医学统计学SPSS生存分析实例

合集下载

医学统计学SPSS生存分析实例

医学统计学SPSS生存分析实例

将生存时间按从小到大顺序排列如下:
表1 BCG治疗组生存情况
*死亡=1;删失=0
表2 药物和BCG结合治疗组生存情况
*死亡=1;删失=0
按上述二表将数据输入SPSS软件,其中数据编号为i,列(1)即时间为t,列(3)即生存结局为status,表1为group1,表2为group2。

选择Analyze中的Survival里的Kaplan-Meier分析,将Time,Status,Factor依次选定,option和Compare Factor依次设定完成后,得到输出结果,结果分析如下:
Survival Table中:
1为BCG治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。

2为药物与BCG结合治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。

Overall Comparisons
Test of equality of survival distributions for the different levels of group.
两组生存率的log-rank检验
H0:两种疗法患者生存率相同
H1:两种疗法患者的生存率不同
α=0.05
采用SPSS软件对两组生存率进行检验,得到上面Overall Comparisons表,其中第一行为LogRank检验结果。

即X2=0.057,P=0.811。

按α=0.05水准,不拒绝H0,还不能认为用BCG疗法和用药物与BCG结合疗法治疗黑色素瘤患者的生存率有差别。

生存曲线如上图所示,其中生存时间为横轴,生存率为纵轴。

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。

根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。

2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。

生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。

有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。

3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。

常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。

4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。

t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。

二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。

对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。

2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。

这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。

下面用一个例子来说明SPSS中Cox回归模型的操作方法。

例题要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:操作步骤:SPSS变量视图菜单选择:点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor变量选入“状态”框,其余分析变量选入“协变量”框。

SPSS分析技术:生存分析的寿命表法;聊聊寿命表法与Kaplan

SPSS分析技术:生存分析的寿命表法;聊聊寿命表法与Kaplan

SPSS分析技术:⽣存分析的寿命表法;聊聊寿命表法与Kaplan前⾯推送了⽣存分析的基本理论及Kaplan-Meier法的使⽤过程:数据分析技术:⽣存分析;⽣存分析起于医学研究,却不囿于医学研究SPSS分析技术:⽣存分析的Kaplan-Meier法;普及点肝脏的常识,护肝需要良好的⽣活习惯!今天要介绍利⽤寿命表进⾏⽣存分析。

上⾯的⽂章中介绍过Kaplan-Meier法和寿命表都能⽤于分析单个因素不同⽔平之间的⽣存时间分布⽐较。

虽然Kaplan-Meier法是更为常⽤的分析⽅法,但是它也有缺陷,需要准确记录事件和删失的发⽣时点。

某些事件的发⽣和删失是没有外在表现的,特别是某些慢性疾病,需要定期检查才能得知事件有没有发⽣。

例如,定义事件为癌症复发,复发发⽣的时点往往⽆法及时发现并准确记录发⽣时间,通常的做法是通过定期检查⾝体来追踪是否复发,这时记录的⽣存时间为时段数据,这时采⽤寿命表法更加合适。

案例分析⽣活是数据分析的来源,这也是草堂君做⽣活统计学公众号的初衷,因此草堂君在介绍每种数据分析⽅法时,都会基于案例数据的分析背景介绍⼀些⽣活常识。

真所谓⽣活中来、⽣活中去,希望⼤家在学习的同时拓展⼤家的知识⾯。

喜欢就下⽅点个赞,留个⾔吧!癌症泛指所有的恶性肿瘤,是由癌细胞引起的严重疾病,致死率极⾼。

癌细胞是⼀种变异的细胞,是产⽣癌症的病源,癌细胞与正常细胞的不同之处在于其有⽆限增殖的能⼒,⽽且还会局部侵⼊周遭正常组织甚⾄经由体内循环系统或淋巴系统转移到⾝体其他部位。

癌细胞的⽆限增殖会破坏正常的细胞组织,导致出⾎、坏死、溃疡,造成⼈体消瘦、⽆⼒、贫⾎、⾷欲不振、发热以及严重的脏器功能受损等,最终造成患者死亡。

随着⼈类平均寿命的延长,癌症对⼈类的威胁越来越⼤,已经成为我国城乡居民的最主要死因。

引起癌症的因素通常有不良的⽣活习惯(吸烟、喝酒、污染⽔和霉变⾷品等);⽣活环境(接触有毒化学物质等);⽣物因素(真菌病毒等)等这些有害因素。

如何用SPSS做生存分析(TCGA数据举例)

如何用SPSS做生存分析(TCGA数据举例)

如何用SPSS做生存分析(TCGA数据举例)生存分析是评价疾病预后的一个重要分析方法,尤其是在肿瘤研究中。

之前我们介绍过好几个肿瘤生存分析的在线工具,比如KM plotter,Onclnc,GEPIA等等(生存分析,这个网站还不错!,懒人怎么做肿瘤病人的生存分析?)。

有童鞋反映说这几个工具分析出来的结果咋不一样呢?原因主要有:1、在线工具的数据样本来源不同,大致上是KM plotter(TCGA 数据+GEO数据)>GEPIA(TCGA数据)>Onlnc(部分TCGA数据)2、分析时样本剔除的标准有所不同。

此外,在线工具分析的结果你无法得到入选分析样本的临床数据,也无法得到下图这样分类更加详细的生存分析结果。

(硕士论文:浙江省常见恶性肿瘤生存分析)所以有的时候还是得自己亲自动手做不做生存分析,今天就给大家介绍一下如何用SPSS分析对TCGA数据库中的肿瘤(肺腺癌)数据进行生存分析。

(SPSS版本是16.0的,还是英文的,从一个留学的同学那拷来的,一直没换,大家将就着看吧)首先是下载TCGA的临床数据和测序数据(FPKM数据),这一步可以用简易TCGA下载工具这个小工具来处理(这么好用的TCGA 数据下载工具?!)。

得到临床数据后,我们需要得到Over survival(OS)的数据,如果病人死亡了,OS就等于days to death,如果还活着,那就等于days to last followup。

而没有数据的病例就是我们需要剔除的条目了。

得到OS的数据之后,我们可以选择不同的临床信息进行生存分析,比如TNM分级,吸烟与否,治疗方式等等。

我们以抽烟为例,Not Availale为不抽烟病例,其他为抽烟的病例。

根据存活与否排序,得到OS的数据,再根据OS排序,删除没有生存信息的数据再看下吸烟情况,不吸烟的人似乎有点少,看来得肺腺癌的还是吸烟的多啊。

考虑到“节目效果”,这里把吸烟史=1的也归到不吸烟组。

生存分析SPSS过程(SPSSofSurvivalAnalysis)

生存分析SPSS过程(SPSSofSurvivalAnalysis)

生存分析SPSS过程(SPSS of Survival Analysis)Company name生存分析SPSS过程(SPSS of Survival Analysis)邹莉玲预防医学教研室Company Logo1. 何为生存分析?生存分析(survival analysis)是将事件的结果(终点事件)和出现结果经历的时间结合起来分析的一种统计分析方法。

2. 生存分析的目的:描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。

统计方法包括Kaplan-Meier(K-M)法、寿命表法。

比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了解哪种治疗方案较优。

统计方法log-rank检验等。

影响因素分析:研究某个或某些因素对生存率或生存时间的影响作用。

如为改善脑瘤病人的预后,应了解影响病人预后的主要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。

统计方法cox比例风险回归模型等。

预测:建立cox回归预测模型。

生存分析的理论复习Company Logo生存分析(Survival Analysis)菜单Company Logo寿命表(Life Tables)过程Life tables 过程用于(小样本和大样本资料):估计某生存时间的生存率,以及中位生存时间。

绘制各种曲线:如生存函数、风险函数曲线等。

对某一研究因素不同水平的生存时间分布的比较。

控制另一个因素后对研究因素不同水平的生存时间分布的比较。

对多组生存时间分布进行两两比较。

(比较总体生存时间分布采用wilcoxon检验)Company LogoCompany Logo实例分析例1:为了比较不同手术方法治疗肾上腺肿瘤的疗效,某研究者随机将43例病人分成两组,甲组23例、乙组20例的生存时间(月)如下所示:其中有“+”者是删失数据,表示病人仍生存或失访,括号内为死亡人数。

(1)计算甲、乙两法术后10月的生存率和标准误。

三组不同治疗方法生存分析spss

三组不同治疗方法生存分析spss

三组不同治疗方法生存分析spss三组不同治疗方法生存分析,统计结果表明:不管是手术切除还是放射治疗,患者能活多久都与其年龄密切相关。

通过对术前各种因素的比较和患者在发病中不同时间点的数值比较,能够更准确地评估预测患者的生存情况,这就为制定合理的治疗方案提供了有力依据。

在多学科交叉领域广泛应用一、根据死亡率和危险因素进行分层的治疗分析二、根据疾病严重程度进行分层的治疗分析。

本研究由于未设定观察时间长短以及因经济问题无法进行三组之间直接的对比分析。

但从临床实际出发来看,患者的治疗效果与疾病严重程度呈正相关性。

患者所处的年龄,尤其是合并症的多少是决定其预后的重要影响因子;如果患者既往没有任何不良习惯导致体质下降而造成感染和炎症加重等疾病;合并高血压、糖尿病、冠心病、高脂血症等基础性疾病也可增大其预后风险。

由此可见,在治疗初始阶段选择具备优势的技术才能使患者获得最佳治疗效果。

第一阶段(发现疾病到治疗):急性期或亚急性期。

随着病情的加重,会诱发许多并发症,如充血性心力衰竭、肝功能异常、呼吸困难甚至昏迷。

另外,还可能合并肿瘤、脑卒中等严重疾病,如出现上述任意一项即属于严重事件,需要立即转入 ICU 进行抢救。

此阶段目标主要是控制病情,尽量减轻痛苦,改善患者预后,减少医疗费用支出。

第二阶段(治疗后6个月至12个月内):慢性期。

此阶段的治疗重点是控制疾病,改善患者预后。

除继续药物干预之外,还可针对合并疾病采取中西医结合综合治疗,必要时给予介入治疗,以减轻疼痛,延缓疾病进展速度,延长患者生命周期。

第三阶段(康复期)。

该阶段指的是康复期至恢复期。

该阶段的任务仍然是对症治疗,促进身体机能的恢复。

这些工作虽然很繁琐,但却极为重要。

如果患者年纪较小且身体虚弱,则还应鼓励其参与户外锻炼,增强自身免疫力。

SPSS(7)生存分析

SPSS(7)生存分析

第十四章生存分析在临床诊疗工作的评价中,慢性疾病的预后一般不适合用治愈率、病死率等指标来考核,因为其无法在短时间内明确判断预后情况,为此,只能对患者进行长期随访,统计一定时期后的生存或死亡情况以判断诊疗效果。

这就是生存分析。

第一节Life Tables过程14.1.1 主要功能调用此过程时,系统将采用即寿命表分析法,完成对病例随访资料在任意指定时点的生存状况评价。

14.1.2 实例操作[例14-1]用中药+化疗(中药组,16例)和单纯化疗(对照组,10例)两种疗法治疗白血病患者后,随访记录存活情况如下所示,试比较两组的生存率。

中药组对照组随访月数是否死亡随访月数是否死亡10 21213 18 6 19 26 9 8 6 43 9 4 31 24 否是是否否是是否是是是是否否21371161113177是否是是否否否否否14.1.2.1 数据准备激活数据管理窗口,定义变量名:随访月数的变量名为TIME,是否死亡的变量名为DEATH,分组(即中药组与对照组)的变量名为GROUP。

输入原始数据:随访月数按原数值;是否死亡的,是为1,否为0;分组的,中药组为1,对照组为2。

14.1.2.2 统计分析激活Statistics菜单选Survival中的Life Tables...项,弹出Life Tables对话框(图14.1)。

从对话框左侧的变量列表中选time,点击 钮使之进入time框;在Display Time Intervals栏中定义需要显示生存率的时点,本例要求从0个月显示至48个月,间隔为2个月,故在0 through框中输入48,在by框中输入2。

选death,点击 钮使之进入Status框,点击Define Event...钮弹出Life Tables:Define Event for Status Variable对话框,在Single value栏中输入1,表明death = 1为发生死亡事件者;点击Continue钮返回Life Tables对话框。

生存分析的cox回归模型案例——spss

生存分析的cox回归模型案例——spss

一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。

根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。

2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。

生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。

有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。

3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。

常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。

4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。

t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。

二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。

对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。

2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。

这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。

下面用一个例子来说明SPSS中Cox回归模型的操作方法。

例题要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:操作步骤:SPSS变量视图菜单选择:点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor 变量选入“状态”框,其余分析变量选入“协变量”框。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将生存时间按从小到大顺序排列如下:
表1 BCG治疗组生存情况
*死亡=1;删失=0
*死亡=1;删失=0
按上述二表将数据输入SPSS软件,其中数据编号为i,列(1)即时间为t,列(3)即生存结局为status,表1为group1,表2为group2。

选择Analyze中的Survival里的Kaplan-Meier分析,将Time,Status,Factor依次选定,option 和Compare Factor依次设定完成后,得到输出结果,结果分析如下:
Survival Table中:
1为BCG治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。

2为药物与BCG结合治疗组患者生存率(Estimate)及其标准误(Std. Error)的计算结果。

Overall Comparisons
Log Rank (Mantel-Cox) .057 1 .811 Breslow (Generalized Wilcoxon) .658 1 .417 Tarone-Ware
.336
1
.562
Test of equality of survival distributions for the different levels of group.
两组生存率的log-rank 检验 H 0:两种疗法患者生存率相同 H 1:两种疗法患者的生存率不同 α
=0.05
采用SPSS 软件对两组生存率进行检验,得到上面Overall Comparisons 表,其中第一行为LogRank 检验结果。

即X 2=0.057,P=0.811。

按α=0.05水准,不拒绝H 0,还不能认为用BCG 疗法和用药物与BCG 结合疗法治疗黑色素瘤患者的生存率有差别。

生存曲线如上图所示,其中生存时间为横轴,生存率为纵轴。

相关文档
最新文档