铁的同素异形体 δ相
2020届福建高三化学大题练——物质结构与性质

2020届福建高三化学大题练——物质结构与性质一、简答题1.有A、D、E、G、M、L六种前四周期的元素.A元素的单质,是最轻的气体,D原子核外电子有11种运动状态,E的负一价离子的核外3p轨道全充满.G原子的2p轨道有2个未成对电子,短周期元素M原子与G原子具有相同的价层电子排布.L位于周期表第12纵行且是六种元素中原子序数最大的.下图是由M、L形成的化合物R,其晶胞结构如图所示.请回答下列问题:(1)A元素的名称是______,E原子的原子结构示意图是______(2)化合物A2M是有毒气体,在该化合物分子中,M原子的轨道杂化类型是______,该分子是______分子(填“极性”或“非极性”).(3)E元素的电负性______(填“>”“<”或“=”)M元素的电负性.(4)G的第一电离能比它同周期前一族相邻元素的第一电离能______(填“大”或“小”).(5)G原子的核外电子排布式是______(6)R的化学式为______ (用元素符号表示).已知R晶体的密度为ρ g•cm-3,则该晶胞的边长a______cm.(阿伏伽德常数用N A表示)2.钒(23V)是我国的丰产元素,广泛用于催化及钢铁工业.回答下列问题:(1)钒在元素周期表中的位置为______,其价层电子排布图为______.(2)钒的某种氧化物的晶胞结构如图1所示.晶胞中实际拥有的阴、阳离子个数分别为______、______.(3)V2O5常用作SO2转化为SO3的催化剂.SO2分子中S原子价层电子对数是______对,分子的立体构型为______;SO3气态为单分子,该分子中S原子的杂化轨道类型为______;SO3的三聚体环状结构如图2所示,该结构中S原子的杂化轨道类型为______;该结构中S-O键长有两类,一类键长约140pm,另一类键长约160pm,较短的键为______(填图2中字母),该分子中含有______个σ键.(4)V2O5溶解在NaOH溶液中,可得到钒酸钠(Na3VO4),该盐阴离子的立体构型为______;也可以得到偏钒酸钠,其阴离子呈如图3所示的无限链状结构,则偏钒酸钠的化学式为______.3.如图1所示为血红蛋白和肌红蛋白的活性部分--血红素的结构式.回答下列问题:(1)已知铁是26号元素,写出Fe的价层电子排布式______ ;在元素周期表中,该元素在______ 区(填“s”、“p”、“d”、“f”或“ds”).(2)血红素中含有C、H、O、N、Fe五种元素,C、N、O三种元素的第一电离能由小到大的顺序是______ ;血红素中N原子的杂化方式为______ ;请在图2的方框内用“→”标出的配位键(如果考生选做此题,请自行将图2画在答题卡上).(3)Fe原子或离子能与一些分子或离子形成配合物.Fe(CO)3是一种常见含Fe 配合物,可代替四乙基铅作为汽油的抗爆震剂,其配体是CO分子.写出CO的一种常见等电子体分子的结构式______ ;两者相比较,沸点较高的是______ (填分子式).Fe(CO)5在一定条件下发生分解反应:Fe(CO)5(s)=Fe(s)+5CO (g)反应过程中,断裂的化学键只有配位键,形成的化学键类型是______ .(4)铁有α、γ、δ三种同素异形体,其晶胞如图Ⅰ所示,在三种晶体中最邻近的铁原子间距离相同.图2晶胞中所含有的铁原子数为______ ,图1和图3中,铁原子配位数之比为______ .(5)天然的和绝大部分人工制备的晶体都存在各种缺陷,例如在某种FeO晶体中就存在图Ⅱ所示缺陷:一个Fe2+空缺,另有两个Fe2+被Fe3+所取代.其结果晶体仍呈电中性,但化合物中Fe和O的比值却发生了变化.已知某氧化铁样品组成为Fe0.97O,则该晶体Fe3+与Fe2+的离子数之比为______ .4.I.有X、Y、Z、R四种短周期元素,Y、Z、R同周期.相关信息如下:(1)Z元素在周期表的位置是______ ,Y、Z、R简单离子的半径从大到小的顺序是______ (用离子符号表示);(2)由X、Z两种元素组成的化合物甲,常温下为易挥发的淡黄色液体,甲分子构型为三角锥形,且分子里X、Z两种原子最外层均达到8个电子的稳定结构.甲遇水蒸气可形成一种常见的漂白性物质.则甲的结构式为______ ;(3)化合物乙(Y2R)溶液在空气中长期放置,与氧气反应会生成与过氧化钠的结构和化学性质相似的物质Y2R2,其溶液显黄色.则Y2R2的电子式为______ ,写出乙溶液在空气中变质过程的化学方程式______ .5.铁和铜都是日常生活中常见的金属,有着广泛的用途.请回答下列问题:(1)铁在元素周期表中的位置______ .(2)配合物Fe(CO)x常温下呈液态,熔点为-20.5℃,沸点为103℃,易溶于非极性溶剂,据此可判断Fe(CO)x晶体属于______ (填晶体类型).Fe(CO)x 的中心原子价电子数与配体提供电子数之和为18,则x= ______ .Fe(CO)x在一定条件下发生反应:Fe(CO)x(s)⇌Fe(s)+xCO(g).已知反应过程中只断裂配位键,则该反应生成物含有的化学键类型有______ .(3)k3[Fe(CN)6]溶液可用于检验______ (填离子符号).CN-中碳原子杂化轨道类型为______ ,C、N、O三元素的第一电离能由大到小的顺序为______ (用元素符号表示).(4)铜晶体铜碳原子的堆积方式如图1所示.①基态铜原子的核外电子排布式为______ .②每个铜原子周围距离最近的铜原子数目______ .(5)某M原子的外围电子排布式为3s23p5,铜与M形成化合物的晶胞如图2所示(黑点代表铜原子).①该晶体的化学式为______ .②已知铜和M的电负性分别为1.9和3.0,则铜与M形成的化合物属于______ (填“离子”、“共价”)化合物.③已知该晶体的密度为g.cm-3,阿伏伽德罗常数为NA,则该晶体中铜原子和M原子之间的最短距离为______ pm(只写计算式).6.Fe3+与SCN-形成的配离子颜色极似血液,常被用于电影特技和魔术表演。
同素异形体概念及例子

同素异形体概念及例子同素异形体是指由相同元素组成的不同形态的物质。
这些物质在结构、物理性质和化学性质上存在差异,但都是由同一种元素组成的。
本文将从金属、非金属和稀有气体三个方面介绍同素异形体的概念和例子。
1.金属金属同素异形体是指由相同元素组成的具有不同结构、物理性质和化学性质的金属物质。
下面以铁、铜和铝为例介绍金属同素异形体。
铁的同素异形体包括α铁、β铁、γ铁和δ铁等。
其中,α铁是最常见的铁晶体结构,具有面心立方结构,熔点为1538℃,具有良好的磁性和塑性。
β铁是一种具有体心立方结构的铁晶体,熔点为1385℃。
γ铁是一种具有面心立方结构的铁晶体,熔点为1394℃,具有良好的塑性和韧性。
δ铁是一种具有体心立方结构的铁晶体,熔点为1500℃。
铜的同素异形体包括α铜、β铜、γ铜和δ铜等。
其中,α铜是最常见的铜晶体结构,具有面心立方结构,熔点为1356℃。
β铜是一种具有体心立方结构的铜晶体,熔点为1395℃。
γ铜是一种具有面心立方结构的铜晶体,熔点为1290℃。
δ铜是一种具有体心立方结构的铜晶体,熔点为1300℃。
铝的同素异形体包括α铝、β铝和γ铝等。
其中,α铝是最常见的铝晶体结构,具有面心立方结构,熔点为660℃。
β铝是一种具有体心立方结构的铝晶体,熔点为648℃。
γ铝是一种具有面心立方结构的铝晶体,熔点为585℃。
2.非金属非金属同素异形体是指由相同元素组成的具有不同结构、物理性质和化学性质的的非金属物质。
下面以碳、硅和磷为例介绍非金属同素异形体。
碳的同素异形体包括金刚石、石墨和C60(富勒烯)。
其中,金刚石是典型的原子晶体,硬度极高,熔点高达3570℃,常用于切割和研磨材料。
石墨是一种层状晶体,具有优异的导电性和润滑性,是一种广泛应用的材料。
C60是一种由60个碳原子组成的球形分子,具有特殊的电子结构和化学性质。
硅的同素异形体包括晶态硅和无定形硅。
其中,晶态硅是一种半导体材料,具有优良的导电性和光学性质,广泛用于电子和光伏产业。
2020年人教版第三章晶体结构与性质测试题

第三章晶体结构与性质测试题一、选择题(本题包括16小题,每小题3分,共48分。
每小题只有一个选项符合题意。
)1.物质结构包括原子结构、分子结构、晶体结构。
下列关于物质结构与性质的说法正确的是A.SiO2晶体为原子晶体,CO2晶体为分子晶体B.σ键都是由两个p轨道“头碰头”重叠形成的C.VSEPR模型就是分子的空间构型D.HF、HCl、HBr、HI的热稳定性和还原性从左到右依次减弱2.某物质的晶体中,含A、B、C三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A、B、C的原子个数比依次为A.2∶2∶1 B.1∶3∶1 C.2∶3∶1 D.1∶3∶33.某固体仅由一种元素组成,其密度为5.0 g·cm-3。
用X射线研究该固体的结构时得知:在边长为10-7cm的正方体中含有20个原子,则此元素的相对原子质量最接近于下列数据中的A.32 B.120 C.150 D.1804.下列说法中一定正确的是A.固态时能导电的物质一定是金属晶体B.熔融状态能导电的晶体一定是离子晶体C.水溶液能导电的晶体一定是离子晶体D.固态不导电而熔融状态导电的晶体一定是离子晶体5.下列物质属于分子晶体的是A.熔点是10.31℃,液态不导电,水溶液能导电B.熔点是1070℃,固态不导电,熔融状态能导电,易溶于水C.熔点3550℃,不溶于水,不导电D.熔点是97.80℃,质软,固态可导电,密度是0.97g·cm−36.分析化学中常用X射线研究晶体结构,有一种蓝色晶体可表示为:M x Fe y(CN)z,研究表明它的结构特性是Fe2+、Fe3+分别占据立方体的顶点,自身互不相邻,而CN一位于立方体的棱上,其晶体中的阴离子结构如图示,下列说法正确的是A.该晶体是原子晶体B.M的离子位于上述立方体的面心,呈+2价C.M的离子位于上述立方体的体心,呈+1价,且M+空缺率(体心中没有M+的占总体心的百分比)为50%D.晶体的化学式可表示为MFe2(CN)3,且M为+1价7.CaC2晶体的晶胞结构与NaCl的相似(如图),但CaC2晶体中含有哑铃形C2−2的存在,使晶胞沿一个方向拉长。
1.3铁的同素异构转变

铁碳相图Biblioteka ac1ac3acm还有磁性转变点a2c3cm还有磁性转变点2?3fec合金中加入合金元素形成合金钢或合金形成多种代位固溶体间隙固溶体碳化物金属间化合物等从而导致复杂多变的固态相变
1.3
Fe的同素异构转变
Fe的同素异构转变是钢铁材料中相变复 杂性的根源,也是人类社会文明的物质 因素之一。
1.3.1.金属的同素异构转变
金属同素异构转变及合金的多形性转变是固态 相变复杂多变的根源。许多固态金属具有多种晶体 结构。如表1-1。 所有70余种金属元素中只有12种金属元素具有 多种晶型,而其余的非金属元素中只有两种元素具 有多种晶型。当金属元素形成金属间化合物,碳化 物等化合物时晶型还会有许多复杂的变化。 国民经济中应用最广泛的 Fe及其合金是典型的 具有多型性转变的金属。是人类开发利用较早并对 社会文明发挥了突出作用的金属。 钢及铁基合金中存在最为复杂的固态相变。这 些相变具有极大的应用价值。
1.3.2.铁的同素异构转变
( 1 )纯铁在常压下具有 A3 和 A4 两个相变点,低温 和高温区都具有体心立方结构,即α-Fe 、δ-Fe 。 而在A3~A4之间则存在面心立方的γ-Fe。 ( 2 ) Fe与C 形成 Fe-C 合金,钢中的临界点有: Ac1 , Ac3,Acm,还有磁性转变点A2。 (3)Fe-C合金中加入合金元素形成合金钢或合金, 形成多种代位固溶体,间隙固溶体,碳化物,金 属间化合物等,从而导致复杂多变的固态相变。
铁有α-Fe、γ-Fe、δ-Fe,ε-Fe 四种晶型.
但是在常压下, ε-Fe不出现。
(1)
体心立方铁的热力学特征
A3、A4临界点的形成
扩大γ-相区和缩小γ-相区
合金元素影响临界点A3、A4的位置
关于钢的那些事儿(一)

关于钢的那些事儿(一)偶然间在浏览大英百科全书网站的时候,发现其关于钢铁生产和成型方面的内容是一篇或者说一本既全面又不失深度的好文,既适合作为科普读物,也可以帮助相关从业者进行思维整理,同时还可以学习专业英语知识。
作者利用业余时间把这些内容翻译,并根据自己的认知整理出来和大家分享,鉴于本人翻译和专业水平有限,不妥之处请各位朋友多多谅解。
#1. 简介钢(steel)是铁(iron)和碳(carbon)的合金(alloy),其中碳的含量在2%以下(含碳量更高的叫做铸铁(cast iron))。
钢是目前世界上在基础建设和工业领域应用最广的材料。
从一根针到油箱,以及生产这些产品的工具也是用钢来制造的。
图1 钢的中间和最终产品根据世界钢铁协会的数据:2020年全球粗钢产量为187,800万吨,然而,在工业中应用第二广泛的铝在2020年的全球产量为6,530万吨(国际铝业协会2020年全球原铝产量)。
如此巨大的差距是由于钢的低制造、成型、加工成本,巨大的存(储)量(铁矿石(ore)和废钢(scrap))及其应用广泛的机械性能所决定的。
#2. 钢的特性2.1. 构成钢的基本金属:铁钢的主要的组成部分是铁,但是纯铁的强度仅仅比铜强一点点。
和其他金属一样一般情况下,固态的铁是多晶体结构(polycrystalline structure) -- 是由多个晶体(crystal)通过边界相连而成。
晶体是原子按照一定形式规则排列而成的,可以描画成像球挨球一样的结构,如图2所示。
图2 固体的状态图3 晶体中原子-晶胞-晶格的结构关系简图为了便于理解,只画出原子的中心点,并用线将这些中心点连接起来,如图3所示。
把这些人为连接起来的线条所构成的几何结构成为晶格(crystal lattice),而把构成晶格的最基本单元成为晶胞(unit cell)。
铁的晶胞可以描述成中心一个铁原子,空间四角各一个铁原子的体心立方体(body-centred cubic (bbc)),如图4所示。
铁的同素异形体--δ相

室温下是体心立方结构,称为α-Fe。
将纯铁加热,当温度到达912℃时,由α-Fe转变为γ-Fe,γ-Fe 是面心立方结构。
继续升高温度,到达1390℃时,γ-Fe转变为δ-Fe,它的结构与α-Fe一样,是体心立方结构。
纯铁随着温度增加,由一种结构转变为另一种结构,这种现象称为同素异构转变。
δ相:高温铁素体,由液态铁冷却到1538摄氏度发生结晶,液态铁转变为δ-Fe,C在δ-Fe中的最大溶解度为0.17%。
δ铁素体作为高温铁素体,在常温下相对少见,但在一些不锈钢中,仍然由δ铁素体保留到常温下。
但由于δ铁素体较脆,在加工中易引发裂纹,并且容易引发点腐蚀,所以一般都是作为有害相加以控制的。
所谓调质钢,一般是指含碳量在0.3-0.6%的中碳钢。
一般用这类钢制作的零件要求具有很好的综合机械性能,即在保持较高的强度的同时又具有很好的塑性和韧性,人们往往使用调制处理来到达这个目的,所以人们习惯上就把这一类钢称作调质钢。
各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。
淬火成马氏体后在500~650℃之间温度范围内回火的调质处理用钢。
经调质处理后,钢的强度、塑性及韧性有良好的配合。
调质钢的成分是含碳0.25%~0.5%碳素钢或低合金钢和中合金钢,调质处理后的金相组织是回火索氏体。
各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。
应用最广的调质钢有铬系调质钢(如40Cr、40CrSi)、铬锰系调质钢(如40CrMn)、铬镍系调质钢(如40CrNiMo、37CrNi3A)、含硼调质钢等。
钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。
索氏体组织属于珠光体类型的组织,但其组织比珠光体组织细。
索氏体具有良好的综合机械性能。
将淬火钢在450-600℃进行回火,所得到的索氏体称为回火索氏体〔tempered sorbite〕。
回火索氏体中的碳化物分散度很大,呈球状。
故回火索氏体比索氏体具有更好的机械性能。
苏教版化学选修三专题3第一单元《金属键 金属晶体》测试题(含答案)

第一单元《金属键金属晶体》测试题一、单选题(每小题只有一个正确答案)1.金属的下列性质中,不能用金属键理论解释的是()A.易传热B.加工易变形但不碎C.易锈蚀D.易导电2.物质结构理论推出:金属晶体中金属离子与自由电子之间的强烈相互作用叫金属键。
金属键越强,其金属的硬度越大,熔、沸点越高。
据研究表明,一般地,金属原子半径越小,价电子数越多,则金属键越强。
由此判断下列说法正确的是A.镁的硬度大于铝 B.镁的熔、沸点低于钙C.镁的硬度大于钾 D.钙的熔、沸点低于钾3.下列有关金属晶体的判断正确的是A.简单立方堆积、配位数6、空间利用率68%B.体心立方堆积、配位数6、空间利用率68%C.六方最密堆积、配位数8、空间利用率74%D.面心立方最密堆积、配位数12、空间利用率74%4.下列有关金属晶体判断正确的是A.简单立方、配位数6、空间利用率68%B.钾型、配位数6、空间利用率68%C.镁型、配位数8、空间利用率74%D.铜型、配位数12、空间利用率74%5.判断物质是晶体还是非晶体,比较可靠的方法是( )A.从外形上判断B.从导电性能上判断C.从各向异性或各向同性上判断D.从有无一定的熔点来判断6.关于下图不正确的说法是A.此种最密堆积为面心立方最密堆积B.该种堆积方式称为铜型C.该种堆积方式可用符号……ABCABC……表示D.该种堆积方式称为镁型7.铁有δ、γ、α三种同素异形体,其晶胞结构如图所示,下列判断正确的是A .δ、γ、α铁晶体中存在金属阳离子和阴离子B .γ—铁晶体晶胞中所含有的铁原子数为14C .δ、α两种晶胞中铁原子的配位数之比为4∶3D .若α-Fe 晶胞边长为a cm ,γ-Fe 晶胞边长为b cm ,则两种晶体的密度比为b 3∶a 3 8.有关晶体的结构如下图所示,下列说法中不正确的是( )A .在图1晶体中,距粒子B 最近且等距的粒子A 有6个 B .在CO 2晶体中,每个晶胞平均占有4个原子C .在金刚石晶体中,碳原子与碳碳键个数的比为1∶2D .该气态团簇分子的分子式为E 4F 49.区分晶体和非晶体最可靠的科学方法是( ) A .观察外观是否规则 B .测定是否有固定的熔点 C .进行X 射线衍射实验D .验证是否有各向异性10.金属原子在二维空间里的放置如图所示的两种方式,下列说法中正确的是A .图(a)为非密置层,配位数为6B .图(b)为密置层,配位数为4C .图(a)在三维空间里堆积可得六方最密堆积和面心立方最密堆积D .图(b)在三维空间里堆积仅得简单立方11.如图所示晶体中每个阳离子A 或阴离子B ,均可被另一种离子以四面体形式包围着,则该晶体对应的化学式为( )A.AB B.A2B C.AB3D.A2B312.下列晶体中,它们的熔点由高到低的顺序排列正确的是()①金刚石②氯化钠③干冰④汞A.④②③① B.①②④③ C.④②①③ D.③④②①13.下表所列物质晶体的类型全部正确的一组是A.A B.B C.C D.D14.Mn和Bi形成的晶体薄膜是一种金属间化合物(晶胞结构如图),有关说法正确的()3d4s B.Bi是d区金属A.锰价电子排布为70C.该合金堆积方式是简单立方 D.该晶体的化学式为MnBi15.某离子晶体中,存在着A(位于八个顶点)、B(位于正六面体中的六个面上)、C(位于体心)三种元素的原子,其晶体结构中具有代表性的最小重复单位的排列方式如图所示:则该晶体中A、B、C三种原子的个数比是()A .8︰6︰1B .1︰1︰1C .1︰3︰1D .2︰3︰1二、填空题16.(1)KIO 3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立方结构,边长为a =0.446 nm ,晶胞中K 、I 、O 分别处于顶角、体心、面心位置,如图所示。
第七讲-钢铁中的合金相

片状马氏体中脊面 500× (密度很高的微细孪晶区)
2.碳钢中的相及组织
石墨
石墨是Fe-C合金中游离存在的碳,代号G。它以简单六方晶格结构 存在。石墨为层状结构,各层之间是范德华力结合,容易滑动,所 以石墨很软。石墨各层均为平面网状结构,碳原子之间存在很强的 共价键,故熔沸点很高。所以,石墨称为混合型晶体。强度、塑性、 硬度都很低。
纯铁的同素异构转变77091213941538时间min有磁性的fe体心立方无磁性的fe体心立方fe面心立方fe立方液态纯铁同素异构转变钢铁是铁基合金黑色金属的总称是现代工业中应用最广泛的材料
合金相与相变
易丹青 教授
材料科学与工程学院 danqing@
第七讲 钢铁中的相 1. 纯铁及钢简介 2. 碳钢中的相及组织 3. 合金钢中的相
珠光体
索氏体
屈氏体
2.碳钢中的相及组织
珠光体形貌
经4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特 征的珠光体组织。当放大倍数较高时可以清晰地看到珠光体中平行排列分 布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只 能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片 状结构就不能分辨了,此时珠光体呈黑色的一团。
铁素体结构示意图
2.碳钢中的相及组织
铁素体(ferrite)
力学性能:强度、硬度低,塑性、韧性好。 δ=30%~50%, ψ=70%~80% ,AK=128~160J σb=180~280MPa, σ0.2=100~170MPa,HBS=50~80HBS。
铁素体是在室温时的重要相,常作为基体相存在。
α-Fe
γ-Fe
δ-Fe
BCC
FCC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于面心比体心排列紧密,所以由前者转化为后者时,体积要膨胀.纯铁在室温下是体心立方结构,称为α-Fe。
将纯铁加热,当温度到达912℃时,由α-Fe 转变为γ-Fe,γ-Fe是面心立方结构。
继续升高温度,到达1390℃时,γ-Fe转变为δ-Fe,它的结构与α-Fe一样,是体心立方结构。
纯铁随着温度增加,由一种结构转变为另一种结构,这种现象称为同素异构转变。
δ相:高温铁素体,由液态铁冷却到1538摄氏度发生结晶,液态铁转变为δ-Fe,C在δ-Fe中的最大溶解度为0.17%。
δ铁素体作为高温铁素体,在常温下相对少见,但在一些不锈钢中,仍然由δ铁素体保留到常温下。
但由于δ铁素体较脆,在加工中易引发裂纹,并且容易引发点腐蚀,所以一般都是作为有害相加以控制的。
所谓调质钢,一般是指含碳量在0.3-0.6%的中碳钢。
一般用这类钢制作的零件要求具有很好的综合机械性能,即在保持较高的强度的同时又具有很好的塑性和韧性,人们往往使用调制处理来达到这个目的,所以人们习惯上就把这一类钢称作调质钢。
各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。
淬火成马氏体后在500~650℃之间温度范围内回火的调质处理用钢。
经调质处理后,钢的强度、塑性及韧性有良好的配合。
调质钢的成分是含碳0.25%~0.5%碳素钢或低合金钢和中合金钢,调质处理后的金相组织是回火索氏体。
各类机器上的结构零件大量采用调质钢,是结构钢中使用最广泛的一类钢。
应用最广的调质钢有铬系调质钢(如40Cr、40CrSi)、铬锰系调质钢(如40CrMn)、铬镍系调质钢(如40CrNiMo、37CrNi3A)、含硼调质钢等。
钢经正火或等温转变所得到的铁素体与渗碳体的机械混合物。
索氏体组织属于珠光体类型的组织,但其组织比珠光体组织细。
索氏体具有良好的综合机械性能。
将淬火钢在450-600℃进行回火,所得到的索氏体称为回火索氏体(tempered sorbite)。
回火索氏体中的碳化物分散度很大,呈球状。
故回火索氏体比索氏体具有更好的机械性能。
这就是为什么多数结构零件要进行调质处理(淬火+高温回火)的原因。
索氏体的定义及组织特征。
索氏体,是在光学金相显微镜下放大600倍以上才能分辨片层的细珠光体(GB/T7232标准)。
其实质是一种珠光体,是钢的高温转变产物,是片层的铁素体与渗碳体的双相混合组织,其层片间距较小(250~350nm),碳在铁素体中已无过饱和度,是一种平衡组织。
钼(Molybdenum)mù是元素周期表第五周期WB族元素是一种化学元素,元素符号Mo,原子序数42,原子量95.94,是一种灰色的过渡金属。
金属呈银灰色,为体心立方晶体结构,熔点2617℃,沸点4612℃,密度10.22g/cm3,第一电离能7.099电子伏特。
钼和钨性质十分相似,具有高温强度好、硬度高、密度大、抗腐蚀能力强、热膨胀系数小、良好的导电和导热等特性。
钼的纯金属是银白色,非常坚硬。
把少量钼加到钢之中,可使钢变硬。
钼是对植物很重要的营养素,也在一些酶之中找得到。
在常温下不受空气的侵蚀。
跟盐酸或氢氟酸不起反应。
化合价+2、+4和+6,最稳定化合物为+6价。
钼的高价氧化态化合物呈酸性,低价氧化态化合物呈碱性,+6价离子具有很强的形成配合物倾向。
致密钼在常温空气中稳定,400℃轻度氧化,500℃迅速氧化。
1000℃时钼能吸收大量氢形成固溶体。
1500℃时钼和氮反应生成氮化钼,和碳作用生成Mo2C,和硫作用生成Mos,重要的钼化物有三氧化钼、仲钼酸胺、钼酸钠、钼酸钙、钼酸钡、六氟化钼以及各种钼聚合物。
主要矿物是辉钼矿(MoS2)。
将辉钼矿煅烧成三氧化钼,再用氢或铝热法还原而制得。
Co 钴元素描述:
坚硬、有延展性的蓝灰色金属,富有光泽。
地壳中集聚含量百万分之25。
具有强磁性。
铌(niobium)是一种化学元素。
化学符号Nb,原子序数41,原子量92.90638,属周期系ⅤB族。
一种金属元素。
铌能吸收气体,用作除气剂,也是一种良好的超导体。
铌是灰白色金属,熔点2468℃,沸点4742℃,密度8.57克/立方厘米。
室温下铌在空气中稳定,在氧气中红热时也不被完全氧化,高温下与硫、氮、碳直接化合,能与钛、锆、铪、钨形成合金。
不与无机酸或碱作用,也不溶于王水,但可溶于氢氟酸。
锆(Zirconium)gào 是一种化学元素,它的化学符号是Zr,它的原子序数是40,是一种银白色的高
熔点金属,呈浅灰色。
广泛存在于锆石和二氧化锆矿中。
普遍应用于合金及首饰制造业。
金属锆几乎全部用作核反应堆中铀燃料元件的包壳。
也用来制造照相用的闪光灯,以及耐腐蚀的容器和管道,特别是能耐盐酸和硫酸。
锆的化学药品可作聚合物的交联剂。
还可作为一些真空仪器的除气剂。