管壳式换热器的机械设计
管壳式换热器设计与选型步骤

生意社08月13日讯
1、工艺计算:
1>按流体种类、冷却流体的流量、进出口温度、工作压力等计算出需要传递的热量。
2>根据流体的腐蚀性及其它特性选择管子和壳体的材料。
并根据材料加工特性,流体的流量、压力、温度,换热管与壳体的温度,需要传递热量的多少,造价的高低及检修清洗方便等因素,决定采用哪一种类型的管壳式换热器。
3>确立流体的流动空间,即确定管程与壳程内分别是什么介质
4>确定参与换热器的两种流体的流向,使并流、逆流还是错流。
并计算出流体的有效平均温差.
5>根据经验初选传热系数K,并估算所需传热面积A。
6>根据计算出传热面积A,参照我国管壳式换热器标准系列,初步确定换热器的基本参数(管径、管程数、管子根数、管长、管子排列方式、折流元件等的型式及布置、壳体直径等结构参数)。
7>根据确定的标准系列尺寸,进行传热系数的校核和阻力降的计算。
最后按标准选用换热器或者进行机械设计。
2、机械设计计算
机械设计计算包括:
(1)壳体和管箱壁厚的计算
(2)管子与管板连接结构设计
(3)壳体与管板连接结构设计
(4)管板厚度计算
(5)折流板、支持板等零部件的结构设计
(6)换热管与壳体在温差和流体压力联合作用下的应力计算
(7)管子拉脱力和稳定性校核
(8)判断是否需要膨胀节,如需要,则选择膨胀节结构形式,并进行有关的计算。
(9)接管、接管法兰、容器法兰、支座等的选择及开孔补强设计。
固定管板式换热器机械设计【精品毕业设计(论文)】[管理资料]
![固定管板式换热器机械设计【精品毕业设计(论文)】[管理资料]](https://img.taocdn.com/s3/m/072b172184254b35effd3410.png)
固定管板式换热器机械设计摘要固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。
这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。
固定管板式换热器能承受较高的操作压力和温度,在高温高压和大型换热器中,其占有绝对优势。
本次设计的题目是乙二醇塔底进料换热器的设计,课题预期达到的目标为:换热器面积的计算),管程壳程压力降的计算(),工艺结构尺寸的计算:管程数(6管程),换热管的确定(内径:25mm 数量450根),壳体内径(800mm),壳程数(1壳程)的计算,折流板的选型(形式:弓形折流板,数量:13)等。
换热器的强度计算:对筒体、管箱厚度的计算和校核,对壳体及管箱各处开孔补强,对延长部分兼做法兰的计算及强度核算。
经水压试验、压力校核后显示结果全部合格。
换热器的结构设计:折流板、法兰(乙型平焊法兰)、换热管、支座(鞍式支座)、垫片(石棉橡胶板垫片)的规格及选型。
完善设计图纸及设计说明书。
关键词:换热器;工艺;结构;强度Mechanical design of fixed tube-sheet heat exchangerAbstractFixed tube plate heat exchanger is a typical structure of the shell and tube heat exchanger and a wide range of heat exchanger. This type of heat exchanger has the characteristics of a simple structure, compact, high reliability and wide adaptability , and low cost of the production, wide choice of used materials, more convenient of cleaning heat exchanger the surface . Fixed tube plate heat exchanger can withstands the higher operating pressure and temperature, so it has the absolute advantage in the possession of high temperature and high pressure heat exchangers and large,.This design topic is naphtha condenser design, the goal which the topic anticipated achieved:The craft design of heat exchanger:the heat transfer area computation;tube side pressure drop computation(≤);the craft structure size computation:number of tube passes(2 tube passes),the number of heat exchange tube(insidediameter:25mm,number:450),the inside diameter of shell, number of shell passes(1 shell passes),the lectotype of baffle board(form:segmental baffle,number:13)etcThe strength calculation of heat exchanger:the computation and check of cylinder thinckness and channel thinckness,the shell and the reinforcement for opening supplements the intensity,the extension part concurrently makes the flange the computation and the intensity calculation. Examinatation part carried on the hydraulic pressure test, the pressure examination and so on, in which all results has been all qualified The structural design of the heat exchanger:The specification and lectotype of baffle plate、flange(type A manhole weded flange)、heat exchange tube、suppot(saddle support)、gasket(paronite gasket)Consummates the design paper and the design instruction booklet Key words: heat exchanger; crafts; structure; strength目录1 引言 (1)换热器的用途 (1) (1)换热器的发展趋势 (2)2 固定管板式换热器的结构设计 (4)设计参数的确定 (4)设计压力 (4)计算压力 (5)设计温度 (5)厚度及厚度附加量 (5)焊接接头系数 (6)许用应力 (6)材料的选取 (7)力学性能 (8)化学成分 (8)管程结构 (9)换热管 (9)管板 (9)管箱 (10)管束分程 (10)换热管与管板连接 (11)壳程结构 (13)壳体 (13)折流杆 (13)折流板 (14)防短路结构 (15) (16)开孔和开孔补强设计 (16)补强结构 (16)开孔补强设计准则 (17)允许不另行补强的最大开孔直径 (18)密封装置设计 (19)焊接接头结构 (19)焊接接头形式 (20)坡口形式 (21)压力容器焊接接头分类 (21)3 换热器结构计算 (23)壳程圆筒计算 (23)厚度计算 (23)液压试验校核 (24)压力及应力计算 (24)前端管箱筒体计算 (25)厚度计算 (25)液压试验校核 (26)压力及应力计算 (27)后端管箱筒体计算 (27)厚度计算 (27)液压试验校核 (28)压力及应力计算 (29)封头计算 (30)前端封头计算 (30) (30) (31)垫片 (31)螺栓 (31) (33)管箱开孔补强计算 (33) (36)内构件的选取 (38) (38)管束分程 (39) (39)管板的计算与校核 (39)壳层圆筒 (39)管箱圆筒 (40)换热管 (40)管板 (41)管箱法兰 (42)壳体法兰 (42)系数计算 (43)管板参数计算 (43)系数计算 (43) (44)P (44)sP (46)t4 结论 (50)参考文献 (51)谢辞 (52)1引言换热器的用途换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计学院:机械与动力工程学院专业:热能与动力工程专业班级:11-02班学号:姓名:指导老师:小组成员:目录第一章设计任务书 (2)第二章管壳式换热器简介 (3)第三章设计方法及设计步骤 (5)第四章工艺计算 (6)4.1 物性参数的确定 (6)4.2核算换热器传热面积 (7)4.2.1传热量及平均温差 (7)4.2.2估算传热面积 (9)第五章管壳式换热器结构计算 (11)5.1换热管计算及排布方式 (11)5.2壳体内径的估算 (13)5.3进出口连接管直径的计算 (14)5.4折流板 (14)第六章换热系数的计算 (20)6.1管程换热系数 (20)6.2 壳程换热系数 (20)第七章需用传热面积 (23)第八章流动阻力计算 (25)8.1 管程阻力计算 (25)8.2 壳程阻力计算 (26)总结 (29)第一章设计任务书煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。
设计任务及操作条件1、设备形式:管壳式换热器2、操作条件(1)煤油:入口温度140℃,出口温度40℃(2)冷却水介质:入口温度26℃,出口温度40℃第二章管壳式换热器简介管壳式换热器是在石油化工行业中应用最广泛的换热器。
纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。
目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。
强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。
目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。
管壳式换热器的设计及计算

第一章换热器简介及发展趋势1.1 概述在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。
进行热量传递的设备称为换热设备或换热器。
换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。
由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。
同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。
当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。
各种新型高效紧凑式换热器的应用范围将得到进一步扩大。
在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。
管壳式换热器毕业设计简介

管壳式换热器(过热蒸汽0.65MPa,295℃;水0.8MPa,50℃)摘要本设计说明书是关于固定管板是换热器的设计,设计依照GB151-1999《钢制管壳式换热器》进行,设计中对换热器进行化工计算、结构设计、强度计算。
设计第一步是对换热器进行化工计算,主要根据给定的设计条件估算换热面积,初定换热器尺寸,然后核算传热系数,计算实际换热面积,最后进行阻力损失计算。
设计第二步是对换热器进行结构设计,主要是根据第一步计算的结果对换热器的各零部件进行设计,包括管箱、定距管、折流板等。
设计第三步是对换热器进行强度计算,并用软件SW6进行校核。
最后,设计结果通过图表现出来。
关键词:换热器,固定管板,化工计算,结构设计,强度计算。
AbtractThe design statement is about the fixed tube sheet heat exchanger .In the design of the heat exchanger ,the chemical calculation,the structure design and the strength calculation must according to GB151-1999“Steel System Type Heat exchanger ”.The first step of the design is the chemical calculation .Mainly according to the given design conditions to estimate the heat exchanger area and select heat exchanger size.Then check the heat transfer coefficient, calculate the actual heat transfer area,and finally calculate the resistance loss.The second step of the design of heat exchanger is the structural design of the heat exchanger. The design of heat exchanger parts mainly according to the first step of calculation.such as tube boxes , the distance control tube, baffled plates .The third step of the design of heat exchanger is the strength calculation and using SW6 software to check. Finally, the design results are shown in figures.Key words: heat changer, fixed tude plate, chemical calculation,structure design, strength calculation.一、前言管壳式换热器是目前应用最广的换热设备,它具有结构坚固、可靠性高、适用性强、选材广泛等优点。
化工设备机械基础第七章习题解答

《化工设备机械基础》习题解答第三篇: 典型化工设备的机械设计第七章管壳式换热器的机械设计一、思考题1.衡量换热器好坏的标准大致有哪些?答:传热效率高,流体阻力小,强度足够,结构可靠,节省材料;成本低;制造、安装、检修方便。
2.列管式换热器主要有哪几种?各有何优缺点?3.列管式换热器机械设计包括哪些内容?答:①壳体直径的决定和壳体壁厚的计算;②换热器封头选择,压力容器法兰选择;③管板尺寸确定;④管子拉脱力的计算;⑤折流板的选择与计算;⑥温差应力计算。
此外还应考虑接管、接管法兰选择及开孔补强等。
4.我国常用于列管式换热器的无缝钢管规格有哪些?通常规定换热管的长度有哪些?答:我国管壳式换热器常用无缝钢管规格(外径×壁厚),如下表2所示。
换热管长度规定为:1500mm, 2000mm, 2500mm, 3000mm, 4500mm, 5000mm, 6000mm, 7500mm, 9000mm, 12000mm。
换热器的换热管长度与公称直径之比,一般在4~25之间,常用的为6~10。
立式换热器,其比值多为4~6。
表 2 换热管规格(mm)5.换热管在管板上有哪几种固定方式?各适用范围如何?答:固定方式有三种:胀接、焊接、胀焊结合。
胀接:一般用在换热管为碳素钢,管板为碳素钢或低合金钢,设计压力不超过4.0MPa,设计温度在350℃以下,且无特殊要求的场合。
焊接:一般用在温度压强都较高的情况下,并且对管板孔加工要求不高时。
胀焊结合:适用于高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用,工作环境极其苛刻,容易发生破坏,无法克服焊接的“间隙腐蚀”和“应力腐蚀”的情况下。
6.换热管胀接于管板上时应注意什么?胀接长度如何确定?答:采用胀接时,管板硬度应比管端硬度高,以保证胀接质量。
这样可避免在胀接时管板产生塑性变形,影响胀接的紧密性。
如达不到这个要求时,可将管端进行退火处理,降低硬度后再进行胀接。
管壳式换热器机械设计参考资料

管壳式换热器机械设计参考资料1前⾔ (1)1.1概述 (1)1.1.1换热器的类型 (1)1.1.2换热器 (1)1.2设计的⽬的与意义 (2)1.3管壳式换热器的发展史 (2)1.4管壳式换热器的国内外概况 (3)1.5壳层强化传热 (3)1.6管层强化传热 (3)1.7提⾼管壳式换热器传热能⼒的措施 (4)1.8设计思路、⽅法 (5)1.8.1换热器管形的设计 (5)1.8.2换热器管径的设计 (5)1.8.3换热管排列⽅式的设计 (5)1.8.4 管、壳程分程设计 (5)1.8.5折流板的结构设计 (5)1.8.6管、壳程进、出⼝的设计 (6)1.9 选材⽅法 (6)1.9.1 管壳式换热器的选型 (6)1.9.2 流径的选择 (8)1.9.3流速的选择 (9)1.9.4材质的选择 (9)1.9.5 管程结构 (9)2壳体直径的确定与壳体壁厚的计算 (11)2.1 管径 (11)2.2管⼦数n (11)2.3 管⼦排列⽅式,管间距的确定 (11)2.4换热器壳体直径的确定 (11)2.5换热器壳体壁厚计算及校核 (11)3换热器封头的选择及校核 (14)4容器法兰的选择 (15)5管板 (16)5.1管板结构尺⼨ (16)5.2管板与壳体的连接 (16)5.3管板厚度 (16)6管⼦拉脱⼒的计算 (18)7计算是否安装膨胀节 (20)8折流板设计 (22)9开孔补强 (25)10⽀座 (27)10.1群座的设计 (27)10.2基础环设计 (29)10.3地⾓圈的设计 (30)符号说明 (32)参考⽂献 (34)⼩结 (35)2 壳体直径的确定与壳体壁厚的计算2.1 管径换热器中最常⽤的管径有φ19mm ×2mm 和φ25mm ×2.5mm 。
⼩直径的管⼦可以承受更⼤的压⼒,⽽且管壁较薄;同时,对于相同的壳径,可排列较多的管⼦,因此单位体积的传热⾯积更⼤,单位传热⾯积的⾦属耗量更少。
换热器的机械设计

7.壳体热应力校核; 8.支座设计。
8
7.2换热管的选用及其与管板的连接 7.2.1 换热管选用 ·常用管子形式:
9
·常用管子材质:碳钢(10,20),低 合金钢(16Mn,15MnV),合金钢 (1Cr18Ni9Ti),铜,钛,铝,塑料, 石墨等。 管子选用,要注意—— 单位传热面积的金属耗量, 传热效果, 结构紧凑, 清洗及结垢等等因素。
15
管与管板焊接形式: 管与管板焊接形式
16
3.胀焊并用 胀焊并用 克服了单纯的焊接及胀接的缺点, 主要优点是: • 连接紧密,提高抗疲劳能力; • 消除间隙腐蚀和应力腐蚀; • 提高使用寿命。 施工方式:先胀後焊;先焊後胀。 胀接——贴胀;强度胀。 焊接——密封焊,强度焊。 根据不同情况具体制定施工工艺。
23
分程举例: 2程—— 管箱分程:
4程——
24
4.分程隔板及其与管板间的密封 管箱结构:Βιβλιοθήκη 25隔板:单层及双层。
26
7.3.5 管板与壳体的连接结构结构 1.固定式管板——用于固定式管板换热器。
27
2.非固定式管板
28
浮头式、U形管式和填料函式换热 器上的管板为可拆式结构,以便清理壳 程。
13
保证紧密性的方法: 保证紧密性的方法 •管板孔开槽; •胀接周边保证清洁; •管子硬度低于管板孔周边 硬度。 保证管端硬度较低并且低 于管板硬度的方法: •管端退火处理。 •选材考虑。
14
2.焊接 焊接
优点: • 高温高压下能保证连接 的紧密性; • 管板孔加工精度要求不 高,低于胀接; • 焊接工艺简单; • 压力不高时可用薄管板。 缺点: • 存在焊接热应力——应 应 力腐蚀; 力腐蚀; • 管与孔间有间隙——形 成介质死区,间隙腐蚀 间隙腐蚀。 间隙腐蚀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一内容
下一内容
回主目录
返回
2013-9-10
7.1 概 述
3、填料函式换热器 优点:造价比浮头式低,检修、清洗容易,填料 函处泄漏能及时发现; 缺点:壳程内介质由外漏的可能,壳程中不宜处 理易挥发、易燃、易爆、有毒的介质。 适用场合:适用于低压小直径场合。
上一内容
下一内容
回主目录
返回
下一内容
回主目录
返回
2013-9-10
7.3 管板结构
2、可拆式 浮头式、U型管式及填料函式换热器固定端管板与 壳体的连接(图7-23)
上一内容
下一内容
回主目录
返回
2013-9-10
7.4 折流板、支撑板、旁路挡板及拦液板的作用于结构 7.4.1 折流板及支承板 1、作用 ①提高壳程内流体的流速; ②加强湍流强度; ③提高传热效率; ④支撑换热管。 (当工艺上无折流板要求而管子较细长时,应考虑有一 定数量的支承板,以便安装和防止管子变形;支撑板的 尺寸、形状可与折流板相同。) 2、结构 折流板和支撑板的常用形式有弓形、圆盘-圆环形 和带扇形切口三种。
上一内容 下一内容 回主目录
返回
2013-9-10
7.4 折流板、支撑板、旁路挡板及拦液板的作用于结构
上一内容
下一内容
回主目录
返回
2013-9-10
7.4 折流板、支撑板、旁路挡板及拦液板的作用于结构
上一内容
下一内容
回主目录
返回
上一内容 下一内容 回主目录
返回
2013-9-10
7.3 管板结构
2、管板厚度的设计方法 1)实心园平板模型 将管板当作受均布载荷的实心园 板,以按弹性理论得到的圆平板最大弯曲应力为主要 依据,并加以适当的修正系数来考虑管板开孔削弱和 管束的实际支承作用,由此得到管板厚度的计算公式 ,偏于安全。 2)弹性基础模型 将管束当作弹性支承,而管板则作 为放置于这弹性基础上的圆板,然后根据载荷大小、 管束的刚度及周边支承情况来确定管板的弯曲应力。 由于它较全面地考虑了管束的支承和温差的影响,因 而较精确,但计算公式较多,计算过程繁琐,GB1511999采用的就是此法。
2013-9-10
7.3 管板结构
最外层管壁与壳壁之间的最小距离为10mm,主要 是为折流板易于加工,不易损坏。 7.3.3 换热器管板强度计算的理论依据简介 1、影响固定管板应力大小的因素 ① 管板自身的直径、厚度、材料强度和使用温度等; ② 管束对管板的支撑作用; ③ 管孔对管板强度和刚度的影响; ④ 管板周边支撑形式的影响; ⑤ 温度对管板的影响; ⑥ 其他因素。
第七章 管壳式换热器的机械设计
7.1 概述
7.2 管子的选用及其与管板的联接 7.3 管板结构 7.4 折流板、支撑板、旁路挡板及拦 液板的作用与结构 7.5 温差应力 7.6 管箱与壳程接管 7.7 管壳式换热器的机械设计举例
上一内容 下一内容 回主目录
返回
2013-9-10
第七章 管壳式换热器的机械设计
上一内容
下一内容
回主目录
返回
2013-9-10
7.1 概 述
适用场合:适用于壳程介质清洁,不易结垢,管程需 清洗以及温差不大或温差虽大但是壳程压力不大的场 合。
上一内容 下一内容 回主目录
返回
2013-9-10
7.1 概 述
2、浮头式换热器 优点:管束可以抽出,便于清洗; 缺点:换热器结构较复杂,金属耗量较大。 适用场合:适用于介质易结垢的场合。
7.3 管板结构
3.组合排列法 多程换热器中。 7.3.2 管间距: 管间距指两相邻换热管中心的距离。其值的确定需 要考虑以下几个因素: ① 管板强度; ② 清洗管子外表面时所需要的空隙; ③ 换热管在管板上的固定方法。 一般要求管间距≥1.25d0,还应符合规定:
上一内容
下一内容
回主目录
返回
上一内容 下一内容 回主目录
返回
2013-9-10
7.3 管板结构
3)菱形面积法 取管板上相邻四根管子之间的菱形面 积,按弹性理论求此面积在均布压力作用下的最大弯 曲应力。由于此方法与管板实际受载情况相差较大, 所以尽用于粗略估算。
7.3.4 管程的分程及管板与隔板的连接 1、分程原因 当换热器所需的换热面积较大,而管子做得太长 时,就得增大壳体直径,排列较多的管子。此时,为 了增加管程流速,提高传热效果,须将管束分程,使 流体依次流过各程管子。
上一内容 下一内容 回主目录
返回
2013-9-10
7.4 折流板、支撑板、旁路挡板及拦液板的作用于结构 3、尺寸 ①厚度与壳体直径和折流板 间距有关;折流板最小厚度 按表7-6选取。 ②弓形折流板间距:最小间 距≥max{0.2Di,50mm} 最大间距:按表7-7规定选 取,且≤Di。 ③间隙:折流板外径与壳体 之间的间隙要适当,因为过 小给安装带来困难,过大又 影响传效率,详见表7-8。
上一内容 下一内容 回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
3、结构型式 多用光管,因 为结构简单,制 造容易;为强化 传热,也采用异 型管、翅片管、 螺纹管等。
上一内容
下一内容
回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
4、材料 根据压力、温度、介质的腐蚀性能决定。主要有碳 素钢、合金钢、铜、钛、塑料、石墨等。 7.2.2管子与管板的连接 1、胀接 1)过程:最普通的是利用胀管器挤压伸入管板孔中的 管子端部,使管端发生塑性变形,管板孔同时产生弹 性变形,取去胀管器后,管板与管子产生一定的挤压 力,贴在一起达到密封紧固连接的目的。 2)适用范围:换热管为碳素钢,管板为碳素钢或低合 金钢,设计压力≤4Mpa,设计温度≤300℃,且无特殊 要求的场合。外径d<14mm,不适合胀接。
三角形排列紧凑,传热效果好,同一板上管子比 正方形多排10%左右,同一体积传热面积更大。适用 于壳程介质污垢少,且不需要进行机械清洗的场合。
上一内容 下一内容 回主目录
返回
2013-9-10
7.3 管板结构
2、正方形和转角正方形排列
正方形和转角正方形排列,管间小桥形成一 条直线通道,便于机械清洗。要经常清洗管子外 表面上的污垢时,多用正方形排列或转角正方形 排列。下一内容 回主目录 返回 上一内容 2013-9-10
上一内容 下一内容 回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
上一内容
下一内容
回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
3)要求管 板硬度大 于管子硬 度,否则 将管端退 火后再胀 接。 胀接时管 板上的孔 可以是光 孔,也可 开槽。
上一内容 下一内容 回主目录
返回
上一内容
下一内容
回主目录
2013-9-10
7.1 概 述
2、冷凝器(condenser) 1)分离器 2)全凝器 3、加热器(一般不发生相变)(heater) 1)预热器(preheater)——粘度大的液体,喷雾 状不好,预热使其粘度下降; 2)过热器(superheater)——加热至饱和温度以 上。 4.蒸发器(etaporater)——发生相变 5.再沸器(reboiler) 6.废热锅炉(waste heat boiler)
上一内容 下一内容 回主目录
返回
2013-9-10
7.3 管板结构
2、分程原则 ① 各程换热管数应大致相等; ② 相邻程间平均壁温差一般不应超过28℃; ③ 各程间的密封长度应最短; ④ 分程隔板的形状应简单。 3、分程隔板 分为单层和 双层两种。双层 隔板具有隔热空 间,可防止热流 短路。
上一内容 下一内容 回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
2)先胀后焊:强度胀+密封焊 适用于管子与管板材料焊接性能较差的材料,胀接 时不用润滑油,可防止产生焊接裂纹。
上一内容
下一内容
回主目录
返回
2013-9-10
7.3 管板结构
7.3.1换热管排列方式 1 正三角形和转角正三角形排列
上一内容 下一内容 回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
7.2.1 管子的选用 1、直径 小直径管子单位传热面积的金属消耗量小,传热系 数稍高,但容易结垢,不易清洗,用于较清洁的流体 ;大直径管子用于粘性大或污浊的流体。 2、规格 常采用无缝钢管规格(外径×壁厚),长度按规定 选用(1500mm、2000mm、2500mm、3000mm、 4500mm、5000mm、6000mm、7500mm、9000mm、 12000mm)。其长度与公称直径之比,一般为4~25 ,常用的为6~10,立式换热器多为4~6。
上一内容 下一内容 回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
结构:主要有4种
上一内容
下一内容
回主目录
返回
2013-9-10
7.2 管子的选用及其与管板的连接
3、胀焊并用 前面我们讲了胀接、焊接后,会发现它们各自有优 、缺点,因而目前广泛应用了胀焊并用的方法,这种 方法能提高连接处的抗疲劳性能,消除应力腐蚀和间 隙腐蚀,提高使用寿命。 胀焊并用连接形式主要有: 1)先焊后胀:强度焊+贴胀 高温高压换热器中大多用厚壁管,胀接时要使用润 滑油,进入接头后缝隙中会在焊接时生成气体,恶化 焊缝质量,只要胀接过程控制得当,先焊后胀可避免 这一弊病。
上一内容
下一内容
回主目录
返回
2013-9-10
7.1 概 述
7.1.3 管壳式换热器机械设计内容 管壳式换热器的设计: 1、根据化工生产工艺条件的要求,通过化工工艺计算 ,确定换热器的传热面积,同时选择管径、管长,决 定管数、管程数和壳程数; 2、进行机械设计。内容有: 1)壳体直径的决定和壳体厚度的计算; 2)换热器封头选择,压力容器法兰选择; 3)管板尺寸确定; 4)折流板的选择与计算; 5)管子拉脱力的计算; 6)温差应力计算。