大数据在健康医疗领域的应用现状

合集下载

Spark大数据技术在医疗健康领域的应用现状与挑战

Spark大数据技术在医疗健康领域的应用现状与挑战

Spark大数据技术在医疗健康领域的应用现状与挑战随着信息技术的快速发展和医疗领域数据的快速积累,利用大数据技术来解决医疗健康领域的问题成为可能。

Spark作为一种优秀的大数据处理框架,在医疗健康领域得到了广泛应用。

本文将介绍Spark大数据技术在医疗健康领域的应用现状,并讨论其面临的挑战。

一、Spark大数据技术在医疗健康领域的应用现状1. 智能诊断和预测Spark大数据技术可以通过分析大量的医疗数据,实现智能诊断和预测。

利用Spark的机器学习库,可以构建各种模型来预测疾病的发生概率、诊断结果等。

同时,Spark在处理大规模数据时的快速性能,使得实时的智能诊断成为可能,为医生提供更准确的判断依据。

2. 健康管理与预防通过Spark大数据技术,可以对患者的健康数据进行实时监测和分析,为患者提供个性化的健康管理建议。

例如,在个人健康记录方面,Spark可以帮助患者收集和分析心率、血压、体温等数据,并提供相应的健康指导。

此外,Spark还可以针对特定人群进行大规模数据分析,从中发现疾病的潜在风险因素,提前采取预防措施,有效降低疾病的发生率。

3. 医疗资源优化利用Spark大数据技术,可以对医院资源进行优化和管理,提高医疗服务的效率和质量。

通过实时监控和分析患者的就诊情况和医疗历史,可以为医生和护士提供决策支持,帮助他们更好地分配医疗资源,优化医疗流程。

此外,Spark还能够通过分析大量的临床数据和科研文献,帮助医院制定更科学的医疗政策和治疗方案。

二、Spark大数据技术在医疗健康领域面临的挑战1. 数据隐私和安全问题医疗数据的隐私和安全是Spark在医疗健康领域面临的首要挑战。

医疗数据涉及患者的个人信息、疾病诊疗记录等敏感信息,一旦泄露或被滥用将带来严重后果。

因此,在使用Spark处理医疗数据时,必须采取一系列的安全措施,包括数据加密、访问控制等,以确保数据的隐私和安全。

2. 数据质量和一致性医疗数据的质量和一致性是使用Spark进行数据分析和挖掘时的关键问题。

大数据技术在医疗领域的应用现状与展望

大数据技术在医疗领域的应用现状与展望

大数据技术在医疗领域的应用现状与展望随着信息技术的飞速发展,大数据技术在各行各业都被广泛应用,特别是在医疗领域。

大数据技术运用在医疗领域,有助于改善医疗服务质量、提高疾病诊断和治疗效果、优化医药管理等方面,为人们的健康保障和生命安全提供了更好的保障。

本文将详细介绍大数据技术在医疗领域的应用现状和未来发展趋势。

一、大数据技术在医疗领域的应用现状1.数据采集和存储医疗领域的大数据技术应用,首先需要进行数据采集和存储。

目前,医疗机构和科研机构采用的医疗信息系统已初具规模,大量医疗数据已经积累。

此外,可以通过网络、移动设备和传感器等多种渠道对患者的健康数据进行采集,这些数据包括生理参数、运动数据、饮食习惯等。

经过清洗、分类、整合等处理,这些数据被存储到数据仓库中,并备份在云端服务器上。

2.数据分析和挖掘医疗数据收集完成后,需要进行数据分析和挖掘,以发现数据中的模式和规律。

数据分析和挖掘的目的是从数据中提取有价值的信息,进一步用于医疗决策、疾病预测、药物研发等方面。

医疗领域的数据分析和挖掘包括数据预处理、特征选择、数据建模、模型评估等过程。

3.医学影像分析医学影像分析是大数据技术在医疗领域的重要应用之一。

医学影像数据包括X光、CT、MRI、PET等多种类型的图像数据,这些数据对于疾病诊断和治疗起着至关重要的作用。

大数据技术可以对医学影像数据进行分析和挖掘,如肺癌筛查、脑部疾病诊断等,并通过深度学习、神经网络等技术实现自动化、智能化分析。

4.个性化医疗大数据技术在医疗领域的一个重要应用是推动个性化医疗的发展。

通过数据分析和挖掘,医生可以更好地了解每个病人的健康状况、疾病风险和治疗需求,从而制定个性化的治疗方案。

此外,大数据技术还可以通过基因测序、基因组学等技术对病人进行基因诊断和治疗,实现个性化医疗的深度发展。

二、大数据技术在医疗领域的未来发展趋势1.数据隐私保护随着医疗数据的积累和应用,数据隐私保护将成为一个越来越重要的问题。

大数据在医疗行业的发展现状与未来趋势分析

大数据在医疗行业的发展现状与未来趋势分析

大数据在医疗行业的发展现状与未来趋势分析随着科技的不断进步和社会的不断变迁,大数据正逐渐在各个领域发挥着越来越重要的作用。

在医疗行业中,大数据的应用也越来越广泛,对医疗资源的优化、疾病诊断的精准性和个体化治疗方案的制定等方面都起到了积极的推动作用。

本文将就大数据在医疗行业的发展现状和未来趋势进行分析。

一、大数据在医疗行业的发展现状目前,大数据在医疗行业的应用主要体现在以下几个方面:1. 医疗资源的优化医疗资源的分配和利用一直是一个全球性难题。

而大数据技术的应用可以通过分析全球各地的医疗数据,了解各个地区的医疗资源分布情况和利用情况,以便制定更加科学合理的医疗资源配置方案。

此外,大数据还可以通过对大量病例数据进行分析,推动医疗资源间的良性流动,提高全球医疗资源的使用效率。

2. 疾病预测和预警大数据技术的应用可以通过分析全球各地的疫情数据、病例数据、人群迁移数据等,提前预警疾病的爆发,并对传染病的传播规律进行建模和分析。

通过这种方式,我们可以及时采取措施,有效控制疾病的传播范围,减少人员伤亡。

3. 精准医疗精准医疗是目前医疗行业的一个热门话题。

大数据技术可以通过对大量病例数据和基因数据的分析,对个体患者的病情进行深度理解,从而制定出更加精确的治疗方案。

例如,在癌症领域,大数据可以通过对病人的基因信息进行分析,预测病人对不同药物的反应情况,从而减少治疗过程中不必要的试错。

二、大数据在医疗行业的未来趋势虽然目前大数据在医疗行业已经取得了一定的成就,但是我们相信它的应用前景还远远不够:1. 个人健康管理随着人们生活水平的提高和健康意识的增强,人们对个人健康管理的需求也越来越高。

未来,大数据技术可以结合生物传感器技术、智能穿戴设备等,采集个人的生理数据,通过对数据的分析,提供针对性的健康建议和治疗方案,帮助人们更好地管理自己的健康。

2. 医疗决策辅助在医疗决策中,医生往往需要参考大量的医疗文献、实验数据等,以做出准确的诊断和制定治疗方案。

大数据在医疗健康领域的应用

大数据在医疗健康领域的应用

大数据在医疗健康领域的应用随着科技的不断发展,大数据在各个领域的应用也越来越广泛。

在医疗健康领域,大数据的应用正在日益蓬勃发展,为医疗行业带来了革命性的变化。

本文将探讨大数据在医疗健康领域的应用,并分析其带来的影响和挑战。

一、大数据在医疗健康领域的应用1.临床决策支持大数据分析可以帮助医生制定更科学的诊疗方案和决策。

通过收集和分析大量的患者数据、病例资料和医学文献,大数据可以提供实时的临床指南和最新的研究成果,并给出个性化的治疗建议。

医生可以根据患者的病情特征和历史数据,做出更准确的诊断和治疗计划,提高治疗效果和患者满意度。

2.疾病预测和预防大数据分析可以挖掘出疾病爆发的早期迹象和趋势,预测疾病的风险和传播路径,帮助公共卫生部门制定针对性的防控措施。

同时,通过分析个人健康数据和生活方式,大数据可以预测患者的疾病风险,并提供个性化的健康建议,帮助人们采取积极的预防措施,降低疾病发生的可能性。

3.精准医疗大数据可以为个体化医疗提供强有力的支持。

通过分析患者的基因组数据、遗传信息和临床数据,大数据可以帮助医生评估患者对某种药物的反应性和疗效,从而为患者制定个性化的治疗方案,提高治疗效果和生存率。

此外,大数据还可以帮助医疗机构优化资源配置,更好地满足患者需要。

4.医疗质量监控和评估通过对医疗数据的分析,大数据可以评估医疗服务的质量和效果,发现潜在的问题和风险。

医疗机构可以利用大数据提供的信息,改进工作流程和医疗流程,提高医疗质量和安全性。

同时,大数据还可以帮助患者选择合适的医疗机构和医生,提高医疗选择的透明度和可靠性。

二、大数据应用带来的影响和挑战1.对医疗行业的影响大数据的应用使医疗行业从传统的经验主义转向了以数据为基础的科学决策。

大数据分析可以提供全面的医疗信息,帮助医生制定更准确的诊疗方案和决策,提高医疗效果和患者满意度。

同时,大数据的应用也能够改变医疗机构的运营模式,优化资源配置和工作流程,提高工作效率和运营效果。

医疗健康大数据的发展现状与未来趋势

医疗健康大数据的发展现状与未来趋势

医疗健康大数据的发展现状与未来趋势引言:在信息时代的大潮下,数据成为了推动社会发展的关键要素。

而医疗健康领域的大数据应用则成为了重要的研究和应用方向。

本文将探讨医疗健康大数据的发展现状与未来趋势,旨在为读者了解该领域的最新动态提供帮助。

第一部分:医疗健康大数据的发展现状医疗健康大数据的发展始于医疗信息化的推进。

随着信息技术的飞速发展,医疗机构已经实现了电子病历的推广和应用,使得患者的健康数据可以被有效地记录和管理。

同时,各种医疗设备和传感器的普及,也让医疗数据的采集变得更加便捷和全面。

这些原始数据的积累为医疗健康大数据的发展奠定了基础。

随后,人工智能的快速发展为医疗健康大数据的应用提供了技术支持。

通过智能算法和机器学习,可以对医疗健康大数据进行深度分析和挖掘。

例如,利用大数据可以预测疾病发生的概率、改进临床决策、个性化推荐治疗方案等,大大提高了医疗服务的效率和质量。

第二部分:医疗健康大数据的未来趋势未来,医疗健康大数据的应用将更加广泛。

首先,与其他领域的数据进行跨界融合将成为发展的趋势。

随着社会的发展,人们的健康不仅与医疗有关,还与环境、生活方式、社交网络等多个因素存在密切联系。

通过整合和分析这些不同领域的数据,可以更全面地了解人们的健康状况,提供精准的医疗服务。

其次,医疗健康大数据的个性化应用将成为发展的重点。

人们对于医疗的需求越来越个性化,而依靠大数据的分析和预测,可以根据每个人的特点和需求,提供量身定制的健康方案。

个性化的医疗健康大数据应用将成为未来医疗的主要发展方向。

最后,隐私和安全问题也是医疗健康大数据发展的关键挑战之一。

医疗健康大数据涉及到个人的健康信息,因此需要确保数据的安全和隐私。

未来,需要建立更加完善的数据保护机制和法律法规,保障个人数据的安全性和隐私权。

结论:医疗健康大数据是未来医疗发展的重要方向,它将在更多的医疗场景中得到应用。

当前,医疗健康大数据的发展已经初见成效,但仍面临诸多挑战。

大数据技术在医学领域中的应用

大数据技术在医学领域中的应用

大数据技术在医学领域中的应用随着科技的不断进步和发展,大数据技术已经深入到各个领域中,其中医学领域是其中一个值得关注的领域。

大数据技术在医学领域中的应用,可以提高医疗效率和精确度,为医学界的发展带来新的机遇。

一、大数据技术在医学领域的应用现状目前,大数据技术在医学领域的应用主要涉及以下几个方面:1.医疗数据管理。

医院、诊所等机构管理的病历、化验报告、医学影像等信息量非常大,必须用大数据技术进行存储、管理和分析,为日后的治疗和研究提供基础数据资源。

2.医疗诊断和治疗。

大数据技术可以清晰地记录病人的病史、症状、体征、化验结果等,为医生提供更准确的诊断和治疗方案。

同时,大数据技术还可以辅助医生进行手术操作,提高手术精度和安全性。

3.新药研发。

大数据技术可以利用多样性数据进行关联分析和机器学习,为新药研发提供有利的支持。

可以从千万级别的临床试验数据中筛选出新的药物靶点,并丰富人类对药物生物学的认识。

二、大数据技术在医学领域应用带来的价值大数据技术在医学领域中的应用,可以带来以下几个重要的价值:1.提高医疗效率和精确度。

运用大数据技术可以收集大量的医疗数据,并进行大数据分析,为医疗数据管理、医疗诊断和治疗等方面提供更完善的支持。

这样可以确保病人得到更加精准和高效的诊疗服务,从而提高了医疗治疗的精准度和效率。

2.提升医学研究的水平和质量。

大数据技术可以支持医学研究,通过分析大量的病例数据,挖掘隐藏在数据背后的规律和联系,从而为人们提供更多的实证证据。

同时,大数据技术还能够支持临床试验、新药研发等方面的工作,和传统的医疗研究方法相比,开发新的药物比较可靠。

3.降低医疗成本和风险。

使用大数据技术进行医疗诊断与治疗,可以减少病人的错误治疗,从而降低不必要的医疗费用。

同时,大数据技术还可以帮助疾病体系,提高疾病预防和治疗的水平,降低病人的健康风险,缩小公共健康贫富差距。

三、大数据技术在医学领域应用的未来趋势未来在医学领域中,大数据技术将会发挥越来越重要的作用。

医疗健康大数据发展现状及未来趋势分析

医疗健康大数据发展现状及未来趋势分析

医疗健康大数据发展现状及未来趋势分析引言:随着科技的不断发展,医疗健康行业也迎来了前所未有的变革。

大数据的出现为医疗健康领域带来了巨大的机遇和挑战。

本文将对医疗健康大数据的发展现状进行分析,并探讨未来的发展趋势。

一、医疗健康大数据的发展现状(一)数据来源和类型医疗健康大数据的来源主要包括医院、医生诊所、保险公司、医疗器械、智能设备等多个渠道。

数据类型涵盖临床数据、病历数据、生命体征数据、遗传数据等多个方面。

(二)数据的应用领域基于医疗健康大数据的分析,可以帮助政府制定公共卫生政策、医院精细化管理、科学研究等。

同时,个体用户也可以通过健康管理平台进行健康监测、疾病预防、诊疗指导等。

(三)数据隐私与安全问题医疗健康大数据的应用面临着数据隐私和安全的问题。

个体用户的敏感信息可能被滥用,数据泄露也会导致隐私泄露和盗用风险。

二、医疗健康大数据的未来趋势(一)精准医疗的兴起基因检测技术和个体化治疗的进步将推动精准医疗的发展。

通过大数据分析,医生可以根据患者的基因信息和病情,制定个体化诊疗方案,提高疗效和生存率。

(二)人工智能辅助医疗人工智能在医疗健康领域的应用也将成为未来的趋势。

通过机器学习和深度学习算法,人工智能可以帮助医生进行诊断、辅助手术、药物研发等。

同时,智能医疗设备也可以实时监测患者的生命体征数据,提供及时的预警和指导。

(三)区块链技术的应用区块链技术可以解决医疗健康大数据的隐私与安全问题。

通过区块链的去中心化和加密特性,可以确保数据的完整性和隐私保护。

患者可以完全掌握自己的数据,并选择与医生、研究机构共享。

(四)跨界合作的推动医疗健康大数据的应用离不开跨界合作。

政府、医疗机构、科研机构、技术企业等需要共同合作,共享数据和资源,加快创新和应用的进程。

结论:医疗健康大数据的发展是一个不可逆转的趋势。

激发其潜力,必须解决数据保护和隐私问题,并加强各方协作。

在未来,医疗健康大数据将为医疗行业带来全新的发展契机,推动疾病预防、个体化治疗等进一步的创新。

医疗健康大数据分析的现状与挑战

医疗健康大数据分析的现状与挑战

医疗健康大数据分析的现状与挑战一、医疗健康大数据分析的概述随着医疗技术的飞速发展以及医疗行业内信息化的全面升级,医疗健康大数据分析已经成为医疗行业核心竞争力的重要组成部分。

通过对大规模、高维度、异构化医疗健康数据进行挖掘、分析、智能处理,医疗健康大数据分析可以帮助医疗企业实现精准医疗、健康管理、智慧医疗等目标,从而提高医疗安全性、效率性和综合竞争力。

二、医疗健康大数据分析的现状1. 实现方式多样。

目前医疗健康大数据分析的实现方式多样,主要包括主动收集数据、被动收集数据、第三方数据接入等方式。

其中,主动收集数据主要通过医疗机构自有系统或移动应用程序收集患者数据;被动收集数据主要通过医疗设备、智能穿戴、生物传感器等设备自动收集患者数据;第三方数据接入则主要通过公共数据集、社交媒体数据、云数据存储等平台进行社会数据共享与交换。

2. 数据种类繁多。

医疗健康大数据分析所涉及的数据种类非常繁多,主要包括病历数据、人口统计学数据、医院管理数据、医保报销数据、医疗问诊数据、生物医学数据等。

这些数据具有多样性、不确定性和动态性,涉及的数据类型包括结构化数据、半结构化数据、非结构化数据等。

3. 应用场景丰富。

医疗健康大数据分析的应用场景丰富多样,包括疾病预测、药物研发、医疗决策、个性化治疗、健康管理等方面。

目前,医疗健康大数据分析应用较为广泛的领域主要集中在医学图像分析、基因组学、生物信息学、临床研究等方面。

4. 技术手段成熟。

医疗健康大数据分析的技术手段已经相对成熟,主要包括数据采集、存储与管理、数据挖掘与分析、数据可视化等环节。

在数据挖掘与分析方面,尤其是人工智能技术的发展,为医疗健康大数据分析提供了更加高效、精准的解决方案。

三、医疗健康大数据分析的挑战1. 数据安全问题。

医疗健康大数据涉及大量敏感信息,如不恰当的数据保护和隐私措施可能导致患者隐私泄露、信息破坏等风险,对医疗安全产生潜在的负面影响。

2. 数据标准化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据在健康医疗领域的应用现状摘要:医疗大数据具有极大的价值,挖掘医疗大数据中的价值信息对于疾病诊断、治疗方案确定、流行病预测、医学研究和药物副作用分析等方面具有重要的意义。

从某种意义上讲,医疗大数据系统对于改善人类生活环境、提高生活质量、获得更高的幸福指数均有重要的作用。

关键词:医疗大数据应用在大数据时代,我们每天都生活在数据的世界中。

全球每秒钟发送2.9 百万封电子邮件,一分钟读一篇的话,足够一个人昼夜不息的读5.5 年…每天会有2.88 万个小时的视频上传到Youtube,足够一个人昼夜不息的观看3.3 年…推特上每天发布 5 千万条消息,假设10 秒钟浏览一条信息,这些消息足够一个人昼夜不息的浏览16 年…每天亚马逊上将产生6.3 百万笔订单…每个月网民在Facebook 上要花费7 千亿分钟,被移动互联网使用者发送和接收的数据高达1.3EB…Google 上每天需要处理24PB 的数据…大数据时代,数据不再是社会生产的“副产物”,而是可被二次乃至多次加工的原料,是可再生资源,从中可以探索更大价值,它变成了生产资料。

然而不可再生资源呢?据统计,全球煤炭资源仅供开采162年、石油仅供开采40年,天然气仅供开采65年。

那么大数据对于人类医疗健康,临床试验等,是否能起到指示性的作用呢?1大数据在医疗卫生领域的应用现状1.1医疗卫生领域数据资源现状分析近年来,我国医疗卫生领域吸纳了国内外当前先进的信息技术,信息化程度得到很大提高,我国卫生统计建起了覆盖国家、省、市、县、乡、村六级的从业人员达10万人的工作网络,90余万家医疗卫生机构通过统计直报系统上报了年报及月报,建立了动态的医疗卫生机构、卫生人力等信息库,卫生资源与卫生服务利用、疾病报告与健康监测等大型数据资源库。

自1993年开始,每5年在全国范围内开展的国家卫生服务调查,现已建立连续性的,覆盖全国31个省20万人口的家庭基本信息、人口基本信息、患病、就医、基本医疗卫生服务利用等200余项指标的数据库,形成了可进行时间序列分析的系列海量数据。

目前,县及县以上医院基本建立了医院信息系统,20%的县及县以上医院建立起以病人为中心、以电子病历为基础的挂号、收费、处方、治疗一体化管理信息系统。

全国县级新农合管理信息系统基本建成,省、市级监管平台正在逐步完善,各级新农合管理部门、经办机构、定点医疗机构以及其他相关部门间建立计算机网络联接和数据资源共享。

深化医改以来,各地基本建立了基本药物监测评价管理系统,实现对各地基本药物和增补药物品种数量、采购情况、缺失的基本药物品种数量、销售价格、配备使用、补偿及报销情况的监管时,产生了大量数据资源。

国家卫生综合管理信息平台是我国卫生信息资源管理的重要组成部分,实现了医疗卫生机构统计数据和各级卫生行政部门在线汇总数据,仅在当前开始运行阶段,就已采集传染病信息5千多万条、突发公共卫生事件信息20多万条、近5百万人电子健康档案数据、3百多万人新农合数据近4千万条、1千多万人的诊疗数据。

北京、上海、安徽等12个省份也已建立电子健康档案资源库。

另外,国家传染病与突发公共卫生事件网络直报系统的建立,实现了全国所有疾病预防控制机构、96.98%的县和县级以上医疗机构、82.21%的乡镇卫生院网络直报。

国家级卫生监督信息系统建设也已启动。

妇幼保健业务信息系统围绕新生儿出生登记、死亡和就诊等业务,也在逐步建立完善。

这些重要的卫生信息系统运行产生的数据,就占据了我国医疗卫生领域数据总量的大部分。

大数据的数据来源主要分为运营式系统阶段、用户原创内容阶段和感知式系统阶段。

我国医疗卫生服务、卫生统计调查和各种医疗卫生行业信息系统产生了巨量数据,以每个CT图像含有大约150MB的数据、每个基因组序列文件大小约为750MB、每个标准病理图则接近5GB计算,乘以我国人口数量和平均寿命,那么每个社区医院或中等规模制药企业均可以生成和累积达数个TB甚至数个PB级的结构化和非结构化数据。

医疗卫生“大数据”的数据资源包括医疗服务的EHRs数据,医院与医保的结算与费用数据,医学研究的学术、社会、政府数据,医疗厂商的医药、医械、临床实验数据,居民的行为与健康管理数据以及政府的人口与公共卫生数据,连同我国公共社会经济生活中网络产生的数据,构成了医疗卫生领域大数据的初期数据资源。

而随着医改的不断深入,卫生统计和信息化建设得到了进一步加强,统计方法不断改进、多种信息系统广泛使用,医疗和健康数据急剧扩容并几何级增长,利用包括影像数据,病历数据、检验检查结果、诊疗费用等在内的各种数据,搭建合理先进的数据服务平台,将为广大患者、医务人员、科研人员及政府决策者提供服务和协助方面发挥主要作用。

1.2医疗卫生大数据应用分析(疾病诊疗)大数据时代下,电子病历的应用。

医院电子病历管理系统所产生和保存的病案信息是医疗卫生“大数据”的重要信息来源,医疗卫生部门应整合电子病历等信息资源,以大数据信息管理理念构建医疗卫生信息共享中心,充分发挥电子病历等医疗信息资源在寻求最佳治疗途径、提高诊疗水平、防控流行病疫情等方面的利用价值。

病历档案,是指按规范记录患者病情和医生诊疗情况的档案,是医护人员记录患者疾病诊疗过程的文件,它客观、完整、连续地记录了患者的诊疗经过、病情变化、治疗效果等情况,是医院医疗、教学、科研的基础资料,也是医学研究的原始材料。

大数据技术为创新病历档案信息资源利用模式带来了新的机遇,运用大数据理念创新病案信息管理和利用模式,对于提高病历档案的信息化管理水平具有重要意义。

大数据的发展促进了肿瘤登记的发展。

恶性肿瘤对人类生命健康和社会发展危害极大,全球每年死于恶心肿瘤的人数八百万左右,要有效降低恶性肿瘤的危害,首先必须及时、完整、准确地掌握恶性肿瘤流行病学资料。

但肿瘤资料数量巨大、种类多、分布广,有关数据库相互孤立,大部分为非结构化数据等原因,传统数据收集方法难以及时、完整和准确地收集肿瘤资料,尤其是有关临床分期、治疗和随访等信息,同时传统数据库管理办法也难以管理越来越多的、复杂的肿瘤数据,严重制约了肿瘤登记工作的发展。

大数据技术为肿瘤登记和研究带来了便利,采用大数据技术和方法,可有效解决肿瘤登记和研究面临的困局。

1.3医疗大数据的其他应用1)医疗大数据除了应用于疾病的辅助诊断和治疗方案的确定外,还可应用于医学研究、流行病预测和药物副作用分析等方面。

医疗大数据系统保存了成百上千万患者的全部真实数据,如患者个人基本信息,包括居住地信息、家族疾病史等,这些信息有助于研究某些疾病发病的家族性和地区区域的分布性。

通过大数据系统的挖掘分析,可以得知哪些癌症会有明显的家族遗传性,从而可进一步分析其发病与基因变化的关系,以找到降低这种癌症发病率的方法。

通过挖掘分析大数据中疾病与地区区域的关系,可以得知哪些疾病容易在某些地区发生,以便进一步分析该地区的环境因素与疾病发生的关系,使得人类去有意识地改变环境,去除导致疾病发生的诸多因素。

2)医疗大数据系统还可以用于流行病爆发的预测。

相关部门通过分析医疗大数据的变化,获得来自全球各地的患者出现相同或类似症状并迅速在人群中蔓延的信息,从而可预测某些流行病的爆发,为人类阻止或减缓流行病的发展提供依据。

医疗大数据系统的另一个重要应用是药物副作用分析。

在临床用药过程中,药物使用可能会引起病人的不良反应。

这种不良反应会导致治疗作用减弱甚至失败,严重的可能会导致患者死亡,同时不合理用药也会使患者医疗费用大大增加,给患者带来更多的经济负担。

据文献统计,药物不良反应的发生率:门诊病人为0.3%~5.0%,住院病人为10%~20%。

来自美国的报告显示,美国每年有70多万人因为药物副作用受到伤害或者死亡;一家有700 张床位的医院,每年因药物副作用导致的住院和门诊费用达到560万美元。

因此研究药物副作用对于提高患者疾病的治疗质量,指导临床用药以减少药物对患者的伤害,降低药物费用以及指导新药研发都具有重要的意义。

3)传统的药物副作用分析主要采用临床试验法、药物副作用报告分析法等,这些方法受到样本数小、采样分布有限等因素影响,难以全面反映药物副作用造成的影响。

如果应用医疗大数据库系统,可从千百万患者的数据中挖掘到与某种药物相关的不良反应,样本数大,采样分布广,所获得结果更具有说服力。

更进一步,我们还可以从社交网中(如新浪博客、医疗网络论坛)搜索到大量人群服用某种药物的不良反应记录,通过比对分析和数据挖掘方法,更科学、更全面地获得药物副作用的影响。

综上所述,医疗大数据具有极大的价值,挖掘医疗大数据中的价值信息对于疾病诊断、治疗方案确定、流行病预测、医学研究和药物副作用分析等方面具有重要的意义。

从某种意义上讲,医疗大数据系统对于改善人类生活环境、提高生活质量、获得更高的幸福指数均有重要的作用。

2医疗大数据目前存在的问题2.1数据量大,数据类型复杂医疗领域的数据量巨大,数据类型复杂。

到2020年,医疗数据将增至35ZB,相当于2009年数据量的44倍。

另外,在医院,每个患者不但要经过辨证论治的个体化诊疗,还会经过各种理化检测进行疾病及其预后的诊断,所以不光有病历资料中包含的信息,还会有生化检查、多种影像或病理切片检查的生物学信息,数据类型十分复杂。

这给数据的存储、分析、处理、传输等带来很大挑战。

2.2信息采集不足,收集渠道不畅要想在医疗领域使用大数据技术,首先要有足够的病人、药物等相关信息,这是数据分析的基础,然而许多病人可能出于隐私考虑不愿提供这些信息,制药企业也有可能因为商业利益不愿共享药物成分等敏感信息。

另外,各个医院及机构的医疗信息、软件及硬件服务都各自独立,缺乏合理接口,大数据收集的渠道不畅,导致采集与应用存在一定程度上的脱离。

2.3大数据高效分析能力欠缺采集到足够信息后,需要由相关领域的专业人士与信息技术专家一起对数据进行有针对性地归纳和分析,得出由大量新兴技术(如Hadoop Map Reduce、内存数据库等)组成的高性能的专业的分析技术架构解决方案,而这种跨学科、跨领域合作能否顺利实现,是大数据技术实际应用中的重要问题。

2.4大数据的安全随着数据量的不断增加,数据存储的物理安全性越来越重要,对数据的多副本与容灾机制提出更高的要求。

但是网络和数字化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,大数据的保护越来越重要。

2.5观念落后目前医疗领域的决策往往是建立在经验或者传统数据粗糙的分析方法基础上的,而改变各层次决策者旧的决策习惯,使其学会利用大数据的分析结果进行决策,还有一段路要走。

3建议1)区分数据与信息数据与信息二者并不是一回事、定义也不尽相同。

数据只有在准确并获得及时更新的情况下才能与实际信息相符。

相关文档
最新文档