
1. kdx kx C
帮 (4) cot xdx ln | sin x | C
(6) csc xdx ln | csc x cot x | C
数 (8)
dx sin 2 x
csc2 xdx cot x C
高 (10) csc x cot xdx csc x C

帮 定义:在区间 I 上, F(x) f (x) (或 dF (x) f (x)dx ),则 F (x) 称为 f (x) 在区间 I 上
即 x 3 (A B)x (3A 2B) .
帮 数
因是恒等式,两端关于 x 的同次幂的系数应相等,即
A B 1 3A 2B 3,
帮 从中解得 A 5,B 6 .
x2
x
3 5x
dx 6
x52dx
x
6
dx 3
5
ln
|
x
2
|
6
|
x
3
|
C


数 高

帮 数 高
帮 数 高
的一个原函数.
数 定义 f (x) 在区间 I 上的全体原函数称为 f (x) 在区间 I 上的不定积分,记作 f (x)dx ,

高等数学(上)第四章不定积分

高等数学(上)第四章不定积分

第四章 不定积分内容:不定积分的概念和性质、换元积分法、分部积分法、几种特殊类型函数的积分、简单无理函数的积分、积分表的使用。

要求:理解不定积分的概念和性质,掌握不定积分的基本公式、换积分法和分部积分法,理解有理函数的积分,了解简单无理函数的积分重点:不定积分的概念和性质;不定积分的基本公式;换元积分法、分部积分法、 难点:凑微分、三角代换法、分部积分法到目前为止,我们已经学会了对函数作如下运算:四则、复合、求导. 在四则运算中, 加减法互为逆运算, 积商也互为逆运算; 我们能将简单函数复合, 也能将复合函数分解. 于是, 我们自然会想到这点: 既然我们能求得任一函数的导数, 我们当然也想知道谁的导数是一个任意给定的函数呢? 即研究求导的逆运算.例: 对于变速直线运动, 若已知位移函数)(t s s =, 则即时速度)(t s v '=, 反之, 若已知)(t v v =, 能否求得位移函数?§1. 不定积分的概念与性质一、原函数与不定积分的概念1. 原函数定义: 设)(),(x F x f 在区间I 上有定义, 若∀x ∈I, 有)()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f 在I 上的原函数.例: -sinx 是cosx 的原函数, x ln 是x1的原函数. 我们自然会提出三个问题:(1) 是不是任一函数都有有原函数. (2) 一个函数的原函数是否唯一.(3) 若不唯一, 不同的原函数间的关系. 逐一回答:(1) 定理: 若)(x f 在I 上连续, 则存在)(x F , 使得)()(x f x F ='. (2) 常数的导数为0. 若)()(x f x F =', 则())()(x f C x F ='+. (3) 若)()()(x G x f x F '==', 则()0)()(='-x F x G . 回忆中值定理得到的重要结果, 可得:Cx F x G Cx F x G +==-)()()()(综合(2), (3), 得出结论: 若)(x F 是)(x f 的一个原函数, 则 1°所有的)(x F +C 也是)(x f 的原函数. 2°)(x f 的任一原函数也写成)(x F +C.即})({C x F +(C 为任意常数)是)(x f 的所有原函数的集合. 命名之. 2. 不定积分定义: 函数)(x f 的全体原函数称为)(x f 的不定积分, 记作⎰dx x f )(.若)()(x f x F =', 则⎰dx x f )(=)(x F +C.⎰: 积分符号; )(x f 被积函数; dx x f )(被积表达式;x : 积分变量; C: 积分常量. 例1.C x xdx C x dx x +=+=⎰⎰sin cos ,4143例2. 证明:C x dx x +=⎰ln 1.证一: ⎩⎨⎧<->=0)ln(0ln ln x x x xx()⎪⎪⎩⎪⎪⎨⎧<-->='0101ln x xx x x证二: 2ln ln x x =为简便, 记C x dx +=⎰ln 1.(曲线族中任意一条曲线都可由另一条曲线经过上下平移而得到, 表现在图形上, 即: 所有平行于y 轴的虚线被相同的两条积分曲线所截得的长度都相同.)3. 不定积分与导数、微分的关系()()Cx F x dF C x F dx x F dxx f dx x f dx f dx x f +=+='=='⎰⎰⎰⎰)()(,)()()2()()(),()()1(不定积分与导数、微分互为逆运算. 注2: 导数是一个函数, 不定积分是一族函数.二、基本积分公式由导数公式,可直接得出积分公式Caa dx a C e dx e C x xdx x C x xdx x C x xdx dx x C x xdx dx x Cx xdx C x xdx Cx dx x Cx dx x Cx dx x C x dx x C kx kdx xxx x +=+=+-=⋅+=⋅+-==+==+-=+=+=-+=++=-≠++=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+ln )13()12(csc cot csc )11(sec tan sec )10(cot csc sin 1)9(tan sec cos 1)8(cos sin )7(sin cos )6(arcsin 11)5(arctan 11)4(ln 1)3()1(11)2()1(2222221μμμμ三、不定积分的运算法则[]⎰⎰⎰⎰⎰⎰±±±=±±±=dxx f dx x f dx x f dx x f x f x f dxx f k dx x kf n n )()()()()()()2()()()1(2121.例1.⎰⎰+--+dxx x xdxx e x )213114()2()cos 52()1(2 例2.()⎰⎰-=dx x xdx 1sec tan22例3. ⎰⎰+-+=+dt t t dt t t 22221111例4. ⎰⎰+=dt xx x x dt x x 222222cos sin cos sin cos sin 1§2. 换元积分法积分的许多方法都是来源于求导(微分)公式,凑微分法来源于复合函数求导公式,或者说是一阶微分形式不变性.一、第一类换元法(凑微分法)(){}()⎰⎰⎰=='=='⇒'=⋅'=+='⇒'⋅='⋅='⋅'='duu f dx x x f du u F dx x F x F d C x F dx x x f x x f u u f u u F x F x u x x u f u F xx u x)()()]([)()]([)]([)]([()()]([)()]([)()()]([)()()()(ϕϕϕϕϕϕϕϕϕϕϕϕ定理 设)(u f 有原函数,)(x u ϕ=可导,则)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='此定理的实质是将对变量x 的积分转化为对x 的函数)(x ϕ的积分.1. b ax x +=)(ϕ例1.⎰xdx 2sin 2不能对⎰xdx 2sin 直接积分, 但若令u=2x, 则可对⎰udu sin 直接积分, 只需将原积分中的“dx ”转化为“du ”即“d(2x)”.Cx C u udu x xd xdx xu +-=+-===⎰⎰⎰=2cos cos sin )2(2sin 2sin 22 熟练后可省略例2. []⎰⎰⋅++=+21)12()12sin()12sin(x d x dx x 例3. ⎰-dx x 100)45(, ⎰-dx x 23)45(若是二或三次方, 或许可以考虑二项展开, 但对于100次或是非正整数次方显然不适用.例4.⎰⎰+→+dx x dx x a 222111例5.⎰⎰-→-dx xdx xa 222111一般地, ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f . 2.b ax x +=2)(ϕ例6. ⎰dx xe x 22 例7.⎰-dx x a x2一般地,⎰⎰++=+)()(21)(222b ax d b ax f adx b ax xf . 利用1111+++=μμμμdx x dx x , 我们常用的凑微分法有: ⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅xd f dx x fxd f dx x f dx f dx f x 2131232例8.⎰dx x x 1tan 122例9.⎰dx xe x33. 其它类型例10. ⎰⎰=dx xxxdx cos sin tan , ⎰xdx cot 例11.⎰+dx x x 21arctan把对x 积分转化为对)(x ϕ积分,即)()(x d f dx f x ϕϕ⋅→⋅',这实际上也是一个积分过程,只是这个积分较为直接明了,因此,所有积分公式都可以被考虑用于凑微分.如:⎰⎰⋅=⋅x d f dx f x ln 14. 综合性凑微分(先变形, 再凑) ① 代数变形例12. ⎰-dx x x2例13. C ax ax a dx x a C a x ax a dx a x +-+=-++-=-⎰⎰ln 211,ln 2112222例14.⎰⎰++=++dx x dx x x 2)3(1116122例15.⎰⎰-+=--dx x x dx x x )1)(3(12312总之: ⎰⎪⎩⎪⎨⎧→→→++arctanln12不可分解因式可分解因式dx c bx ax 例16.⎰⎰+-=--dx x dx xx 22)1(21211例17.⎰⎰+=dx x xdx 212cos cos 2例18. C x x x dx x xdx +++=⎪⎭⎫ ⎝⎛+=⎰⎰832sin 414sin 321212cos cos 24例19. ⎰⎰--=x d x xdx cos )cos 1(sin 23例20. ⎰⎰--=x xd x xdx x cos cos )cos 1(cos sin2223例21.⎰⎰+=dx xx xdx x 22sin 8sin 3cos 5sin总结之:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222例22.⎰xdx csc()Cx x xx C x x C x x C x x x d x dx xx dx x xdx ++-=+-=+-+-=+-+-=++-=--===⎰⎰⎰⎰)cot ln(csc sin cos 1ln cos 1cos 1ln 21cos 1cos 1ln 211cos 1cos ln 21cos cos 11sin sin sin 1csc 2222 Cx x xdx C x x xdx ++-=++=⎰⎰)cot ln(csc csc )tan ln(sec sec 总结: 三角函数微分、积分公式记忆: (1) 弦函数↔ 弦函数; 切函数↔ 割函数 (2) 正函数→ 正号; 余函数→ 负号例23.⎰⎰⎰-=--=+dx x xdx x x dx x 22cos sin 1sin 1sin 1sin 11在积分过程中, 分母中的正减号是积分的障碍.二、第二类换元法(变量置换法)定理 设)(t x ψ=是单调且可导的函数,0)(≠'t ψ. 又设)()]([)(t t f t g ψψ'=有原函数, 则[]⎰⎰-='=)(1)()]([)(x t dt t t f dx x f ψψψ.事实上:[]C t G dt t g dt t t f t d t f dxx f x t t x +=='=⋅=⎰⎰⎰⎰-==)()(1)()()()]([)]([)]([)(ψψψψψψ第二类换元的实质是将f (x )复杂式变简单或将明显不可积变为可积. 1. 三角代换例1.⎰+dx x 112Ct t tdt t t d t dxx t x ++=⋅==+⎰⎰⎰=)tan ln(sec sec sec 1)(tan sec 1112tan 2不定积分是被积变量的函数, 故需写成x 的函数. 而用反函数代入的方法显然很繁琐.1tan tan x t t x =⇒=, 即在直角三角形中, t 是一个锐角, x 是其对边, 1是其邻边.⎰⎰+++=++++=++==C x a x dx a x C x x dx x x t t )ln(1)1ln(1111cos 1sec 2222222例2.⎰-dx ax 221xCa x x C aa x a x C t t tdtt t t a d t a dxax xa t ta x +-+=+-+=++=⋅==-==⎰⎰⎰)ln()ln()tan ln(sec tan sec tan 1)sec (tan 12222cos sec 22积分公式:⎰++±=±C x a x dx a x )ln(12222例3.⎰-dx x a 2C ax a a x a x a C t t t a dt t a tdtat td adx x a ax t t a x +-⋅+=++=+===-⎰⎰⎰⎰==)(arcsin 2)cos sin (2)2cos 1(2cossin cos 22222222sin sin 2三角代换的实质:用六角形公式消去根式(或分母)中平方和、平方差.2. 根式代换例4.⎰++dx x 1211Cx x C t t dt t t t d t dxx t x t x +++-+=++-=+-+=-+=++⎰⎰⎰=+-=)121ln(12)1ln(11121111211212212例5.⎰+xx dx)1(322a x -xCt t dt t t dt t t xx t x tx +-=+-+=+=+⎰⎰⎰==arctan 661116)1(1)1(22632366例3.dx xx⎰-+11 (选讲、习题课) 法一:()dt t t t td t xxt t x ⎰⎰+=+-==-++-=2222111114)121(22 法二:()⎰⎰⎰⎰⎰+=--=-=--=--==dt t dt tt dt t t dx x x dx x x t x )sin 1(sin 1sin 1sin 1cos 111122sin 222法三:()()⎰⎰⎰⎰-+-=-+=-+=2222221121111111x d x dx xdx xx dx x x§3.分部积分法由导数的乘法公式:())()()()()()(x g x f x g x f x g x f '+'=',可知)()(x g x f 是)()()()(x g x f x g x f '+'的一个原函数,即[])()()()()()()()()()()()()()()()()()(x df x g x g x f x dg x f dx x g x f x g x f dx x g x f C x g x f dx x g x f x g x f ⎰⎰⎰⎰⎰-=⇔'-='⇒+='+' 其实质是将被积函数看作两个函数的乘积,将其中一个函数先凑到d 的后面(做一部分积分),从而变形为求另一个函数的积分.简言之,将被积表达式写成d 前面一部分,d 后面一部分,再交换前后两部分的位置.分部积分公式:⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u 例1.⎰xdx x sinx,sinx 都可以放到d 的后面去,但是,变形后的结果截然不同:前者变形为求⎰xdx xsin 2,后者变形为求⎰xdx cos ,显然选择后者.注: 选择u,v(d 前函数,d 后函数)的原则: (1)v 明显可求(2)简单比v u u v ''(即新得到的积分比原积分简单) 例2.⎰dx xe x例3. ⎰dx e x x 2例4.⎰xdx x ln 2例5. ⎰xdx ln , ⎰xdx 2ln例6. ⎰xdx arcsin例7. ⎰xdx e xsin例8. ⎰=xdx x I sec tan 2(选讲)⎰⎰⎰⎰⎰⎰⎰--=+-=-=-==⋅==xdxI x x xdx x x x xdx x x x xd x x xxd xdx x x xdxx I sec sec tan sec )1(tan sec tan sec sec tan tan sec sec tan sec tan sec tan tan sec tan 232 注2.分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx x ax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e ax ax ax ax cos sin sin cos cos sin cos sin )3(\例9.⎰dx ex例10. dx xexdx e xx⎰⎰-=22cos 1sin 2例11. dx xe dx x e xx ⎰⎰=22sin cos sin 例12. ()dx x x xdx x ⎰⎰-=1sec tan 22 例13. ⎰=dx x I )sin(ln例14.⎰+++dx xx x 221)11ln(不定积分小结一积分公式(分类分组) 1.幂函数类⎪⎩⎪⎨⎧-≠⎰⎰dx xdx x 11(μμ ⎪⎪⎩⎪⎪⎨⎧-+⎰⎰dx ax dx ax 222211⎪⎪⎩⎪⎪⎨⎧±-⎰⎰dx a x dx x a 222211 2.指数函数类⎪⎩⎪⎨⎧⎰⎰dx a dxe xx3.三角函数类⎪⎩⎪⎨⎧⎰⎰xdx xdx cos sin⎪⎩⎪⎨⎧⎰⎰x d x x d x s e c t a n⎪⎩⎪⎨⎧⎰⎰x d x x d x c s c c o t⎪⎩⎪⎨⎧⎰⎰xdx xdx 22csc sec⎪⎩⎪⎨⎧⎰⎰x d x x x d x x c s c c o t s e c t a n 二、凑微分法)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='常用的凑微分法有:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅⋅=⋅+⋅=⋅xd f dx x fx d f dx x f dx f dx f x dx f dx xf b ax d f a dx f 213121)(12322⎰⎰⎰⎰⎰⎰⋅=⋅⋅⋅-=⋅⋅⋅=⋅xxdef dx f e x d f dx f x x d f dx xfcos sin ln 二、变量置换法[])()(1)()]([)]([)]([)(x t t x dt t t f t d t f dx x f -==⎰⎰⎰'=⋅=ψψψψψψ 常用代换:1. 三角代换⎰⎰⎰⎰⎰⎰====-=+=-tdtt t a f a dx a x f tdtt a f a dx x a f tdtt a f a dx x a f ta x ta x ta x tan sec )tan ()(sec )sec ()(cos )cos ()(22sec 22222tan 2222sin 222. 根式代换⎰⎰--=+=⋅=++dt t t t f anmdxb ax b ax f nm n m ab tx b ax t mn nmnm 1),(),( 三、分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx xax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ 类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e axax ax axcos sin sin cos cos sin cos sin )3(\ 注2:有些函数经过变形、代换后成为上述类型.注3:选择u,v(d 前函数,d 后函数)的原则:留在d 前的函数求导后变易, 进入d 的函数积分后不变难.四、特殊函数积分归类 归类1:⎰⎪⎩⎪⎨⎧→→→++arctan ln 12平方和平方差dx c bx ax 归类2:⎰⎩⎨⎧→<→>→++arcsin 0012a a dx c bx ax 三角代换 归类3:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222 归类4:有理函数.。

高等数学复习之不定积分详情解读

高等数学复习之不定积分详情解读

高等数学复习之不定积分详情解读高等数学复习之不定积分详情解读不定积分是考研数学的重要内容之一,后续的积分运算都是以微积分基本定理作为纽带,以不定积分的运算为基础的。

这说明,不定积分在考研高等数学这个学科来说是很重要的,下面我们就总结一下不定积分的考点以及题型。

一、原函数的定义如果在区间上,可导函数的导函数是,即对任意的都有或,则称为在区间上的原函数。

从原函数的定义来看我们要注意1、原函数是在局部范围内说的2、原函数有很多个,代表的是相差常数的一类函数的集合。

考试的时候会以注意点出小题。

二、不定积分的计算首先我们要知道不定积分与原函数的关系。

不定积分的'计算方法有换元法,分部积分法。

我们考试常考的题型有有理函数的积分,三角有理式积分,指数有理式积分,根式积分,特殊题型分部积分法。

1、有理函数的积分:做题的思想就是拆分。

如果分母形如则应拆出一项:;如果分母形如,则应拆出两项:;如果分母形如(该式为无实根的二次多项式),应拆出一项。

具体例题略。

2、三角有理式积分一般的三角函数积分我们用下面两个式子或者凑微分法,另外我们一般的思路就是利用万能公式,则我们可以得到,。

具体例题略。

3、指数有理式积分指数有理式积分指的是被积函数分母上含有的函数,我们通常的做法就是I在分子分母上同时乘以,然后凑微分。

4、根式积分如果根号下一次函数,则直接令 ;如果根号下是以下二次函数,则利用三角代换:,令; ,令; ,令。

如果根号下是一般的二次函数,我们先将其配方,再作上面的三角代换。

5、特殊题型分部积分法我们可以总结一句话就是反对幂指三,这五种函数进行分部积分时,反函数和对数函数我们一般当作是,排在后面指数函数和三角函数就当作,幂函数做哪个都可以。

当指数函数和三角函数的乘积作为被积函数时,与随便取哪一个。

以上就是不定积分的全部考点及题型。

这里我系统的总结了各种题型的方法,虽然没有举例说明,但我相信大家看到一个不定积分就知道它属于哪个类型,然后可以利用其方法做题就可以了。

不定积分知识点复习

不定积分知识点复习

若存在可导函数 F (x)使 F (x)f(x),
则由 f (x) 的定义 当x 0时,F ( x ) f( x ) 0 F (x ) C 1 当x 0时,F ( x ) f( x ) 0 F (x ) C 2
由 F (x )可 F 导 (x )在 x 0 处连返续 回
C 1C 2 (左、右极限存在且相等) F (x ) C F (0 )0
注 1, 从该题中我们可以看出熟记基本积分表的
重要性.
2, 检验积分结果是否正确, 只要把最后的结果
求导, 看其导数是否等于被积函数.
返回
例6
求积分
1 dx 2x1
解: 原式 2 12x11d(2x)
1 2
1 d(
2x 1
2x
1)
令u=2x+1,
上式
1 2
1 du u
1 ln | u | C 2
例 sixn co xs six 是 n cx o 的 原 s函 数 .
ln x1 (x0)
x
lx n 是 1 在 区 间 (0 ,)内 的 原 函 数 . x
返回
关于原函数的说明:
对原函数的研究须讨论解决下面两个问题
(1) 是否任何一个函数都存在原函数? 考察如下的例子
f(x) 1 0
x0 x0
F ( x ) C 都 是 f ( x ) 的 原 函 数 .
②若 F(x)和 G(x)都是 f(x)的原函数, 则 F (x ) G (x ) C .( C为任意常数)
返回
不定积分的定义:
在区间I内,函 数 f(x)的 带 有 任 意 常数项的原函数称 为 f(x)在 区 间 I内 的
不 定 积 分 , 记 为 f ( x ) d .x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定积分的几何意义
积分曲线——函数f x 的原函数的图形称为函数f x 的积分曲线。
不定积分的几何意义:不定积分 f x dx 的图形是积分曲线族, 这些曲线族可由其中一过点1 4,且其上任意一点处的切线的斜率为2x的曲线方程。 , 解 设曲线方程为 y f x 则依题意有: 1 4, f x 2x f
第四章 不 定 积
不定积分的概念
不定积分的性质 不定积分的计算

第 一 节 不定积分的概念与性质
学习要求 理解原函数及不定积分的概念 掌握不定积分的基本性质和基本积分公式
◆原函数的概念
为 v(t ) s(t ) ;如果已知物体的运动方程为 v v(t ) ,则物体运动 的位移如何计算呢? ? v(t )
4 2 2

3x 4 3x 2 2 x 2 2 1 原式 dx 2 x 1 1 2 3x 2 2 dx x 1
x 2 x arctan x C
3
例8
cos 2 x dx 2 2 sin x cos x
2 2
cos x sin x 解 原式 sin 2 x cos2 x dx 1 1 2 dx 2 sin x cos x
2、如果 F ( x) G( x) f ( x),则 F ( x) G( x) C 。 (常数) 结论:如果函数 f ( x) 在区间 I 内有原函数 F ( x) ,则 f ( x)
有无穷多个原函数,且所有的原函数可用式子 F ( x) C 表示。 ◆原函数存在的充分条件
如果函数f(x)在区间I内连续,则函数f(x)在该区间内一定有原函数。
2 k f x dx k f x dx( k
◆不定积分的计算方法
直接积分法、换元积分法、分部积分法
第一类换元积分法 是常数)
第二类换元积分法
◆直接积分法
例3
1 1 2 1 x x dx x

3 5 1 4 原式 1 x 2 x 4 dx x

x
例6
1 sin x sec x cos x dx
解 原式
sec x sec x tan x dx sec x sec x tan x dx tan x sec x C 3x 5 x 1 例7 x 1 dx
2
1 4 7 1 x x 4 4 x 4 C 7 x
不能漏写积分常数
x x x
3 4
◆直接积分法
例4
3 2 3
x
x
3 2 dx
x

x 2 2 3 C 解 原式 2 3 dx 2 x 3 3 ln 2 3 3dx 例5 1 cos 2 x 3 3 3 2 dx sec xdx tan x C 解 原式 2 2 cos x 2 2
◆不定积分的概念
定义 在区间I 上,f x 的带有任意常数项的原函数称为f x 在区间I 上的不定积分,记作 f ( x)dx。
积分号 即 F ( x) f ( x) 被积函数
f x dx — 被积表达式
f ( x)dx F (x) C
积分变 量
积分常数
2
(12) csc xdx cot x C
2
(13) sec x tan xdx sec x C (14) csc x cot xdx csc x C
◆不定积分的基本性质
1 f x g x dx f x dx g x dx
x R
所以 sin x 是 cos x 在
, 内的一个原函数.
问题: cos x 是 sin x 的( 导函数 ) 。 ? 问题:sin
x 的导函数是 cos x,它的一个原函数是 cos x 。
◆原函数与导函数的关系
原函数 导函数
◆原函数的性质
1、如果有F ( x) f ( x) ,则 F ( x) C f ( x)
1 dx 例 题 1、求 2 1 x 1 , 解 由于 (arctan x) ' 2 1 x
1 所以 arctan x是 的一个原函数, 2 1 x
dx 故 arctan x C 2 1 x 1 2、求 dx x 解 因为 ln | x | 1 x
1 所以 x dx ln | x | C, (x 0).
csc x sec x dx
2 2
cot x tan x C
作 业
• P106

3(2,4,6,8);4;5
换元积分法
预习 第二节
x
x
1 (7) dx arctan x C 2 1 x arc cot x C 1 (8) dx arcsin x C 1 x 2 arccos x C (9) sin xdx cos x C (10) cos xdx sin x C (11) sec xdx tan x C
不定积分与导数的关系
Constant
f ( x)dx f ( x) 即 d f ( x )dx f ( x )dx (1) (2) F ( x)dx F ( x) C 即 dF ( x) F ( x) C
先积分,后微分,形式不变;先微分,后积分,相差一个常数。
引例:已知物体的运动方程为 s s(t ) ,则物体运动的即时速度
F ( x) f ( x) 或 dF ( x) f ( x)dx, 则称 F ( x) 是 f ( x)在区间 I 内的一个原函数
定义 如果在区间 I 内的每一点处,有 (antiderivative).
例如:因为
sin x cos x
所以 f x 2 xdx x 2 C
由 f 1 4,可得 C 3
所以所求的曲线方程为 y x2 3
◆基本积分表 P104
(1) 0dx C (2) kdx kx C 1 1 x C (3) x dx 1 ( 1) 1 (4) dx ln x C x (5) e dx e C x a x (6) a dx C ln a
相关文档
最新文档