2DPSK(systemview)通信系统仿真实验报告
《通信系统仿真技术》实验报告

封面作者:Pan Hongliang仅供个人学习《通信系统仿真技术》实验报告实验一:SystemView操作环境的认识与操作1.实验题目:SystemView操作环境的认识与操作2.实验内容:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)、平方分析、及其谱分析;并讨论定时窗口的设计对仿真结果的影响。
3.实验原理:在设计窗口中单击系统定时快捷功能按钮,根据仿真结果设定相关参数。
采样点数=(终止时间-起止时间)×〔采样率〕+1正玄信号S(t)=cos(wt)其平方P(t)=cos(wt)*cos(wt)=[cos(2wt)+1]/2P(t)频率是S(t)的二倍4.实验仿真:实验结论:SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次的设计、仿真要求。
实验二:学习系统参数的设定与图符的操作实验题目:学习系统参数的设定与图符的操作实验内容:将一正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)与高斯信号相加后观察输出波形及其频谱,由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。
实验原理:高斯信号就是信号的各种幅值出现的机会满足高斯分布的信号。
当高斯信号不存在是正玄信号不失真,随着高斯信号的增加正玄信号的失真会越来越大。
实验仿真:实验结论:恒参信道的干扰信号常用高斯白噪声信号来等效。
而无线信道是一种时变的衰落信道,其衰落特性主要表现为具有多普勒功率谱特性的快衰落和具有阴影效应的慢衰落。
实验三:接收计算器的使用及滤波器的设计实验题目:接收计算器的使用及滤波器的设计实验内容:1、正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)、及其平方分析窗口的接收计算器的使用;(实现3个以上运算功能)。
2、单位冲激响应仿真、增益响应分析。
基于system_view的pcm+2dpsk_仿真及系统抗噪声性能测试实验报告.docx

通信系统实验报告--- 基于system view的2DPSK+PCM传输仿真一、系统仿真目的1、了解PCM+2DPK通信系统的原理和信息传输方案2、掌握通信系统的设计方法与参数选择原则3、掌握由图符模块建立了系统并构成通信系统的设计方法4、熟悉通信系统的SYSTEMVIEW仿真测试环境系统仿真内容简介5、测试实验所搭建2dpsk传输系统抗噪声性能,并与理论|11|线作对比6、观测不同信噪比条件下关键信号眼图变化情况,进一步了解眼图的作用与含义7、了解信号在系统传输过程屮衿阶段频率分量的变化,加深对限号调制解调在频域的认知二、实验内容1、用三个频率和幅度分别为400HZ, 2v、500HZ, 2v、700HZ, 0.5v的正弦信号作为系统的输入,经过PCM编码系统转换为数字信号,再经并串转换转换为基带信号2、以基带信号作为2DPSK系统输入信号,码速率Rb = 16kbit/So采用键控法实现2DPSK的调制,采用非相干解调法实现2DPSK的解调,分别观察系统各点波形。
3、将2DPSK系统输出信号进行串并变换,再经PCM解码系统还原为系统初始输入的模拟信号,并观察信号时域和频域的变化。
4、使丿IJ仿真软件SYSTEMVIEW,从SystemView配置的图标库中调岀相关合适的图符并讲行合适的参数设置,并连好图符间的连线,完成对PCM编码、2DPSK键控调制、非相干解调、pcm解码仿真电路设计,并完成仿真操作。
5、观察各点波形:包括时域波形、眼图、部分信号瀑布图、2dpsk系统抗噪声性能|11|线等, 以及记录主要信号点的功率谱密度。
6、分析实验所得图形数据,判断系统传输的正确性。
7、搭建抗噪声性能测试原理图,测试在不同信噪比环境下,系统误码率的大小,并以此绘制出误码率随信噪比变化的数据曲线,即2DPSK系统的抗噪声性能,绘制该1111线,并与理论曲线进行对比。
三、原理简介1、PCM编码译码原理(1)编码原理编码过程分三步:抽样:需要满足低通采样定理,采样频率8kHz o量化:均匀量化时小信号量化谋差大,因此采用不均匀选取量化间隔的非线性量化方法,即景化特性在小信号时分层密、最化间隔小,而在大信号时分层疏、最化间隔大。
systemview仿真实验2ASK 2PSK 2FSK QAM

通讯原理仿真实验报告年级院系:信息学院专业班级:通信工程一班姓名:学号:日期:2012.6.1实验一二进制振幅键控调制一、实验目的1、了解掌握二进制数字调制中的几种常见和基本的方式。
2、通过仿真掌握各种二进制数字调制方法的原理。
二、实验内容1、仿真二进制振幅键控调制(2ASK或OOK),观察仿真结果。
三、设计与仿真(1)设计过程及设计图(2)设计仿真结果(3)数据分析第一图为调制后的2ASK.第二图为非相干解调的信号.第三图为相干解调后的信号.两个解调后的信号均与调制信号相同。
有一定的延时.四、实验心得二进制振幅键控是通过控制载波的幅度来实现调制的。
信号的产生有两种方法:一种是调幅法,一种是键控法。
本实验采用的是键控法。
键控是通过单刀双掷开关实现的。
两种解调均恢复了源信号。
二进制振幅键控的抗噪性能较差一般在实际中不采用。
实验二二进制频移键控调制一、实验目的1、了解掌握二进制数字调制中的几种常见和基本的方式。
2、通过仿真掌握各种二进制数字调制方法的原理。
二、实验内容1、仿真二进制移频键控(2FSK),观察仿真结果。
三、设计与仿真(1)设计过程及设计图(2)设计仿真结果(3)数据分析第一图是调制信号,第二图是解调后的输出信号。
输入与输出信号相同,只是有一点延迟。
四、实验心得二进制频移键控使用不同的频率表示1和0.本实验解调使用的是相干解调.50赫兹的数字信号经500赫兹载波的调制.加上信道噪声后,分别相干解调.将两信号经比较后,还原原数字信号.实验三二进制移相键控调制一、实验目的1、了解掌握二进制数字调制中的几种常见和基本的方式。
2、通过仿真掌握各种二进制数字调制方法的原理。
二、实验内容1、仿真二进制移相键控及二进制差分相位键控(2PSK及2DPSK)三、设计与仿真(1)设计过程及设计图(2)设计仿真结果(3)数据分析第一图为源信号.第二图为调制的2PSK.第三图为调制的2DPSK. 第四图为2PSK 解调后的信号.第五图为2DPSK解调后的信号.由图知,解调后的波形与源图型一致,但有一定的延时.四、实验心得二进制相移键控是载波相位按基带脉冲序列的规律而改变的一种数字调制方式.本实验用的是2PSK和2DPSK两种相位键控,并分别解调.解调采用的是相干解调的方法.2DPSK中的相对码是通过将输出信号经过一个单位码元宽度延时与源信号做模2和运算来实现.其相干解调也是用延时方法.实验四现代数字调制一、实验目的1、了解几种常见的现代数字调制方式。
2ASK实习报告

通信系统课程设计实习报告题目:幅移键控2ASK系统设计、建模与计算机仿真分析班级:信工112姓名:学号:指导教师:实习时间:2013.11.25 —12.06一、实习目的1、熟练掌握SystemView软件,了解各功能模块的操作和使用方法;2、了解2ASK系统的电路组成、工作原理和特点;3、分别从时域、频域视角观测2ASK系统中的基带信号、载波以及已调信号;4、培养通信系统建模和仿真设计能力及软件调试和分析能力。
二、实习仪器计算机、SystemView软件仿真三、设计内容1、调制方法二进制幅度键控(2ASK)是一种载波幅度随着调制信号的“0”和“1”在两个状态之间变化的调制方式,而载波的频率和初相保持不变。
2ASK信号的产生方法(调制方法)有两种。
下图(a)是一般的模拟幅度调制方法,输入信号为二进制数字信号。
图(b)是二进制幅度键控方式,载波在二进制调制信号1或0的控制下通或断。
2、2ASK的解调2ASK常见的解调方法分为非相干解调和相干解调两种。
(1)非相干解调非相干解调又称为包络检波法,原理图如下(a)所示。
在图中,接收信号首先通过一个带通滤波器,滤除带外噪声和杂散信号,同时图中的整流器和低通滤波器构成一个包络检波器,与常见的AM信号的解调器相比,该图中增加了一个抽样判决器,它是用来对解调后的有畸变的数字信号进行定时判决,以提高数字信号的接收性能。
(2)相干解调相干解调是另外一种常见的解调方法,它是在接收端利用本地载波与接收信号相乘,得到包含基带信号频率分量的输出信号,然后通过低通滤波器除去无用频率分量让基带信号通过,并将其送至抽样电路进行判决。
其电路原理图如(b)所示,因为在相干解调法中相乘电路需要有相干载波cos c,这个信号是由收信机从接收信号中提取出来的,并且和接收信号的载波同频同相,所以这种方法比包络检波要复杂些。
3、SystemView仿真原理图和各个输出波形显示图如下:图(1)2ASK信号调制与解调的SystemView仿真原理图图(2)调制信号时域波形图(3)调制信号与载波相乘后的已调信号时域波形图(4)过带通滤波器后时域波形图(5)半波整流后时域波形图(6)过低通滤波器后时域波形图(7)非相干解调后时域输出波形图(8)相干解调后时域输出波形2ASK调制信号与解调信号输出波形比较可看出,已调信号经过信道时,受到不同噪声的干扰,导致在接受端出现的已调信号中混入了噪声,该已调信号经过半波整流器和抽样判决器后输出的波形和原始信号相比虽然有着部分的不吻合,但其参量是相同的。
实验四 2DPSK系统的仿真实验

图1
Communications Blockset / Source Coding 库下的 Differential Encoder 模块
Communications Blockset / Utility Functions 库下的 Unipolar to Bipolar Converter 模块
Communications Bll Passband Modulation/PM 库下的
码元间隔与数字信号 采样周期要一致
图4
进制数 要一致
图5 仿真相对相移键控方法产生 2DPSK 时,可以用 M-DPSK Modulator Passband 模块完成 2DPSK 的调制功能,该模块的参数设置如图 7 所示,注意各参数的设置方法;M-DPSK Demodulator Passband 模块完成 2DPSK 的解调功能,该模块的参数设置如图 8 所示,注意解 调模块的参数设置必须与调制模块的相关参数设置一致。
图6 46
2DPSK 信号的频谱如图 9 所示。2DPSK 信号时域波形如图 10 所示。
图7
四、实验内容
1. 进一步熟悉并掌握 Matlab/Simulink 基本库、通信库和 DSP 库中较为重要的一些功能 模块的作用以及相应功能参数的物理意义与设置方法。
2. 搭建 2DPSK 模拟法仿真模型如图 1 所示。设置系统参数并调试,同时观测并记录 A~D 各点的时域波形以及 D 点的频谱。
数字信号 的进制数
数字信号 采样周期
图3 43
数设置如图 4 所示,注意该模块差分的性质;单双极性变换 Unipolar to Bipolar Converter 模 块的参数设置如图 5 所示,注意进制数的设置值必需与 Random Integer Generator 模块一致; Random Number 模块产生一个高斯型分布的随机噪声,该模块的参数设置如图 6 所示。
systemview通信系统仿真实验二-实验报告模版

[实验二] 滤波器与线性系统
一、实验目的
1、掌握滤波器的各种设计方法。
2、掌握各种滤波器的参数设计。
3、掌握系统的根轨迹图和波特图。
二、实验内容
设计一带通滤波器,带宽为180Hz、中心频率为2100Hz,用巴特沃斯和切比契夫两种方式完成。
要求:
(1)学习线性系统的参数设计。
(2)学习FIR滤波器和模拟滤波器的设计。
(3)观察系统的根轨迹图和波特图。
(4)分别用2种方法设计2个滤波器系统,观察仿真结果。
三、实验结果
1、巴特沃斯带通滤波器仿真原理图如下:
结果如下:
未经巴特沃斯带通滤波器滤波的信号波形
未经巴特沃斯带通滤波器滤波的信号频谱
巴特沃斯带通滤波器滤波后输出信号的波形
巴特沃斯带通滤波器滤波后输出信号的频谱
结果分析:由频谱图可知,经过巴特沃斯带通滤波器滤波后,频率为1800Hz的信号被滤掉,频率为2100Hz的信号通过。
2、切比契夫带通滤波器仿真原理图如下:
结果:
未经切比契夫带通滤波器滤波的信号波形
未经切比契夫带通滤波器滤波的信号频谱
切比契夫带通滤波器滤波后输出信号的波形
切比契夫带通滤波器滤波后输出信号的频谱
结果分析:由频谱图可知,经过切比契夫带通滤波器滤波后,频率为1800Hz的信号被滤掉,
频率为2100Hz的信号通过。
用System-View仿真实现2PSK

通信系统实验实验报告数字频带传输系统及其性能估计实验——2PSK模拟调制、相干解调数字频带传输系统及其性能估计实验 ——2PSK 模拟调制、相干解调用System View 仿真实现二进制移相键控(2PSK )模拟调制1、实验目的(1)了解2PSK 系统模拟调制的电路组成、工作原理和特点;(2)分别从时域、频域视角观测2PSK 系统中的基带信号、载波及已调信号; (3)熟悉系统中信号功率谱的特点。
2、实验内容以PN 码作为系统输入信号,码速率Rb =20kbit/s 。
(1)采用模拟调制法实现2PSK 的调制;观测已调的2PSK 波形。
(2)获取主要信号的功率谱密度。
3、实验原理在二进制数字调控中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK )信号。
通常用已调信号载波的0°和180°分别表示二进制数字基带信号的1和0。
二进制移相键控信号的时域表达式为⎥⎦⎤⎢⎣⎡-=∑n s n PSK nT t g a t e )()(2t c ωcos其中,n a 选择双极性,即n a =⎩⎨⎧-,1,1P P-1发送概率为发送概率为)(t g 是脉宽为S T 、高度为1的矩形脉冲,则有⎩⎨⎧-=,cos ,cos )(2t t t e c c PSK ωω P P -1发送概率为发送概率为 当发送二进制符号1时,已调信号)(2t e PSK 取0°相位,发送二进制符号0时,)(2t e PSK 取180°。
若用n ϕ表示第n 个符号的绝对相位,则有)(2t e PSK )cos(n c t ϕω+=,其中⎩⎨⎧︒︒=1800n ϕ 符号发送符号发送0,1,这种以载波的不同相位直接表示相应二进制数字信号的调制方式,成为二进制绝对移相方式。
其模拟调制原理图如下:4、系统组成、图符块参数设置及仿真结果:图1 2PSK 模拟调制与相干解调系统组成码型变换乘法器双极性)(2t e PSK tc cos图2 单/双码变换图3 模拟调制其中图符0产生单极性PN序列,经过图符2、3转换后为双极性PN序列,传码率为20kbit/s;图符6输出正弦波,频率为40kHz;图符4 输出模拟调制的2PSK 信号;图符12 输出高斯噪声。
2PSK通信系统仿真实验报告

2PSK通信系统仿真实验报告班级:姓名:学号:一、实验目的1. 了解通信系统的组成、工作原理、信号传输、变换过程;2. 掌握通信系统的设计方法与参数设置原则;3. 掌握使用SystemView软件仿真通信系统的方法;4.进行仿真并进行波形分析;二、实验任务使用Systemview进行系统仿真任务,要经过以下几个步骤:1.系统输入正弦波频率:500 Hz;码元传输速率:64kBd;2. 设计一通信系统,并使用SystemView软件进行仿真;3. 获取各点时域波形,波形、坐标、标题等要清楚;滤波器的单位冲击相应和幅频特性曲线;4. 获取主要信号的功率谱密度;5. 获取眼图;6.提取相干载波;7.数据分析及心得体会要求手写。
三、原理简介1.PCM系统原理.脉冲编码调制通常把从模拟信号抽样、量化,直到变换成二进制符号的基本过程,称为脉冲编码调制(Pulse Code Modulation PCM),简称脉码调制。
原理框图如图1-1所示:号输入PCM信号输出冲激脉冲图1-1 PCM编码方框图.编码过程由冲激脉冲对模拟信号进行抽样,抽样信号虽然是时间轴上离散的信号,但仍是模拟信号。
为了实现以数字码表示样值必须采用“四舍五入”的方法将抽样值量化为整数,量化后的抽样信号与量化前的抽样信号相比较,有所失真且不再是模拟信号,这种量化失真在接收端还原成模拟信号时表现为噪声,称为量化噪声。
量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。
在量化之前通常用保持电路将其作短暂保存,以便电路有时间对其进行量化。
然后在图1-1中的编码器中进行二进制编码。
这样,每个二进制码组就代表了一个量化后的信号抽样值,即完成了PCM编码的过程。
译码过程与编码过程相反。
如图1-2所示。
图1-2 PCM译码原理图2.二进制移相键控(2PSK)的基本原理:2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2DPSK传输系统仿真及其性能估计
———模拟调制及非相干解调
学院:
班级:
学号:
姓名:
验收日期:
目录
一.系统仿真目的--------------------------p1 二.系统仿真任务--------------------------p1 三.原理简介------------------------------p1 四.系统组成框图及图符参数设置------------p3 五.各点波形------------------------------p8 六.主要信号的功率谱密度------------------p18 七.滤波器的单位冲击响应及幅频特性曲线----p22 八.系统抗噪声性能分析--------------------p24 九.实验心得体会--------------------------p26
⏹一.系统仿真目的
1. 了解数字频带传输系统的组成、工作原理及其抗噪声性能;
2. 掌握通信系统的设计方法与参数选择原则;
3. 掌握使用SystemView软件仿真通信系统的方法。
⏹二. 系统仿真任务
1. 设计2DPSK数字频带传输系统,并使用SystemView软件进行仿真;
2. 获取主要信号的时域波形及相关的功率谱,以及滤波器的单位冲击相
应和幅频特性曲线;
3. 对所设计的2DPSK系统进行抗噪声性能分析,并作出误码率曲线。
⏹三. 原理简介
在2PSK信号中,信号相位的变化是以未调正弦波的相位作为参考,用载波相位的绝对数值来表示数字信息的,所以称为绝对移相。
由于相干载波恢复中载波相位的180度相位模糊,导致解调出的二进制基带信号出现反向现象,从而难以实际应用。
为了解决2PSK信号解调过程的反向工作问题,提出了二进制差分相位键控(2DPSK)。
2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。
现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图a.所示。
图a. 2DPSK信号
这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。
如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。
所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。
定义∆Φ为本码元初相与前一码元初相之差,假设:
∆Φ=0→数字信息“0” ∆Φ=π→数字信息“1”
则数字信息序列与2DPSK 信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK 信号相位:0 π π 0 π π 0 π 0 0 π
或:π 0 0 π 0 0 π 0 π π 0
1. 2DPSK 信号的调制原理
2DPSK 信号的的模拟调制法框图如图b.所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。
图b. 模拟调制法原理图
2. 2DPSK 信号解调的差分相干解调法(非相干解调法)
差分相干解调的原理是2DPSK 信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,此后该信号分为两路,一路延时一个码元的时间后与另一路的信号相乘,再经过低通滤波器去除高频成分,得到包含基带信号的低频
码变换 相乘
载波
s(t)
e o (t)
信号,将其送入抽样判决器中进行抽样判决,抽样判决器的输出即为原基带信号。
它的原理框图如图c.所示。
图c. 差分相干解调原理图
四. 系统组成框图及图符参数设置
2DPSK模拟调制及差分相干解调的系统组成框图如下图所示:
其中,图符0用于产生发送序列的绝对码;图符1为异或运算,用于产生对应于发送序列绝对码的相对码序列(其中图符2为延时器,延时一个码元周期);图符5用于产生高频载波信号,通过图符4中的乘法器与相对码序列波形相乘,得出2DPSK信号;图符33用于产生加性高斯噪声,近似模拟传输的信道;图符10表示带通滤波器,用于滤除已调信号的带外噪声,经图符13
的延时处理后,通过图符12的乘法器,与带通滤波器的输出波形差分相乘,其输出波形经图符14所表示的低通滤波器后,再经过图符18,19的采样维持,最终通过图符20表示的缓冲器,得到最终的输出解调序列;图符26用于测量原始输入序列与解调输出序列的误码率及其误码率曲线。
相乘器低通滤波器抽样判决器2DPSK
带通滤波器
延迟T
2DPSK调制端(模拟调制法)
相应的图符参数设置如表1.所示:
表1.模拟调制法图符参数设置表
2DPSK解调端(非相干解调法——差分相干解调法)
相应的图符参数设置如表2.所示:
表2.非相干解调法图符参数设置表
五.各点波形
a)
主要的时域波形
发送序列的绝对码波形 如图1.所示:
图1.
图2. 余弦载波信号的波形如图3.所示:
图3.
图4. 高斯加性噪声的波形如图5.所示:
图5.
图6. 乘法器的输出波形如图7.所示:
图7.
图8. 最终解调输出的绝对码波形如图9.所示:
图9.
b)不同信噪比下的眼图(低通输出的眼图)没加噪声情况下的眼图如图10.所示:
图10.
信噪比为0dB时的眼图如图11.所示:
图11.
图12. 信噪比为20dB时的眼图如图13.所示:
图13.
图14.
c)主要对比信号的覆盖图
绝对码与相对码的覆盖图如图15.所示:
图15.
绝对码与解调输出的覆盖图如图16.所示:
图16.
相对码与2DPSK信号的覆盖图如图17.所示:
图17.
d)主要对比信号的瀑布图
绝对码与相对码的瀑布图如图18.所示:
图18. 绝对码与解调输出的瀑布图如图19.所示:
图19.
相对码与2DPSK信号的瀑布图如图20.所示:
图20. 六.主要信号的功率谱密度
调制端——
1)发送绝对码波形的功率谱如图21.所示:
图21.。