湖南省2017年高中数学联赛预赛试题
2017年全国高中数学联赛一试(B卷)答案

成立,求实 成立.由于
解:设 t 2 x ,则 t [2, 4] ,于是
对所有
t a 5 t (t a ) 2 (5 t ) 2 (2t a 5)(5 a ) 0 . ………………8 分 对给定实数 a ,设 f (t ) (2t a 5)(5 a ) ,则 f (t ) 是关于 t 的一次函数或常 值函数.注意 t [2, 4] ,因此 f (t ) < 0 等价于 f (2) (1 a )(5 a ) 0, ………………12 分 f (4) (3 a )(5 a ) 0, 解得 3 a 5 . 所以实数 a 的取值范围是 3 a 5 . ………………16 分 10. ( 本 题 满 分 20 分 ) 设 数 列 {an } 是 等 差 数 列 , 数 列 {bn } 满 足 2 , n 1, 2, . bn an1an2 an (1)证明:数列 {bn } 也是等差数列; (2) 设数列 {an } 、 并且存在正整数 s, t , 使得 as bt {bn } 的公差均是 d 0 , 是整数,求 a1 的最小值. 解: (1)设等差数列 {an } 的公差是 d ,则 2 2 bn1 bn ( an2an3 an 1 ) ( an1an2 an ) an2 ( an3 an1 ) ( an1 an )( an1 an ) an2 2d ( an1 an ) d
2017 年全国高中数学联合竞赛一试(B 卷) 参考答案及评分标准
说明: 1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分, 解答题中第 9 小题 4 分为一个档次, 第 10、 11 小题 5 分为一个档次,不得增加其他中间档次. 一、填空题:本大题共 8 小题,每小题 8 分,共 64 分. 1. 在等比数列 {an } 中, a2 2, a3 3 ,则
2017年全国高中数学联合竞赛一试和加试(A卷)试题及答案考点分析

2017年全国高中数学联合竞赛一试和加试(A 卷)试题及答案考点分析2017年全国高中数学联合竞赛一试卷〉参考答案及评分标准说明孑1.评阅试卷时*请依据本评分标淮.填空趣只设S 分和o 分两档1其他备题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.N 如果考生的解??方法和本解答不同+只要思路合理"步骤1E 确,在评卷时训 参苇本评分标准适为划分档次评仆.解芥题中第9小题*分対--个栉次.第10. 11小题5分为一个档次,不得增加其他中间档次*一、填空题;本大题共*小题,每小題*分,共64分.设八龙)屣走文任H 上的噌数,对任意实^xfTf(x+3)f(x-4) = -l.又 当0冬“V7时・/(x)=log 3(9-x)・则/X-100)的値为 ____________________________ ・答案;■齐比庄平面現角坐标系xQy 中.fffiEfC 的方程为芝■ +匚=1, F 为C 的上煉点,A 的右顶点.戶是(?上位丁第象限内的別点*则四边Jg OAPF 的面积 的燧大值为 ”解:易知#(3,0), F(O,D.设尸的酸掠圧(3ws 罠JTB 抽叭,w九秤=孔加 V S s^r- = | ■ 3 ■sin 0 + | ■ I ■ 3 cos!〔中 y : — arctan —.当(9 — arctanVTo 时.四边形OAPF iff | 积的fit 大備为卫■土*解:由篆件知,/U + 14) = ---------------- = f (x} t 所以./<x + 7)2.若实数工j 满足”F 4- 2 cosy = 1 .则x — cos y 的収值范围足i _______ 答案:H1,広+ 1].解:由 +.Y 1- 1 -2cos yG[-l > 故GX 时F 可以収?Th 由于扌U+1)'—1的恤域筍-h J5 + 1],从而X-CGSJ 的耿值范围是[一匕J5 + 1]・si n ( 4 *} +4. 若一个三位数中任总两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是____________ ・答案:75. _解:考虑平稳数赢.若6 = 0,则。
例谈题根在数学解题中的应用——以对数均值不等式为例

3_¥)故学敉学2021年第3期例谈题根在数学解题中的应用----以对数均值不等式为例张国治(新疆生产建设兵团第二中学,新疆乌鲁木齐83_2)笔者通过对近几年高考、竞赛试题的研究,有一个很有趣的发现——许多试题来源于 同一个问题.我们可以把这类不断生长的问题 称为“题根题根是一个题族、一个题系中的 源头,也是一个题群中的典例.把握住了一个 题根,叩源推委,便能寻觅到解决问题的“金钥 匙”,进而辐射到一个题族、题群.以题根方式 展开教学,旨在寻找解题思维入口,通过题根 的变式拓展探求不同的解法,帮助学生理解问 题内涵,总结归纳.那么如何寻找“题根”呢? 将源于课本、高考、竞赛的题目进行提炼与升 华形成结论,然后再将其广泛应用于解题实践 中,这便是寻找题源的不二法门.这一过程意 义非凡,因为茫茫题海中很多题目表象不同,但实质一样(可归结于同一个题根或题源).一 个题源加工而成的结论,其功效不亚于教材中 的一个定理,寻找“题根”需要八方联系,浑然一 体.笔者以一道竞赛题为例,探源溯流,给出一类 高考题、竞赛题命题的题根,多题归一,提供一种 高效学习数学的方法,敬请同行指正.[1]题根(2017年全国高中数学联赛湖南省 预赛第15题)[2]已知a、6 e 11且〇 > 0, i > Q,a #b.(i)求证:#(2)如果 a、6 是函数/(a:) = lnx -的两个零点,求证> e2.证法 1:如图 1,设/(*) = e*,x e [m,n],其中双m,0),B(n,0),过点分别作x轴的垂线,交曲线于c、Z)两点.点)处的切线/分别交BC、于点£、f,则f c pJ f=6〒,所以/:7 1梯形从一(j£+J f)=(n-m*n^l)e ,•^曲边梯形A sa) =| g dx =e一 e , *S梯形^ m数感是《义务教育数学课程标准(2011 版)》中的十大核心概念之一,对运算结果的估 计是数感的一种重要体现.估计(估算)在三个 学段都有明确具体的目标要求,其中在第三学 段(7-9年级)的知识技能目标对运算(包括估 算)技能的要求是达到掌握层级.固然,计算的 准确性是数学学科的基本要求之一,运算能力 是典型的数学能力,但其内涵已发生了变化.运 算能力不仅指能够“正确地从事运算”,还包括 借助工具计算和手算,也包括精确计算和估算[2].作为一线的数学教师,应该充分理解课标 的价值理念,在日常的教学中应该给“估算”留一席之地.准确、标准的答案是我们数学人的追求,但“估算”是数学运算中不可或缺的组成部分估算”过程中所体现出的发散式调适与思考,正是学生创新意识形成、创新能力培养的一个有效载体.参考文献[1]中华人民共和国教育部.义务教育数 学课程标准(2011版)[S].北京:北京师范大学出版社,2012.[2]马复,凌晓枚.新版课程标准解析与 教学指导[M].北京:北京师范大学出版社,2012.2021年第3期故学敉学3-41n - m . 、 n — m / m …、 _ ...2 (yA + J b ) = 2 (e + e )•显然有S 梯形y l B E F < $曲边梯形/I B C D < S 梯形A f i C Z ),艮Pm +nr j一)(n - m ) e 2 < en - em < —-—(em + e n),1_•设%> 1,则欲证不等式成立等价于证明21n % < i ---(x > 1).构造函数则e 宁<^<n - m a2,令 en = a ,可得< , , , - ^In a - lno 2证法2:(1)由对称性,不妨设a > 6 > 0,^ a - b a + b a - b a + l 先证^-----TT < —•因为^----— <In a - Ini 2 〇 In a - Ini >2(a - b )^ a ^In a - \nb 2a + ba—+设% = T > 1,则欲证不等式成立等价于〇证明lnx > ^l l (x > 1}.X + l构造函数/(尤)=lnx - ^~~> 1),则作)=(n因为* > 1,所以尸(*) >x(x + 1)0,/(X )在(1,+ =C )上为单调递增函数,由 f i x ) >/〇) = 0,即得lm > 1),即<In a - In 62再证#< , a ~ f -,-.因为# <In a - Ini In a - Inia<=> In a - In 6 <y 〇b<=> In — <g 〇) = 21m -卜 一(% > 1),则g '(x ) =- (% -J )<〇,因此g U )在(1, + 〇〇)上为单调递减函数.办)<g (l ) = 0,即得21n % < (a :---1 (x > 1),即y 〇b <a综上可知,#<In a - Inia -b In a - Ini2以上结论反映了对数平均与算术平均、几何平均的大小关系,我们知道两个正数a 、6的 对数平均定义:L (a , b ) = jlna - ln 6 () ’la(a = b ).则当 a >〇,i >〇,有<In a - Ini—^一,^^<[(16)<-^—(当且仅当〇=6时,等号成立).若令 lna =文!,Ini =%2,贝l j d = e*1,6 = e*2, < —z —等价于^^?J~a b <In a — Ini 2?V 2__*2 丄 ^2‘1—,利用该不等式,可x X pL e - e " e •十 ee 2 < ------- < —-xx - x 2 2以轻松获解该题的第(2)小题:证明:定义域为(〇, +〇〇 ),尸(%) 1 2017 -x2017 2黯•若p2〇17,则/,(,)= 0;若* e (0,2017),则尸〇) >0,函数/(;〇单调递 增;若;c e (2017, + 〇〇 ),则尸(无)< 0,函数3-42故学敉学2021年第3期/(幻单调递减.由对称性,不妨设 a >6> 〇,则可得〇< 6<2017 <a.由条件知,ln a= 且ln6=故 lna- ln6(a-6),即2017由对数均值不等式得2017即a + 6 > 2 x 2017.-bIn a - Inia -bIn a - In6= 2017,<2 ,1iia;,a:2= \nxl+ \nx2= m(x l+ x2)> 2m•— = 2,所以a:丨a:2> e*12.m评注:不难发现,例1第(2)小题是题根第(2)小题的一般情况,事实上,由对数均值不等,______ 1 X] ~X22J x x x2<—=---------------,艮p<m lnxj -m x2-7,可见必有〇< m < i.m e因为lnafc= In a+ In6 =----(a+ 6) >2017 》^x 2x 2017 = 2,所以d> e2.下面举例说明此题根在高考、竞赛、模考中的应用,也进一步洞悉此类问题的编拟奥秘.类型1直接用对数均值不等式例1(2016年全国高中数学联赛湖南省预赛第15题)[3]已知函数/(幻=i l n x-(1)若m =」2时,求函数/(幻的所有零点;(2)若/(4有两个极值点心、巧,且x, < 尤2•求证:丨内> e2.解析:(1)当m =-2时,/(幻=;*111»:+;*:2-x = x( \nx + x -l) (x> 0). i^,p(x)=ln% + x -1(«:> 0),则p'(A〇=丄+ 1> 0,于是p(a〇在X(〇, + «>)上为增函数.又P(1) = 0,所以,当m =-2时,函数/(幻有唯一的零点a; = 1.(2)若/(x)有两个极值点x,、*2,则导函数/'(*)有两个零点h h•由/'U)= In* -m*,可知例2(2018年全国高中数学联赛福建省预赛第14题)[4]已知/U)= e* -似.(1)当x > 0时,不等式Q-2)/(幻+ m*2+ 2> 0恒成立,求实数m的取值范围;(2)若力、*2是/(幻的两个零点,证明:A C, + A;2> 2.解析:(1)略.(2)证明:由题可得/U)= /U2) = 〇,即I e*' = m x., t _x x,x得。
2017年湖南省高中数学联合竞赛试题 (PDF版)

A1
P
K
D
1 1 1 3 1 3 ,选 A 因此,VD-ABC= ×S△ABC×AD= ( 1 1 ) 3 3 2 2 4 48
3、已知椭圆 C:ALx2 y 2 1 ,对于任意实数 k,椭圆 C 被下列直线中所截得弦长,与被直线 l: 8 4 y=kx+1 所截得的弦长不可能相等的是 A.kx+y+k=0 B. kx-y-1=0 C. kx+y-k=0 D. kx+y-2=0 x2 y 2 1 是关于原点 O 对称的中心对称图形,也是关于 x 轴、y 轴对称的轴对 8 4 称图形,∴只要两条直线关于原点成中心对称或者关于 x 轴、y 轴成轴对称,那么它们被椭圆所 截的弦一定是等长的。选 D n 4、对任意正整数 n 与 k(k≤n),用 f(n,k)表示不超过[ ] 且与 n 互质的正整数的个数(其中[x]表示 k
3 48
B.
3 24
C.
3 16
D.
3 12
解:取 B1C1 的中点 K,BC 的中点 L,在矩形 A1KLA 中(如图),
3 3 2 ,故 A1P= A1K= 。 ∵AB=BC=CA=1,∴AL=A1K= 2 3 3
又 AA1=2,由△ALD∽△AA1P 知 AD A1P AL 1 , AA1 4
( S n 1) 2 2S 1 , 2 2 an1 S n1 S n ,∴-(Sn-1) =Sn+1Sn-Sn ,即 S n 1 n Sn Sn
S 1 因此 S n 1 1 S n 1 ,故 1 n 1, Sn S n 1 1 S n 1 S n 1
12、设函数 f(x)是定义在(-,0)上的可导函数,其导数为 f(x),且有 2f(x)+xf(x)>x2,则不等式 (x+2017)2f(x+2017)-f(-1)>0 的解集为__________。 解:∵x<0,2f(x)+xf(x)>x2,∴2xf(x)+x2f(x)<x3<0,故 x2f(x)为(-,0)上的减函数。 不等式(x+2017)2f(x+2017)-f(-1)>0 即(x+2017)2f(x+2017)>(-1)2f(-1), 因此,x+2017<0 且 x+2017<-1,故 x<-2018。 三、解答题(本大题共 4 个小题,满分 72 分。解答需要有完整的推理过程或演算步骤。) 13、(本小题满分 16 分) 在锐角△ABC 中,sinA= (1)求 sin2(B+C)+ sin 2
2017年湖南省普通高中学业水平考试模拟试卷一数学试题

2017年湖南省普通高中学业水平考试模拟试卷一数学试题本试题卷包括选择题、填空题和解答题三部分,共4页.时量120分钟,满分100分. 一、选择题:本大题共15小题,每小题3分,共45分.1.已知全集U ={1,2,3,4,5,6},集合A ={}1, 3, 4,6,B ={}2, 4, 5,6,则A ∩∁U B 等于A.{}1, 3B.{}2, 5C.{}4 D . 2.函数f (x )=sin ⎪⎭⎫⎝⎛-x 4π的一个单调增区间为 A.⎝ ⎛⎭⎪⎫3π4,7π4 B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π43.如图是某几何体的三视图,则该几何体的体积为A .9π+42B .36π+18C.92π+12D.92π+184.已知直线l 1:()m +2x -()m -2y +2=0,直线l 2:3x +my -1=0,且l 1⊥l 2,则m 等于 A .-1 B. 6或-1 C. -6 D. -6或15.已知{}a n 是等比数列,前n 项和为S n ,a 2=2,a 5=14,则S 5=A.132B.314C.334D.10186.已知向量a =(1,k ),b =(2,1),若a 与b 的夹角大小为90°,则实数k 的值为A .-12 B.12C .-2D .27.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0x -y -2≤0x ≥0,则目标函数z =2x +3y +1的最大值为A .11B .10C .9D .8.58.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为A.(-1,0) B .(0,9.已知偶函数f (x)在区间[0,+∞)上的解析式为f (x )=x +1,下列大小关系正确的是 A .f (1)>f (2) B .f (1)>f (-2) C .f (-1)>f (-2) D .f (-1)<f (2)10.sin 75°cos 30°-cos 75°sin 150°的值为A .1 B.12 C.22 D.3211.执行如图所示的程序框图,若输出的S 为4,则输入的x 应为 A .-2B .16C .-2或8D .-2或1612.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜想的数字记为b ,其中a ,b ∈⎭⎬⎫{1,2,3,4,5,6,若|a -b |≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为A.19B.29C. 718D.4913.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,614.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为A .11.4万元B .11.8万元C .12.0万元D .12.2万元15.如图,在菱形ABCD 中,∠BAD =60°,线段AD ,BD 的中点分别为E ,F .现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是A.⎝ ⎛⎭⎪⎫π6,π3B.⎝ ⎛⎦⎥⎤π6,π2C.⎝ ⎛⎦⎥⎤π3,π2D.⎝ ⎛⎭⎪⎫π3,2π3 二、填空题:本大题共5小题,每小题3分,共15分.16.在数列{a n }(n ∈N *)中,设a 1=a 2=1,a 3=2,若数列⎩⎨⎧⎭⎬⎫a n +1a n 是等差数列,则a 6=________. 17.若函数f (x )=x +1x -2(x >2)在x =a 处有最小值,则a =________.18.已知α,β∈⎝ ⎛⎭⎪⎫0,π2,cos α=17,cos(α+β)=-1114,则β= ________.19.已知钝角△ABC 的面积为23,AB =2,BC =4,则该三角形的外接圆半径为________.20.已知f (x )=⎩⎪⎨⎪⎧0(x >0)-1(x =0)2x -3(x <0),则f {f [f (5)]}=________.三、解答题:本大题共5小题,共40分. 21.(本小题满分6分)已知函数f (x )=log 21+x1-x ,x ∈(-1,1).(Ⅰ)判断f (x )的奇偶性,并证明;(Ⅱ)判断f (x )在(-1,1)上的单调性,并证明.22.(本小题满分8分)一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(Ⅰ)若直线l :x +y -5=0,求点P (b ,c )恰好在直线l 上的概率;(Ⅱ)若方程x 2-bx -c =0至少有一个根属于集合{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.23.(本小题满分8分)如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.(Ⅰ)证明:平面SBD⊥平面SAC.(Ⅱ)证明:直线MN∥平面SBC.24.(本小题满分8分)已知数列{a n}满足a1=2,a n+1=a n+2,其中n∈N*.(Ⅰ)写出a2,a3及a n;(Ⅱ)记数列{a n}的前n项和为S n,设T n=1S1+1S2+…+1S n,试判断T n与1的关系;(Ⅲ)对于(Ⅱ)中S n,不等式S n·S n-1+4S n-λ(n+1)S n-1≥0对任意的大于1的整数n恒成立,求实数λ的取值范围.25.(本小题满分10分)已知直线x+y-2=0被圆C:x2+y2=r2所截得的弦长为8.(Ⅰ)求圆C的方程;(Ⅱ)若直线l与圆C切于点P,当直线l与x轴正半轴、y轴正半轴围成的三角形面积最小时,求点P的坐标.附加题:(附加题不记入总分)1.(本小题满分12分)已知定点A(0,1),B(0,-1),C(1,0).动点P满足:AP→·BP→=k|PC→|2.(Ⅰ)求动点P的轨迹方程,并说明方程表示的曲线类型;(Ⅱ)当k=2时,求|2AP→+BP→|的最大、最小值.2.(本小题满分12分)已知数列{}a n,{}b n都是单调递增数列,若将这两个数列的项按由小到大的顺序排成一列(相同的项视为一项),则得到一个新数列{}c n.(Ⅰ)设数列{}a n、{}b n分别为等差、等比数列,若a1=b1=1,a2=b3,a6=b5,求c20;(Ⅱ)设{}a n的首项为1,各项为正整数,b n=3n,若新数列{}c n是等差数列,求数列{}c n的前n 项和S n;(Ⅲ)设b n=q n-1(q是不小于2的正整数),c1=b1,是否存在等差数列{}a n,使得对任意的n∈N*,在b n与b n+1之间数列{}a n的项数总是b n?若存在,请给出一个满足题意的等差数列{}a n;若不存在,请说明理由.)数学参考答案一、选择题:本大题共15小题,每小题3分,共45分.13.D 【解析】因为40800=120,故各层中依次抽取的人数分别是16020=8,32020=16,20020=10,12020=6. 14.B 【解析】由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴=8-0.76×10=0.4,∴当x =15时,=0.76×15+0.4=11.8(万元). 二、填空题:本大题共5小题,每小题3分,共15分. 16.120 17.318.π3 【解析】由已知,sin α=437,sin(α+β)=5314,可求cos β=cos[(α+β)-α]=12,所以β=π3.19.221320.-5三、解答题:本大题共5小题,共40分.21.【解析】(Ⅰ)证明:f (-x )=log 21+(-x )1-(-x )=log 21-x1+x=log 2⎝ ⎛⎭⎪⎫1+x 1-x -1=-log 21+x1-x =-f (x ), 又x ∈(-1,1),所以函数f (x )是奇函数.(3分) (Ⅱ)设-1<x 1<x 2<1,f (x 2)-f (x 1)=log 21+x 21-x 2-log 21+x 11-x 1=log 2(1-x 1)(1+x 2)(1+x 1)(1-x 2)因为1-x 1>1-x 2>0;1+x 2>1+x 1>0所以(1-x 1)(1+x 2)(1+x 1)(1-x 2)>1,所以log 2(1-x 1)(1+x 2)(1+x 1)(1-x 2)>0所以函数f (x )=log 21+x 1-x在(-1,1)上是增函数.(6分)22.【解析】(Ⅰ)因为是投掷两次,因此基本事件(b ,c )为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,(1分)当b +c =5时,(b ,c )的所有取值为(1,4),(2,3),(3,2),(4,1),(2分) 所以所求概率为P 1=416=14.(3分)(Ⅱ)①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4),所以方程为“漂亮方程”的概率为P 2=316.(8分)23.【解析】证明:(Ⅰ)∵底面ABCD 是菱形, ∴BD ⊥AC ,∵SA ⊥底面ABCD ,∴BD ⊥SA , ∵SA 与AC 交于A, ∴BD ⊥平面SAC ,∵BD 平面SBD ,∴平面SBD ⊥平面SAC .(4分) (Ⅱ)取SB 中点E ,连接ME ,CE,∵M 为SA 中点,∴ME ∥AB 且ME =12AB ,又∵ABCD 是菱形,N 为CD 的中点, ∴CN ∥AB 且CN =12CD =12AB ,∴CN ∥EM ,且CN =EM,∴四边形CNME 是平行四边形, ∴MN ∥CE ,又MN 平面SBC, CE 平面SBC ,∴直线MN ∥平面SBC .(8分) 24.【解析】(Ⅰ) 依题可得a 2=a 1+2=4,a 3=a 2+2=6, 依题可得{a n }是公差为2的等差数列,∴a n =2n .(2分) (Ⅱ) ∵ S n =n (n +1),∴1S n =1n (n +1)=1n -1n +1,∴T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.(5分)(Ⅲ)依题可得n (n +1)·(n -1)n +4n (n +1)-λ(n +1)(n -1)n ≥0, 即(n -1)n +4-λ(n -1)≥0, 即λ≤n +4n -1对大于1的整数n 恒成立,又n +4n -1=n -1+4n -1+1≥5,当且仅当n =3时,n +4n -1取最小值5, 所以λ的取值范围是(-∞,5].(8分)25.【解析】(Ⅰ)因为圆C 的圆心到直线x +y -2=0的距离为d =|0+0-2|12+12=2,(1分)所以r2=d 2+(82)2=(2)2+42=18.(2分)所以圆C 的方程为x 2+y 2=18.(3分)(Ⅱ)设直线l 与圆C 切于点P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=18.(4分) 因为k OP =y 0x 0,所以圆的切线的斜率为-x 0y 0.则切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =18.(5分)则直线l 与x 轴正半轴的交点坐标为⎝ ⎛⎭⎪⎫18x 0,0,与y 轴正半轴的交点坐标为⎝⎛⎭⎪⎫0,18y 0.所以围成的三角形面积为S =12×18x 0×18y 0=162x 0y 0.因为18=x 20+y 20≥2x 0y 0,所以x 0y 0≤9.当且仅当x 0=y 0=3时,等号成立.(8分) 因为x 0>0,y 0>0,所以1x 0y 0≥19,所以S =162x 0y 0≥1629=18.所以当x 0=y 0=3时,S 取得最小值18.所以所求切点P 的坐标为(3,3).(10分) 附加题:(附加题不记入总分)1.【解析】(Ⅰ)设动点坐标为P (x ,y ),则=(x ,y -1),=(x ,y +1),=(1-x ,-y ).因为·=k ||2,所以x 2+y 2-1=k [(x -1)2+y 2],(1-k )x 2+(1-k )y 2+2kx -k -1=0. 若k =1,则方程为x =1,表示过点(1,0)且平行于y 轴的直线.若k ≠1,则方程化为⎝ ⎛⎭⎪⎫x +k 1-k 2+y 2=⎝ ⎛⎭⎪⎫11-k 2,表示以⎝ ⎛⎭⎪⎫k k -1,0为圆心,以1|1-k | 为半径的圆.(Ⅱ)当k =2时,方程化为(x -2)2+y 2=1, 因为2+=(3x ,3y -1),所以|2+|=9x 2+9y 2-6y +1.又x 2+y 2=4x -3,所以|2+|=36x -6y -26. 因为(x -2)2+y 2=1,所以令x =2+cos θ,y =sin θ,则36x -6y -26=637cos(θ+φ)+46∈[46-637,46+637]. 所以|2+|的最大值为46+637=3+37, 最小值为46-637=37-3.2.【解析】(Ⅰ)设等差数列{}a n 的公差为d ,等比数列{}b n 的公比为q , 由题意得,⎩⎪⎨⎪⎧1+d =q 21+5d =q4,解得d =0或3,因数列{}a n ,{}b n 单调递增, 所以d >0,q >1,所以d =3,q =2,所以a n =3n -2,b n =2n -1.因为b 1=a 1,b 3=a 2,b 5=a 6,b 7>a 20,所以c 20=a 17=49.(Ⅱ)设等差数列{}c n 的公差为d ,又a 1=1,且b n =3n ,所以c 1=1,所以c n =dn +1-d . 因为b 1=3是{}c n 中的项,所以设b 1=c n ,即d (n -1)=2.当n ≥4时,解得d =2n -1<1,不满足各项为正整数; 当b 1=c 3=3时,d =1,此时c n =n ,只需取a n =n ,而等比数列{}b n 的项都是等差数列{}a n 中的项,所以S n =12n (n +1); 当b 1=c 2=3时,d =2,此时c n =2n -1,只需取a n =2n -1,由3n =2m -1,得m =3n +12,3n 是奇数,3n +1 是正偶数,m 有正整数解, 所以等比数列{}b n 的项都是等差数列{}a n 中的项,所以S n =n 2.综上所述,数列{}c n 的前n 项和S n =12n (n +1)或S n =n 2.(Ⅲ)存在等差数列{}a n ,只需首项a 1∈(1,q ),公差d =q -1. 下证b n 与b n +1之间数列{}a n 的项数为b n .即证对任意正整数n ,都有⎩⎪⎨⎪⎧b n <ab 1+b 2+…+b n -1+1b n +1>ab 1+b 2+…+b n,即⎩⎪⎨⎪⎧b n <a 1+q +q 2+…+qn -2+1b n +1>a 1+q +q 2+…+qn -1成立. 由b n -a 1+q +q 2+…+qn -2+1=q n -1-a 1-(1+q +q 2+…+q n -2)(q -1)=1-a 1<0, b n +1-a 1+q +q 2+…+qn -1=q n -a 1-(1+q +q 2+…+q n -2+q n -1-1)(q -1)=q -a 1>0. 所以首项a 1∈(1,q ),公差d =q -1的等差数列{}a n 符合题意.。
2017年全国高中数学联赛A卷和B卷试题和答案(word版)

2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________.4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 。
5.正三棱锥P-ABC 中,AB=1,AP=2,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值; (2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.2017年全国高中数学联合竞赛一试(B 卷)一、填空题:本大题共8个小题,每小题8分,共64分.1.在等比数列{}n a 中,2a,3a =则1201172017a a a a ++的值为 .2.设复数z 满足91022z z i +=+,则||z 的值为 .3.设()f x 是定义在R 上的函数,若2()f x x +是奇函数,()2xf x +是偶函数,则(1)f 的值为 .4.在ABC ∆中,若sin 2sin A C =,且三条边,,a b c 成等比数列,则cos A 的值为 .5.在正四面体ABCD 中,,E F 分别在棱,AB AC 上,满足3BE =,4EF =,且EF 与平面BCD 平行,则DEF ∆的面积为 .6.在平面直角坐标系xOy 中,点集{(,)|,1,0,1}K x y x y ==-,在K 中随机取出三个点,则这三个点两两之间距离均不超过2的概率为 .7.设a 为非零实数,在平面直角坐标系xOy 中,二次曲线2220x ay a ++=的焦距为4,则a 的值为 .8.若正整数,,a b c 满足2017101001000a b c ≥≥≥,则数组(,,)a b c 的个数为 .二、解答题 (本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤.)9.设不等式|2||52|xxa -<-对所有[1,2]x ∈成立,求实数a 的取值范围.10.设数列{}n a 是等差数列,数列{}n b 满足212n n n n b a a a ++=-,1,2,n =.(1)证明:数列{}n b 也是等差数列;(2)设数列{}n a 、{}n b 的公差均是0d ≠,并且存在正整数,s t ,使得s t a b +是整数,求1||a 的最小值.11.在平面直角坐标系xOy 中,曲线21:4C y x =,曲线222:(4)8C x y -+=,经过1C 上一点P 作一条倾斜角为45的直线l ,与2C 交于两个不同的点,Q R ,求||||PQ PR ⋅的取值范围.2017年全国高中数学联合竞赛加试(B 卷)一、(本题满分40分)设实数,,a b c 满足0a b c ++=,令max{,,}d a b c =,证明:2(1)(1)(1)1a b c d +++≥-二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集N +分拆为k 个互不相交的子集12,,,k A A A ,每个子集i A 中均不存在4个数,,,a b c d (可以相同),满足ab cd m -=.三、(本题满分50分)如图,点D 是锐角ABC ∆的外接圆ω上弧BC 的中点,直线DA 与圆ω过点,B C 的切线分别相交于点,P Q ,BQ 与AC 的交点为X ,CP 与AB 的交点为Y ,BQ 与CP 的交点为T ,求证:AT 平分线段XY.四、(本题满分50分)设1220,,,{1,2,,5}a a a ∈,1220,,,{1,2,,10}b b b ∈,集合{(,)120,()()0}i j i j X i j i j a a b b =≤<≤--<,求X 的元素个数的最大值.一试试卷答案1.答案:89 解:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++. 2.答案解:设,,z a bi a b R =+∈,由条件得(9)10(1022)a bi a b i ++=+-+,比较两边实虚部可得9101022a a b b +=⎧⎨=-+⎩,解得:1,2a b ==,故12z i =+,进而||z =3.答案:74-。
专题12导数与极限第一辑2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题12导数与极限第一辑1.【2021年福建预赛】若关于x 的不等式(x −2)e x <ax +1有且仅有三个不同的整数解,则整数a 的最小值为.【答案】3【解析】设f(x)=(x −2)e x , g(x)=ax +1.则f ′(x)=(x −1)e x ,x <1时,f ′(x)<0;x >1时,f ′(x)>0. 因此,f(x)在区间(−∞,1)上递减,在区间(1,+∞)上递增: 且x <2时,f(x)<0;x >2时,f(x)>0. 由此作出f(x)的草图如图所示.又g(x)的图像是过点(0,1)的直线,结合图像可知a >0.由于a >0时,f(0)=−2<g(0)=1;f(1)=−e <g(1)=a +1; f(2)=0<g(2)=2a +1,因此,0,1,2是不等式(x −2)e x <ax +1的三个整数解. 由于不等式(x −2)e x <ax +1有且仅有三个不同的整数解, 所以{f(−1)≥g(−1)f(3)≥g(3) ,即{−3e −1≥−a +1e 3≥3a +1,1+3e ≤a ≤e 3−13 .经检验,a=3符合要求,所以,符合条件的a 的最小值为3.2.【2019年贵州预赛】已知函数f(x)=(e x −e −x )⋅x 3,若m 满足f (log 2m )+f (log 0.5m )⩽2(e 2−1e).则实数m 的取值范围是 .【答案】[12,2]【解析】由f(x)=(e x −e −x )⋅x 3⇒f(−x)=f(x),且x ∈(0,+∞)时,f(x)是增函数.又由f(log2m)+f(log0,5m)≤2(e2−1e)⇒f(log2m)≤f(1).所以|log2m|≤1⇒−1≤log2m≤1⇒12≤m≤2.即m的取值范围是[12,2].3.【2018年广西预赛】若定义在R上的函数f(x)满足f′(x)−2f(x)−4>0,f(0)=−1,则不等式f(x)> e2x−2的解为___________.【答案】x>0【解析】构造函数g(x)=e−2x[f(x)+2],则g(0)=1.由g′(x)=e−2x[f′(x)−2f(x)−4]>0可知g(x)在(−∞,+∞)内单调递增,从而有g(x)>1⇔x>0.故f(x)>e2x−2⇔x>0.4.【2018年甘肃预赛】已知函数f(x)=x3+sinx(x∈R),函数g(x)满足g(x)+g(2−x)=0(x∈R),若函数ℎ(x)=f(x−1)−g(x)恰有2019个零点,则所有这些零点之和为______.【答案】2019【解析】易知函数f(x)=x3+sinx为奇函数,从而f(x−1)的图象关于(1,0)点对称.函数g(x)+g(2−x)=0,可知g(x)的图象也关于(1,0)点对称.由此ℎ(x)的图象关于(1,0)点对称,从而这2019个零点关于点(1,0)对称,由于ℎ(1)=f(0)−g(1)=0⇒x=1是ℎ(x)的一个零点,其余2018个零点首尾结合,两两关于(1,0)点对称,和为2018,故所有这些零点之和为2019.5.【2018年四川预赛】设直线y=kx+b与曲线y=x3−x有三个不同的交点A、B、C,且|AB|=|BC|=2,则k的值为______.【答案】1【解析】曲线关于点(0,0)对称,且|AB|=|BC|=2,所以直线y=kx+b必过原点,从而b=0.设A(x,y),则{y=kx, y=x3−x,√x2+y2=2.由此得x=√k+1,y=k√k+1,代入得(k+1)+k2(k+1)=4,即(k−1)(k2+2k+3)=0,解得k=1.故答案为:16.【2017年广西预赛】设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R 有f (x )+f (−x )=x 2,在(0,+∞)上f ′(x )>x .若f (1+a )−f (1−a )≥2a ,则实数a 的范围是 .【答案】a ≥0【解析】提示:由题意得f ′(x )>x ,构造函数g (x )=f (x )−12x 2,则g ′(x )=f ′(x )−x >0.从而g (x )在(0,+∞)上单调递增. 由条件f (x )+f (−x )=x 2得g (x )+g (−x )=0,则g (x )是奇函数.因为g (x )在R 上单调递增,由f (1+a )−f (1−a )≥2a 知g (1+a )−g (1−a )≥0,g (1+a )≥g (1−a ), 所以1+a ≥1−a 解得a ≥0.7.【2017年湖南预赛】设函数f (x )是定义在(−∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2017)2f (x +2017)−f (−1)>0的解集为 .【答案】(−∞,−2018)【解析】提示:将不等式(x +2017)2f (x +2017)−f (−1)>0 化为(x +2017)2f (x +2017)>(−1)2f (−1),①构造F (x )=x 2f (x ),使得①式化为F (x +2017)>F (−1),② 因为F ′(x )=2xf (x )+x 2f ′(x ),由已知条件2f (x )+xf ′(x )>x 2, 两边同乘以x ,可得F ′(x )=2xf (x )+x 2f ′(x )<x 3<0(因x ∈(−∞,0)). 所以,F (x )在(−∞,0)上是减函数,不等式②化为x +2017<−1,即x <−2018, 所以,不等式的解集为(−∞,−2018).8.【2016年福建预赛】函数f (x ) =x 2lnx +x 2-2零点的个数为________. 【答案】1 【解析】由条件知f ′(x)=2x ln x +x +2x =x(2lnx +3). 当0<x <e −32时,f ′(x)<0; 当x >e −32时,f ′(x)>0.于是,f (x )在区间(0,−32)上为减函数,在区间(−32,+∞)上为增函数.又0<x <e −32时,lnx +1<−32+1=−12<0f (x )=x 2(lnx +1)-2<0,注意到,f(e −32)=e −3(−32+1)−2<0,f(e)=2e 2−2>0 故函数f (x )零点的个数为1.9.【2015年山东预赛】设a >1.若关于x 的方程a x =x 无实根,则实数a 的取值范围是______. 【答案】a >e 1e【解析】由函数y =a x 与y =x 的图像,知若a >1,且a x =x 无实根,则a x >x 恒成立, 设f (x )=a x −x .则:f′(x )=a x (lna )−1>0⇒x >−log a (lna ).故f (x )=a x −x 在区间(−∞,−log a (lna ))上递减,在区间(−log a (lna ),+∞)上递增. 从而, f (x )在x =−log a (lna )时取得最小值,即:f (x )min =f(−log a (lna ))=a −log a (ln a )−(−log a (lna ))>0, ⇒1lna −(−log a (lna ))>0.又1lna =log a e,−log a (lna )=log a 1lna , ⇒log a e >log a1lna⇒lna >1e⇒a >e 1e .10.【2015年福建预赛】函数f (x )=e x (x −ae x )恰有两个极值点x 1,x 2(x 1<x 2),则a 的取值范围是__________. 【答案】(0,12) 【解析】∵函数f (x )=e x (x −ae x ),∴f′(x )=(x +1−2a ⋅e x )e x ,由于函数f (x )两个极值点为x 1,x 2,即x 1,x 2是方程f′(x )=0的两个不等实数根,即方程x +1−2ae x =0,且a ≠0,∴x+12a=e x ;设y 1=x+12a(a ≠0),y 2=e x ,在同一坐标系内画出两个函数图象,如图所示,要使这两个函数有2个不同的交点,应满足{12a >01 2a >1,解得0<a<12,所以a的取值范围为(0,12),故选A.【方法点睛】本题主要考查函数的极值、函数与方程以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解11.【2018年湖南预赛】函数f(x)=ln(x2+1)的图像大致是()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.12.【2018年湖南预赛】设函数f(x)是R上的奇函数,当x>0时,f(x)=e x+x−3,则f(x)的零点个数是A.1 B.2 C.3 D.4【答案】C【解析】∵函数f(x)是定义域为R的奇函数,∴f(0)=0,所以0是函数f(x)的一个零点;当x>0时,令f(x)=e x+x-3=0,则e x=-x+3,分别画出函数y=e x,和y=-x+3的图象,如图所示,有一个交点,所以函数f (x )有一个零点,又根据对称性知,当x <0时函数f (x )也有一个零点.综上所述,f (x )的零点个数为3个, 故选:C .13.【2017年四川预赛】已知函数f (x )=a ln x +x 2在x =1处有极值,则实数a 的值是()(A)−2(B)−1(C)1(D)2【答案】A【解析】提示:因为f ′(x )=ax+2x =a+2x 2x由条件知f ′(1)=0,解得a =−2.14.【2016年陕西预赛】设函数f (x )=x 3+ax 2+6x +c (a 、b 、c 均为非零整数).若f (a )=a 3,f (b )=b 3,则c 的值为(). A .-16 B .-4 C .4 D .16 【答案】D 【解析】设g (x )=f (x )-x 3=ax 2+bx +c . 由f (a )=a 3,f (b )=b 3⇒g (a )=g (b )=0.则a 、b 为方程g (x )=0的两个根⇒a +b =−ba,ab =ca⇒c =−a 4a+1=−(a 2+1)(a −1)−1a+1.因为c 为整数,所以,a +1=±1⇒a =0(舍去)或-2. 故c =16. 选D.15.【2015年黑龙江预赛】设0(sin cos )k x x dx π=-⎰,若8280128(1)kx a a x a x a x -=++++,则128a a a +++=()A.-1B.0C.1D.256 【答案】B 【解析】试题分析:000(sin cos )sin cos cos sin 2k x x dx xdx xdx x x πππππ=-=-=--=⎰⎰⎰,所以88280128(1)(12)kx x a a x a x a x -=-=++++,令1x =得80128(12)1a a a a ++++=-=,,令0x =得01a =,所以12801280()110a a a a a a a a +++=++++-=-=,故选B.考点:1.积分运算;2.二项式定理.16.【2015年黑龙江预赛】设函数f (x )=sin 5x +1.则∫f (x )π2−π2dx 值为()。
2017年湖南省普通高中学业水平考试数学试卷及答案

2017年湖南省普通高中学业水平考试数学(真题)本试卷包括选择题、填空题和解答题三部分,共4页,时量120分钟,满分100分。
一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知一个几何体的三视图如图1所示,则该几何体可以是() A 、正方体B 、圆柱C 、三棱柱D 、球2.已知集合A={}1,0,B={}2,1,则B A ⋃中元素的个数为() A 、1B 、2C 、3D 、43.已知向量a =(x,1),b =(4,2),c =(6,3).若c=a+b ,则x=() A 、-10B 、10C 、-2D 、24.执行如图2所示的程序框图,若输入x 的值为-2,则输出的y=() A 、-2 B 、0 C 、2 D 、45.在等差数列{}n a 中,已知1121=+a a ,163=a , 则公差d=() A 、4B 、5C 、6D 、76.既在函数21)(x x f =的图像上,又在函数1)(-=x x g 的图像上的点是()A 、(0,0)B 、(1,1)C 、(2,21)D 、(21,2)7.如图3所示,四面体ABCD 中,E,F 分别为AC,AD 的中点, 则直线CD 跟平面BEF 的位置关系是() A 、平行 B 、在平面内 C 、相交但不垂直 D 、相交且垂直8.已知sin 2sin ,(0,)θθθπ=∈,则cos θ=() A 、23-B 、21-C 、21D 、23(图1)俯视图侧视图正视图图3BDCAEF 图2结束输出yy=2+xy=2-xx ≥0?输入x开始否是9.已知4log ,1,21log 22===c b a ,则()A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<10、如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内, 则用随机模拟方法计算得阴影部分的面积为()A 、54B 、53C 、21D 、52二、填空题:本大题共5小题,每小题4分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年湖南省高中数学联合竞赛试卷
一、选择题(本大题共6个,每小题5分,满分30分)
1. 设集合
{}1,2,3,....,2017X =,集合
{(,,),,,S x y z x y z X =∈且三条件
,,x y z y z x z x y <<<<<<恰好有一个成}立,若(,,),(,,)x y z S z w x S ∈∈,则下列选项正
确的是( )
A. (,,)(,,)y z w S x y w S ∈∉且
B. (,,)(,,)y z w S x y w S ∈∈且
C. (,,)(,,)y z w S x y w S ∉∈且
D. (,,)(,,)y z w S x y w S ∉∉且
2.已知点P 为正三棱柱111ABC A B C -上底面111A B C ∆的中心,作平面BCD AP ⊥,与棱1AA 交于点D,若122AA AB ==,则三棱锥D ABC -的体积为( )
A.
48 B. 24 C. 16 D. 12
3.已知椭圆C: 22
184
x y +=,对于任意实数k,椭圆C 被下列直线所截得弦长,与被直线
:1l y kx =+所得弦长不可能相等的是( )
A. 0kx y k ++=
B. 10kx k --=
C. 0kx y k +-=
D. 20kx y +-=
4.对任意正整数n 与k ()k n ≤,用(,)f n k 表示不超过n k ⎡⎤
⎢⎥⎣⎦
且与n 互质的正整数个数,则
(100,3)f =( )
A. 11
B. 13
C. 14
D. 19
5.如果111A B C ∆三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( ) A. 111A B C ∆是锐角三角形,222A B C ∆也是锐角三角形 B. 111A B C ∆是钝角三角形,222A B C ∆也是钝角三角形 C. 111A B C ∆是锐角三角形,222A B C ∆也是钝角三角形 D. 111A B C ∆是钝角三角形, 222A B C ∆也是锐角三角形
6.将石子摆在如果所示的梯形形状,称具有“梯形” 结构的石子数依次构成的数列{}n a : 5,9,14,20,,,,,,,,,,,为“梯形数列”,根据梯形的构成,可知624a =( )
• • • • • •
• • • • • • • • •
• • • • • • • •
• • • • •
A.166427
B.196248
C.196249
D.196250
二、填空题(本大题共6个,每小题8分,满分48分)
7.已知函数()f x 满足()()(),(1)3f m n f m f n f +==,
则22(1)(2)(2)(4)(1)(3)f f f f f f ++++22(3)(6)(4)(8)
(5)(7)
f f f f f f ++++=_________
8.已知,,A B C 为圆O 的三点,且1
()2
AO AB AC =+,则AB AC ⋅=__________
9.已知复数z ,若方程248430(x zx i i -++=为虚数单位)有实数根,则复数z 的Z 的最小值=_________
10.对于正整数n,定义!(1)(2).......21n n n n =--⋅,记12!.....12!3!
(1)!n n
S n n ⎡⎤=+++
-⎢⎥+⎣⎦, 2017S =________
11.当0x π≤≤,且3sin
2
x
tan x =____________ 12.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',有22()()f x xf x x '+>, 则不等式2(2017)(2017)(1)0x f x f ++-->的解集_______________
13.(16分) 在锐角ABC ∆中,sin A ,a,b,c 为A,B,C 的对边, (1)求2
sin 2()sin 2
B C
B C +++的值 (2)若4a =,求当AB AC ⋅取最大值时ABC ∆的面积
14.(16分)已知数列{}n a 满足2
11(1)2,()n n n s a a n N s ++-==-
∈,其中n S {}n a 的前n 项和, (1)求证:11n s ⎧⎫
⎨⎬-⎩⎭
为等差数列
(2)若对于任意的n,均有:12(1)(1).....(1)n s s s kn +++≥,试求k 的最大值.
15.(20分) 已知,a b R +∈,a b ≠
(1ln 2
a b a b
a ln
b -+<
- (2)如果,a b 是函数()ln 2017f x x x =-的零点,证明:2ab e > (此题目有错误,省竞委已经做了声明)
16.(20分) 已知AB 是椭圆22:1(,0,)C mx ny m n m n +=>≠上的斜率为1的弦,AB 的垂直平分线与椭圆交于CD 两点,设CD 的中点F,CD 交于AB 于E (1)求证:2
2
2
4CD AB EF -= (2)求证:四点ABCD 共圆
四、加试(每大题20分)(发哥给学生考时个人加的)
(1) 在锐角ABC ∆,证明:
(2)设12,,...,0n a a a >,证明:
....
(3)给定正整数k,a,b,若对于任意正整数n,都有:n k n k a n b n ++,证明:a=b
(4)对于给定正整数3n ≥,任取12...,n x x x <<<,求2
112
11
n n i j i j n n
i j
i j x x f x x ====⎛⎫
- ⎪⎝⎭=-∑∑∑∑的最大值.。