专题一元二次方程根与系数的关系(含答案)-

合集下载

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数的关系习题一、单项选择题:1.关于x 的方程0122=+-x ax 中,如果0<a ,那么根的情况是( B )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定a 4)2(2--=∆ 解: 04>-∴a 实数根。

原方程有两个不相等的∴a 44-= 044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 的两根,则2221x x +的值是( C )(A )15 (B )12 (C )6 (D )321x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴2332121==+x x x x , 623232=⨯-=3.下列方程中,有两个相等的实数根的是( B )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0 )0(”的方程即可本题为找出“=∆4.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( B )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=0,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x , 0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于(D )(A )2 (B )-2 (C ) 1 (D )-11212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程, 121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等的实数根,那么k =2±。

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数的关系习题(配答案)

一元二次方程根与系数旳关系习题一、单选题:1.有关x 旳方程0122=+-x ax 中,如果0<a ,那么根旳状况是( B )(A )有两个相等旳实数根 (B)有两个不相等旳实数根(C )没有实数根 (D)不能拟定a 4)2(2--=∆ 解: 04>-∴a 实数根。

原方程有两个不相等的∴a 44-= 044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 旳两根,则2221x x +旳值是( C )(A)15 (B)12 (C)6 (D )321x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴ 2332121==+x x x x , 623232=⨯-= 3.下列方程中,有两个相等旳实数根旳是( B )(A ) 2y 2+5=6y(B)x 2+5=2错误!x(C)错误!x 2-错误!x+2=0(D)3x2-2错误!x+1=0 )0(”的方程即可本题为找出“=∆4.以方程x 2+2x-3=0旳两个根旳和与积为两根旳一元二次方程是( B )(A ) y 2+5y -6=0 (B )y2+5y +6=0 (C)y2-5y +6=0 (D)y 2-5y-6=0,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x , 0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x •等于( D )(A)2 (B )-2 (C ) 1 (D)-1 1212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程, 121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等旳实数根,那么k =2±。

专题根与系数的关系含答案

专题根与系数的关系含答案

专题:一元二次方程根的判别式和根与系数的关系例1.已知关于x的方程mx2-2m-1x+m-2=0.1当m取何值时,方程有两个不相等的实数根;2若x1、x2为方程的两个不等实数根,且满足x12+x22-x1x2=2,求m的值.例2.已知关于x的方程x2-4mx+4m2-9=0.1求证:此方程有两个不相等的实数根;2设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.例3.已知关于x的方程mx2+4-3mx+2m-8=0m>0.1求证:方程有两个不相等的实数根;m,且点B m,n在x轴上,求m 2设方程的两个根分别为x1、x2x1<x2,若n=x2-x1-12的值..例4.已知关于x的一元二次方程:x2-2m+1x+m2+5=0有两个不相等的实数根.1求m的取值范围;2若原方程的两个实数根为x1、x2,且满足x12+x22=|x1|+|x2|+2x1x2,求m的值.例5.已知关于x的方程x2-2k+1x+4k-1=0.21求证:无论k取什么实数值,这个方程总有实数根;2能否找到一个实数k,使方程的两实数根互为相反数若能找到,求出k的值;若不能,请说明理由.3当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.训练1.已知关于x的方程mx2-m+2x+2=0m≠0.1求证:方程总有两个实数根;2已知方程有两个不相等的实数根α,β,满足1α+1α=1,求m的值.2.已知一元二次方程x2-2x+m=01若方程有两个实数根,求m的范围;2若方程的两个实数根为x1和x2,且x1+3x2=3,求m的值.3若方程的两个实数根为x1和x2,且x12-x22=0,求m的值.3.已知关于x的方程x2+m-3x-m2m-3=01证明:无论m为何值方程都有两个实数根;2是否存在正数m,使方程的两个实数根的平方和等于26若存在,求出满足条件的正数m的值;若不存在,请说明理由.4.已知关于x的一元二次方程x2-6x-k2=0k为常数.1求证:方程有两个不相等的实数根;2设x1、x2为方程的两个实数根,且2x1+x2=14,试求出方程的两个实数根和k 的值.5.已知关于x的方程x2-2k-3x+k2+1=0有两个不相等的实数根x1、x2.1求k的取值范围;2若x1、x2满足|x1|+|x2|=2|x1x2|-3,求k的值.m-3=06.已知关于x的一元二次方程x2-m-2x+121求证:无论m取什么实数时,这个方程总有两个不相等的实数根;2如果方程的两个实数根为x1,x2,且2x1+x2=m+1,求m的值.7.已知关于x的一元二次方程a-1x2-5x+4a-2=0的一个根为x=3.1求a的值及方程的另一个根;2如果一个等腰三角形底和腰不相等的三边长都是这个方程的根,求这个三角形的周长.8.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两实根,当a 为何值时,x 12+x 22有最小值最小值是多少专题:一元二次方程根的判别式和根与系数的关系例1. 解:1∵方程有两个不相等的实数根, 例2. ∴△=b 2-4ac =-2m -12-4mm -2=4m +1>0, 例3. 解得:m >-14,∵二次项系数≠0,∴m ≠0, 例4. ∴当m >-14且m ≠0时,方程有两个不相等的实数根; 例5. 2∵x 1、x 2为方程的两个不等实数根,例6. ∴x 1+x 2=2α−1α,x 1x 2=α−2α, 例7. ∴x 12+x 22-x 1x 2=x 1+x 22-3x 1x 2=2α−1α2-3(α−2)α=2, 例8.解得:m 1=√2+1,m 2=-√2+1舍去;∴m =√2+1.例9. 解:1∵△=-4m 2-44m 2-9=36>0,例10. ∴此方程有两个不相等的实数根; 例11. 2∵x =4α±√362=2m ±3,例12. ∴x 1=2m -3,x 2=2m +3,例13. ∵2x 1=x 2+1,∴22m -3=2m +3+1,例14.∴m =5.例15. 解:1∵△=4-3m 2-4m 2m -8, 例16. =m 2+8m +16=m +42例17. 又∵m >0∴m +42>0即△>0 例18. ∴方程有两个不相等的实数根; 例19. 2∵方程的两个根分别为x 1、x 2x 1<x 2,例20. ∴x 1+x 2=-4−3αα,x 1x 2=2α−8α, 例21. n =x 2-x 1-12m ,且点B m ,n 在x 轴上, 例22. ∴x 2-x 1-12m =√(α1+α2)2−4α2α1-12m =√(4−3αα)2−4×2α−8α-12m =0, 例23. 解得:m =-2,m =4,例24.∵m >0,∴m =4.例25. .解:1∵方程x 2-2m +1x +m 2+5=0有两个不相等的实数根, 例26. ∴△=-2m +12-4m 2+5=8m -16>0,解得:m >2. 例27. 2∵原方程的两个实数根为x 1、x 2, 例28. ∴x 1+x 2=2m +1,x 1x 2=m 2+5. 例29. ∵m >2,例30. ∴x 1+x 2=2m +1>0,x 1x 2=m 2+5>0, 例31. ∴x 1>0、x 2>0.例32. ∵x 12+x 22=(α1+α2)2-2x 1x 2=|x 1|+|x 2|+2x 1x 2, 例33. ∴4m +12-2m 2+5=2m +1+2m 2+5,即6m -18=0,例34.解得:m =3.例35. 证明:1∵△=2k +12-16k -12=2k -32≥0, 例36. ∴方程总有实根;例37. 解:2∵两实数根互为相反数, 例38. ∴x 1+x 2=2k +1=0,解得k =; 例39. 3①当b =c 时,则△=0, 例40. 即2k -32=0,∴k =32, 例41. 方程可化为x 2-4x +4=0,∴x 1=x 2=2,而b =c =2,∴b +c =4=a 不适合题意舍去;例42. ②当b =a =4,则42-42k +1+4k -12=0, 例43. ∴k =52, 例44. 方程化为x 2-6x +8=0,解得x 1=4,x 2=2, 例45. ∴c =2, C △ABC =10,例46. 当c =a =4时,同理得b =2,∴C △ABC =10,例47.综上所述,△ABC 的周长为10.训练1.1证明:∵方程mx 2-m +2x +2=0m ≠0是一元二次方程, ∴△=m +22-8m =m 2+4m +4-8m =m 2-4m +4=m -22≥0, ∴方程总有两个实数根;2解:∵方程有两个不相等的实数根α,β,∴由根与系数的关系可得α+β=α+2α,αβ=2α, ∵1α+1α=1,∴α+2α2α=α+22=1,解得m =0,∵m ≠0,∴m 无解.2.解:1∵方程x 2-2x +m =0有两个实数根,∴△=-22-4m ≥0,解得m ≤1;2由两根关系可知,x 1+x 2=2,x 1x 2=m ,解方程组{α1+α2=2α1+3α2=3, 解得{α1=32α2=12,∴m =x 1x 2=32×12=34; 3∵x 12-x 22=0,∴x 1+x 2x 1-x 2=0,∵x 1+x 2=2≠0,∴x 1-x 2=0,∴方程x 2-2x +m =0有两个相等的实数根,∴△=-22-4m =0,解得m =1.3. 1证明:∵关于x 的方程x 2+m -3x -m 2m -3=0的判别式△=m -32+4m 2m -3=9m -12≥0,∴无论m 为何值方程都有两个实数根;2解:设方程的两个实数根为x 1、x 2,则x 1+x 2=-m -3,x 1×x 2=-m 2m -3,令x 12+x 22=26,得:x 1+x 22-2x 1x 2=m -32+2m 2m -3=26,整理,得5m 2-12m -17=0,解这个方程得,m =175或m =-1, 所以存在正数m =175,使得方程的两个实数根的平方和等于26.4. 1证明:在方程x 2-6x -k 2=0中,△=-62-4×1×-k 2=4k 2+36≥36, ∴方程有两个不相等的实数根.2解:∵x 1、x 2为方程的两个实数根,∴x 1+x 2=6①,x 1x 2=-k 2,∵2x 1+x 2=14②,联立①②成方程组{α1+α2=62α1+α2=14, 解之得:{α1=8α2=−2, ∴x 1x 2=-k 2=-16,∴k =±4.5. 解:1∵原方程有两个不相等的实数根,∴△=-2k -32-4k 2+1=4k 2-12k +9-4k 2-4=-12k +5>0,解得:k <512;2∵k <512,∴x 1+x 2=2k -3<0,又∵x 1x 2=k 2+1>0,∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-x 1+x 2=-2k +3,∵|x 1|+|x 2|=2|x 1x 2|-3,∴-2k +3=2k 2+2-3,即k 2+k -2=0,∴k 1=1,k 2=-2,又∵k <512, ∴k =-2.6. 解:1∵△=m -22-4×12m -3=m -32+3>0, ∴无论m 取什么实数值,这个方程总有两个不相等的实数根;2解:x1+x2=m-2,2x1+x2=x1+x1+x2=m+1,∴x1=m+1+2-m=3,把x1代入方程有:9-3m-2+12m-3=0解得m=245.7. 解:1将x=3代入方程中,得:9a-1-15+4a-2=0, 解得:a=2,∴原方程为x2-5x+6=x-2x-3=0,解得:x1=2,x2=3.∴a的值为2,方程的另一个根为x=2.2结合1可知等腰三角形的腰可以为2或3,∴C=2+2+3=7或C=3+3+2=8.∴三角形的周长为8或7.8. .解:∵△=2a2-4a2+4a-2≥0,∴α≤12又∵x1+x2=-2a,x1x2=a2+4a-2.∴x12+x22=x1+x22-2x1x2=2a-22-4.设y=2a-22-4,根据二次函数的性质.∵α≤12∴当α=12时,x12+x22的值最小.此时α12+α22=2(12−2)2−4=12,即最小值为12.。

八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)

八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)

八年级下册数学 一元二次方程根与系数的关系复习专题(附答案)一、单选题1.已知关于x 的一元二次方程ax 2+bx+c=0的根为2和3,则关于x 的一元二次方程ax 2-bx-c=0的根为( ). A. -2,-3 B. -6,1 C. 2,-3 D. -1,62.一元二次方程ax 2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是( )A. 有两个正根B. 有两个负根C. 有一正根一负根且正根绝对值大D. 有一正根一负根且负根绝对值大3.已知一元二次方程a(x-x 1)(x-x 2)=0(a≠0,x 1≠x 2)与一元一次方程dx+e=0有一个公共解x=x 1 , 若一元二次方程a(x-x 1)(x-x 2)+(dx+e)=0有两个相等的实数根,则( )A. a(x 1-x 2)=dB. a(x 2-x 1)=dC. a(x 1-x 2)²=dD. a(x 2-x 1)=d4.已知方程x 2-2x-5=0,有下列判断:①x 1+x 2=-2;②x 1•x 2=-5;③方程有实数根;④方程没有实数根;则下列选项正确的是( )A. ①②B. ①②③C. ②③D. ①②④ 5.若x 1 , x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值是( )A. -2B. -3C. 2D. 36.已知A ,B 是两个锐角,且满足 sin 2A +cos 2B =54t , cos 2A +sin 2B =34t 2 ,则实数t 所有可能值的和为( ) A. - 83 B. - 53 C. 1 D. 113 7.下列各式计算正确的是( )A. a 3⋅a 2=a 6B. a 5+a 5=a 10C. (−2a 3)3=−8a 9D. (a −1)2=a 2−1 8.若多项式2x 2+3y+3的值为8,则多项式6x 2+9y+8的值为( )A. 1B. 11C. 15D. 239.已知实数a ,b 分别满足a 2−6a +4=0,b 2−6b +4=0 , 且a≠b ,则b a +a b 的值是( )A. 7B. -7C. 11D. -1110.已知实数 m 、n 满足 x 2−7x +2=0 ,则 n m +m n 的值是( )A. 452B. 152C. 152 或2D. 452 或2 二、填空题11.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是________12.设m 、n 是方程x 2+x-1001=0的两个实数根,则m 2+2m+n 的值为________。

完整版一元二次方程根与系数的关系的关系含答案

完整版一元二次方程根与系数的关系的关系含答案

21.2.4 一元二次方程的根与系数的关系A基础知识详解——————————————☆知识点一元二次方程根与系数的关系-, B重难点解读—————————根据方程中两根的关系确定方程中字母的值☆重难点的取值范围;1)求实数k○随堂例题(2222的kx=16+x满足、2)若xxx+x?,求实数(-1=0)(xx1例已知关于的方程+2k-1x+k有211212.、x两个实数根x值. 21.)则m的值为(自主解答:(1)∵关于x的方程x+(2k-1)x+k-1=0的两个根,且x+x=1-xx,22D21121.-2 D.1或-2 C.A.有两个实数根x,x, -1或2 B21222,+(m+2)x+m=02.已知关于x的一元二次方程x 0,-1∴△=(2k-1)-4(k)=-4k+5≥取何值,原方程总有两个不相m(1)求证:无论55等的实数根;11?,是原方程的两根,x且(=-22)若x,21xx22有两(2)∵关于x的方程x+(2k-1)x+k-1=021.求m的值2.?,∴x+x=1-2k,xx=k-1个实数根x,x22111222取0,∴无论m解:(1)△=(m+2)-4m=m+4>222,+x)-2x?x=16+x?x=∵x+x(x22211112何值,原方程总有两个不相等的实数根;2222 -4k-12=0,即,k(∴1-2k-1)-2×(k)=16+(k-1),x是原方程的两根,(2)∵x 或解得k=-2k=6(不符合题意,舍去).21 =m.+x∴x=-(m+2),xx .∴实数k的值为-22211xxm?112?题目中提到两个实数根,即隐【一中名师点拨】21? =-2,=∵=-xxxxm当根据方程中两根的;含着根的判别式大于等于02211是分式方程的解,且符合,经检验,m=2解得m=2关系确定方程中字母的值,关键是把这种关系式的值为2.题意,∴m +x转化为含x及x.x的形式2211○随堂训练22-m-1=0x-2mx+m是方程,20171.(烟台)若xx21课后达标基础训练22的值x+a-1=0的两个实数根互为相反数,则a呼和浩特)2017关于x的一元二次方程x+(a-2a)1.( B )为(0.2或.2 B.0 C.1 DA2) A 已知关于x的方程x+x-a=0的一个根为2,则另一个根是(2.(2017新疆)6.3 DA.-3 B.-2 C.2 D )x-4x-3=0的两个实数根,则代数式(m+1)(n+1)的值为( 3.已知m,n是一元二次方程2D.-6 B.-2 C.0 A.)x,x为根的一元二次方程是( A =30,4.已知实数xx满足x+x=11,xx,则以2121112222+11x+30=0.Ax-11x+30=0 B.x22-11x-30=0.x+11x-30=0 D.xC3311222x=+ 2 ;+=;x=+ 是方程、5.已知xx2x+3x-4=0的两根,那么xx=;x·x??2212111242xx12237. ;=??xx?21442 -1 .的值为,则a+b+ax+b+1=0的解为x=x=26.已知关于x的方程x21323232x+1=0 .x-7.以-2+和为两根的一元二次方程是2. 的值-5,求方程的另一根及m8.已知方程5x+mx-10=0的一根是,解:设方程的另一个根为km2?k?,得,解得则-5k=-2m=23. ,又k-5=55已知关于x的一元二次方程kx+x-2=0有两个不相等的实数根.29.的取值范围;k)求实数1(.,求k的值.x,x,且满足x+x+3x?x(2)设方程两个实数根分别为212121112-,解得k>且△22 =30=1-4k?(-2)>0解:(1且k≠0;(2)根据题意得x+x=-,)根据题意得k≠21k8221122222,k=-)-=3,整理得3k+2k-1=0,解得?+xxx=-,∵x+3x?x=3,∴(x+x)+xx=3,∴,k=-,2m-x+=有两个实数10已知关的一元二次方x21的取值范围;1)求实数m(2-5+3xx的值.=6-xx,求(x-x)(2)若x+x2112112232222≤;,∴m2m-3)-4m=4m-12m+9-4m=-12m+9,∵△≥0,∴-12m+9≥0解:(1)△=(4222,∴-2m-3=03-2m=6-m,∴mx+x=6-xx,∴+x=-(2m-3)=3-2m,xx=m,又∵(2)由题意可得x22111122322+x)-4xxx+3xx-5==1,∴(x-x)+3xx-5=m=3,m=-1,又∵m≤(,,∴m=-1,∴x+x=5xx2111112122221122422(x+x)-xx-5=5-1-5=19.2211能力提升(2017仙桃)若α、β为方程2x-5x-1=0的两个实数根,则2α+3αβ+5β的值为( B )2211.A.-13 B.12 C.14 D.1511221. ,则= ≠0)满足a-a-2018=0,b-b-2018=0(12.若非零实数a,ba??ba2018 1522,的两根是一个矩形两邻边的长,且矩形的对角线长为k+1)x+k+1=013.已知关于x的方程x-(4求k= 2 .已知关于x的一元二次方程x+(2k+1)x+k-2=0的两根为x和x,且(x-2)(x-x)=0,则k的值2214.是 -2211219 .或-422=0. -4x-m已知关于x的一元二次方程x15.(2017黄石))求证:该方程有两个不等的实根;(1 ,求m的值.满足x、xx+2x=9(2)若该方程的两实根211222222,)-m=16+4m >0(=0中,△=-4)-4×1×(-4x-m解:(1)∵在方程x ∴该方程有两个不等的实根;,x、x(2)∵该方程的两个实数根分别为212=-m②.=4+x①,x?xx∴2211=5,,③,∴联立①③解得+2x ∵x=9x=-1x211252.±?x∴xm=,解得=-5=-m21.。

一元二次方程根与系数的关系含答案

一元二次方程根与系数的关系含答案

1 一元二次方程根与系数的关系 一、学习要求: 一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.二、同步训练:(一)填空题: 1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1·x 2=______.2.若α,β是一元二次方程x 2-3x -2=0的两个实数根,则11αβ+=______. 3.若α,β是方程x 2-3x =5的两根,则α2+β2-αβ的值是______4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).(二)选择题:5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( )(A)b 2-4ac =0 (B)b =0 (C)c =0(D)c ≠0 6.若α,β是方程2x 2+3x -4=0的两根,则++的值是( ) (A)-7 (B)213- (C)21- (D)7 7.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( )(A)53(B)53- (C)-3 (D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( )(A)两个实数根的和为23-(B)两个实数根的和为23 (C)两个实数根的积为23 (D)以上说法都不正确2(三)解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值:(1);221221x x x x (2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.11. 已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.3参考答案1.-2,21-2.23- 3.244.c a +-25.C6.B7.B8.D9.(1)29 (2)3 10.21- 11. m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意。

初中数学专题复习一元二次方程的根与系数的关系(B)及解答

初中数学专题复习一元二次方程的根与系数的关系(B)及解答

一元二次方程的根与系数的关系(B)一、 填空:1.一元二次方程的根与系数的关系(韦达定理) 如果方程ax 2+bx+c=0(a ≠0,Δ≥0)有两个实数根x 1和x 2,那么x 1+x 2=______,x 1x 2=_____.2.韦达定理只能在一元二次方程有实数根的条件下使用,因此等式 x 1+x 2 = -a b ,x 1x 2= ac 成立的条件是:a________,Δ________.3.根据乘法公式填空:(1)x 12+x 22=(x 1+x 2)2-______;(2)(x 1-x 2)2=(x 1+x 2)2-_______; (3)221212222121222221)(2)(11x x x x x x x x x x -=+=+;(4). 丨x 1-x 2丨=a∆. 4.设方程3x 2-9x-1=0的两个根是x 1和x 2,则下列各式的值是:(1)x 1+x 2 =_____;(2)x 1x 2 =____; (3)x 1x 22+x 12x 2=_____;(4)(x 1-3)(x 2-3) =_____;(5)x 12+x 22=____;(6)(x 1-x 2)2=____;(7)2111x x +=____; (8) + =_____;(9)丨x 1-x 2丨=_____。

5. 已知方程2x 2-mx+n=0的两个根是-3和4, 那么由韦达定理得:-3+4=____,-3×4=____, 所以m=____,n=____.6.已知方程x 2-13x+m=0的两根满足 x 1-4x 2+2=0,那么由韦达定理得 ⎩⎨⎧=+-=+024___2121x x x x ,所以m=___.7. 方程5x 2+kx -10=0的一根x 1=-5,另一根是x 2,那么⎩⎨⎧=-=+-___5___522x x ,所以另一个根是____,k=___.8. 若方程4x 2-12x+n=0的两个根之比是2∶3,设两根为2k 和3k ,则⎩⎨⎧=⨯=+__32__32k k k k ,所以n=____.9.若方程x 2-ax -2a=0的两个根之和是4a -3,则由韦达定理得4a -3=___,a=___,两个根之积是___. 10.已知方程x 2-6x+m-3=0的两个根互为倒数,则x 1x 2=______=1, 所以m=_______,此时Δ=_____. 11. 以两个数x 1和x 2为根的一元二次方程(二次项系数为1)是________________________. 12.若x 1+x 2=7,x 1x 2=5,则以x 1和2为根的一元二次方程是________________________________. 13.以3+2和3-2为根的一元二次方程是___________________________________。

专题2.4一元二次方程的根与系数的关系【十大题型】-2024-2025学年九年级数学上册[含答案]

专题2.4一元二次方程的根与系数的关系【十大题型】-2024-2025学年九年级数学上册[含答案]

专题2.4 一元二次方程的根与系数的关系【十大题型】【北师大版】【题型1 利用根与系数的关系直接求代数式的值】 【题型2 利用根与系数的关系求方程的根】【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】 【题型4 利用根与系数的关系降次求代数式的值】 【题型5 由一元二次方程的两根求值】 【题型6 构造一元二次方程求代数式的值】【题型7 由一元二次方程的根判断另一个一元二次方程的根】 【题型8 根与系数的关系与三角形、四边形的综合运用】 【题型9 由一元二次方程根的取值范围求字母的取值范围】【题型10 一元二次方程中的新定义问题】知识点1:一元二次方程的根与系数的关系若一元二次方程20ax bx c ++=(a 、b 、c 为常数,0a ¹)的两根为1x ,2x ,则12bx x a +=-,12c x x a×=.注意它的使用条件为,0a ¹,Δ0³.【题型1 利用根与系数的关系直接求代数式的值】【例1】(23-24九年级·黑龙江绥化·开学考试)1.已知一元二次方程256x x x +=+的两根分别为m 、n ,则11m n+= .【变式1-1】(23-24九年级·广西来宾·期中)2.若a ,b 是方程2250x x --=的两个实数根,则()()22a b --的值为 .【变式1-2】(23-24九年级·四川成都·阶段练习)3.设方程22310x x ++=的根为1x 、2x ,则2212x x += .【变式1-3】(23-24九年级·浙江宁波·期末)4.已知 12x x , 是方程 22370x x +-= 的两个根,则 331212x x x x + 的值为( )A .214B .2598-C .638-D .1338-【题型2 利用根与系数的关系求方程的根】【例2】(23-24九年级·全国·单元测试)5.若关于x 的方程()()()31212x x m m x --=-的两根之和与两根之积相等,则方程的根为.【变式2-1】(23-24·山东济南·二模)6.若关于x 的一元二次方程260x mx +-=有一个根为2x =,则该方程的另一个根为x =.【变式2-2】(23-24九年级·河北保定·阶段练习)7.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是m 与26m -,则m 的值为 ,方程的根为.【变式2-3】(23-24九年级·浙江台州·阶段练习)8.若关于x 的一元二次方程2(0)ax c a =¹的一根为2,则另一根为.【题型3 利用根与系数的关系和一元二次方程的解求代数式的值】【例3】(23-24九年级·山东枣庄·期中)9.已知m 、n 是关于x 的方程2220210x x --=的根,则代数式2422023m m n --+的值为( )A .2022B .2023C .4039D .4040【变式3-1】(23-24·江苏南京·模拟预测)10.设1x 、2x 是方程2320200x x --=的两个根,则21122x x x -+= .【变式3-2】(23-24九年级·辽宁大连·期中)11.设a ,b 是2180x x ++=的两个实数根,则232a a b ++的值是 .【变式3-3】(23-24九年级·河南新乡·期末)12.已知a ,b 是方程2570x x -+=的两个根,则243a a b -+-=.【题型4 利用根与系数的关系降次求代数式的值】【例4】(23-24九年级·湖北武汉·阶段练习)13.已知a 、b 是一元二次方程2310x x -+=的根,则代数式221111a b +++的值是( )A .3B .1C .3-D .1-【变式4-1】(23-24九年级·云南·期末)14.已知,m n 是方程230x x +-=的两个实数根,则332024m m n -++的值是 .【变式4-2】(23-24九年级·山东淄博·期中)15.已知12,x x 是方程220240x x --=的两个实数根,则代数式321122024x x x -+的值为( )A .4049B .4048C .2024D .1【变式4-3】(23-24九年级·江苏苏州·阶段练习)16.已知:m 、n 是方程2310x x +-=的两根,则355m m n -+= .【题型5 由一元二次方程的两根求值】【例5】(23-24九年级·河北保定·阶段练习)17.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是m 与26m -,则m 的值为 ,方程的根为.【变式5-1】(23-24九年级·四川成都·期末)18.已知关于x 的方程220x bx c ++=的根为12x =-,23x =,则+b c 的值是( )A .-10B .-7C .-14D .-2【变式5-2】(23-24九年级·江苏连云港·阶段练习)19.在解一元二次方程x 2+px +q =0时,小明看错了系数p ,解得方程的根为1和﹣3;小红看错了系数q ,解得方程的根为4和﹣2,则p = .【变式5-3】(23-24九年级·四川广安·阶段练习)20.已知关于x 的一元二次方程x 2﹣2kx +12k 2﹣2=0.设x 1,x 2是方程的根,且x 12﹣2kx 1+2x 1x 2=5,则k 的值为 .【题型6 构造一元二次方程求代数式的值】【例6】(23-24九年级·江苏无锡·阶段练习)21.已知s 满足22310s s --=,t 满足22310t t --=,且s t ¹,则s t += .【变式6-1】(23-24·湖南常德·一模)22.若两个不同的实数m 、n 满足21m m =+,21n n -=,则22m n += .【变式6-2】(23-24九年级·全国·竞赛)23.已知实数a b 、分别满足21163a a =+和21312b b =-,那么b a a b+的值是 .【变式6-3】(23-24九年级·浙江宁波·期末)24.若4231a a -=,231b b -=,且21a b ¹,则2ba 的值是 .【题型7 由一元二次方程的根判断另一个一元二次方程的根】【例7】(23-24九年级·浙江台州·期末)25.若关于x 的一元二次方程220ax ax c ++= (0)a ¹的一个根为m ,则方程21210a x a x c -+-+=()()的两根分别是( ).A .1m +,1m --B .1m +,1m -+C .1m +,2m +D .1m - ,1m -+【变式7-1】(23-24九年级·安徽合肥·期中)26.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,则a b c ++的值是 .【变式7-2】(23-24九年级·浙江·自主招生)27.设a 、b 、c 、d 是4个两两不同的实数,若a 、b 是方程2890x cx d --=的解,c 、d 是方程2890x ax b --=的解,则++a b c d +的值为 .【变式7-3】(23-24九年级·安徽合肥·期末)28.关于x 的一元二次方程20x px q ++=有两个同号非零整数根,关于y 的一元二次方程20y qy p ++=也有两个同号非零整数根,则下列说法正确的是( )A .p 是正数,q 是负数B .22(2)(2)8p q -+-<C .q 是正数,p 是负数D .22(2)(2)8p q -->+【题型8 根与系数的关系与三角形、四边形的综合运用】【例8】(23-24九年级·山东·课后作业)29.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或【变式8-1】(23-24九年级·黑龙江齐齐哈尔·期末)30.已知三角形的两边长分别是方程211300x x -+=的两个根,则该三角形第三边m 的取值范围是 .【变式8-2】(23-24九年级·安徽六安·阶段练习)31.已知正方形ABCD 的两邻边AB ,AD 的长度恰为方程210x mx -+=的两个实数根,则正方形ABCD 的周长为( )A .2B .4C .6D .8【变式8-3】(23-24九年级·浙江杭州·期中)32.已知关于x 的一元二次方程230x x k -+=有两个实根1x 和2x .(1)求实数k 的取值范围;(2)是否存在矩形,1x 和2x k 的值;若不存在,请说明理由.【题型9 由一元二次方程根的取值范围求字母的取值范围】【例9】(23-24·浙江宁波·模拟预测)33.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .【变式9-1】(23-24九年级·浙江金华·阶段练习)34.若关于x 的方程()24550x x m --+=的解中,仅有一个正数解,则m 的取值范围是 .【变式9-2】(23-24九年级·山东青岛·阶段练习)35.若关于x 的方程20x px q ++=的两根同为负数,其中240p q -³,则( )A .0p >且0q >B .0p >且0q <C .0p <且0q >D .0p <且0q <【变式9-3】(23-24九年级·河南南阳·期中)36.若关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,则实数m 的取值范围是( )A .0m >B .12m >C .12m <D .0m <【题型10 一元二次方程中的新定义问题】【例10】(23-24九年级·黑龙江哈尔滨·期中)37.定义:若x ₁、x ₂是方程()²00ax bx c a ++=¹的两个实数根,若满足2121x x x x -=×,则称此类方程为“差积方程”.例如:()1102x x æö--=ç÷èø是差积方程.(1)判断方程26510x x -+=是否为“差积方程”?并验证;(2)若方程()2220x m x m -++=是“差积方程”,直接写出m 的值;(3)当方程(()²00ax bx c a ++=¹为“差积方程”时,求a 、b 、c 满足的数量关系.【变式10-1】(23-24九年级·上海青浦·期中)38.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如 20x x +=是“差1方程”. 已知关于 x 的方程 ()210x m x m ---=(m 是常数)是“差1方程”,则 m 的值为【变式10-2】(23-24九年级·四川·阶段练习)39.已知对于两个不相等的实数a 、b ,定义一种新的运算:@a b ,如6@15===m ,n 是一元二次方程22170x x -+=的两个不相等的实数根,则[()@m n mn +=.【变式10-3】(23-24九年级·江苏盐城·阶段练习)40.定义:已知1x ,2x 是关于x 的一元二次方程()200ax bx c a ++=¹的两个实数根,若120x x <<,且1234x x <<,则称这个方程为“限根方程”.如:一元二次方程213300x x ++=的两根为110x =-,23x =-,因为1030-<-<,10343-<<-,所以一元二次方程213300x x ++=为“限根方程”.请阅读以上材料,回答下列问题:(1)判断一元二次方程29140x x ++=是否为“限根方程”,并说明理由;(2)若关于x 的一元二次方程()22980x k x k ++++=是“限根方程”,且方程的两根1x 、2x 满足12121111121x x x x ++=-,求k 的值.1.23-.【分析】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200,ax bx c a ++=¹,若1x ,2x 是该方程的两个实数根,则1212.,b c x x x x a a +=-=直接根据一元二次方程根与系数的关系得到4m n +=,6mn =-,再根据11m nm n mn++=进行求解即可.【详解】解:∵一元二次方程256x x x +=+可化为2460x x --=,这个方程的两根分别为m ,n ,∴4m n +=,6mn =-,114263m n m n mn +\+===--,故答案为:23-.2.5-【分析】本题考查了一元二次方程根于系数的关系,根据一元二次方程根于系数的关系可得2a b +=,7ab =-,代入即可求解,熟练掌握一元二次方程根于系数的关系是解题的关键.【详解】解:∵a ,b 是方程2250x x --=的两个实数根,2a b \+=,7ab =-,()()()228457245a b ab a b \--=-++-´+=-=-.故答案为:5-.3.54【分析】利用根与系数的关系求出两根之和与两根之积,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:Q 方程22310x x ++=的根为1x 、2x ,1232x x \+=-,1212x x =,则22221212123195()2()212244x x x x x x +=+-=--´=-=.故答案为:54.【点睛】本题考查了根与系数的关系,解一元二次方程-因式分解法,以及完全平方公式,解题的关键是熟练掌握根与系数的关系.4.B【分析】本题主要考查了根与系数的关系等知识点,根据一元二次方程根与系数的关系得出12x x +和12x x ,再利用整体思想即可解决问题,熟知一元二次方程根与系数的关系是解题的关键.【详解】∵1x ,2x 是方程22370x x +-=的两个根,∴1232x x +=-,1272x x =-,∴331212x x x x +()221212x x x x =+()21212122x x x x x x éù=+-ëû27372222éùæöæö=-´--´-êúç÷ç÷èøèøêúëû2598=-,故选:B .5.9x =±【分析】将已知方程化简成一般形式,再根据一元二次方程根与系数的关系和已知条件,列出关于m 的方程,解出方程,求出m 的值,再将m 代入原来方程,解出方程.【详解】解:将已知方程化简可得:3x 2+(9-7m )x +6m =0,根据一元二次方程根与系数的关系可得x 1+x 2=9-7m-3,x 1x 2=2m ,根据已知条件可得∶9-7m-3=2m ,解出:m =9,将m =9代入化简后的方程可得:x 2-18x +18=0,化成完全平方得:(x -9)2=63,解得x =9±故答案为∶ 9x =±【点睛】本题主要考查了一元二次方程的根与一元二次系数的关系,解此题的关键是掌握一元二次方程的根与一元二次系数的关系.6.3-【分析】本题考查的是一元二次方程根与系数的关系,直接利用:一元二次方程()200ax bx c a ++=¹两根分别是12,x x ,则1212,b cx x x x a a+=-=,进行解题即可.【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则26t =- ,解得3t =-,故答案为3-7.2122,2x x ==-【分析】若一元二次方程20(a 0)++=¹ax bx c 的两个根为12,x x ,则1212,b cx x x x a a+=-=g .【详解】解:整理方程得:20ax b -=由题意得:260m m +-=∴2m =故两个根为:122,262x m x m ===-=-故答案为:2;122,2x x ==-【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.8.2-【分析】本题主要考查了一元二次方程根与系数的关系,根据根与系数的关系得到20m +=是解题的关键.【详解】解:设方程的另一个根为m ,则20m +=,解得:2m =-,故答案为:2-.9.D【分析】根据一元二次方程解的定义及根与系数的关系得出222021m m -=,2bm n a+=-=,将原式化简求值即可.【详解】解:∵m 、n 是关于x 的方程2220210x x --=的根,∴222021m m -=,2bm n a+=-=,2422023m m n --+222()2023m m m n =--++2021222023=-´+4040=,故选:D .【点睛】题目主要考查一元二次方程的根及根与系数的关系,求代数式的值,熟练掌握一元二次方程根与系数的关系是解题关键.10.2023【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.首先根据根与系数关系得到123x x +=,之后将1x 代入方程中得到211320200x x --=,变形为21132020x x -=,两式相加即可得到答案.【详解】解:1x Q 、2x 是方程2320200x x --=的两个根,123x x \+=,211320200x x --=21132020x x -=\()()12211211220203202323x x x x x x x \=++=-+-+=.故答案为:2023.11.20-【分析】本题考查了根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=¹的两根时,则12bx x a +=-,12c x x a=.利用整体代入法是本题的关键.【详解】解:∵a ,b 是2180x x ++=的两个实数根,∴218a a +=-,1a b +=-,∴()()22322182(1)20a a b a a a b ++=+++=-+´-=-,故答案为:20-.12.5-【分析】本题考查一元二次方程根与系数的关系,掌握20ax bx c ++=的两根1x ,2x 满足12b x x a +=-,12c x x a=是解题的关键.【详解】解:∵a ,b 是方程2570x x -+=的两个根,∴257a a -=-,5a b +=,∴()()2537535a a a b -++-=-+-=-,故答案为:5-.13.B【分析】根据一元二次方程的根与系数的关系可得3a b +=,1ab =,再整体代入求解即可.【详解】解:∵a 、b 是一元二次方程2310x x -+=的根,∴3a b +=,1ab =,∴221111a b +++2211=a ab b ab+++()()11=a a b b a b +++11=33a b+=3a b ab+331=´1=,故选:B .【点睛】本题考查一元二次方程的根与系数的关系、分式的化简求值,熟练掌握一元二次方程的根与系数的关系是解题的关键.14.2020【分析】本题考查了根与系数的关系、一元二次方程的解,正确理解一元二次方程的解的定义是解题的关键.由一元二次方程根与系数关系得1m n +=-,23m m -=-,再代入求值即可.【详解】解:∵m n ,是方程230x x +-=的两个实数根,将x m =代入方程230x x +-=,得230m m +-=,即23m m -=-,23m m=-∴332024m m n -++()232024m m n =-++22024m n =-++,∵23m m =-,∴22024m n -++32024m n =-+++2021m n =++,∵1m n +=-,∴2021120212020m n ++=-+=.故答案为:2020.15.A【分析】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.【详解】解:解:∵1x ,2x 是方程220240x x --=的两个实数根,∴2112024x x -=,122024x x =-,121x x =+321122024x x x -+()()()2222211212121220242122024x x x x x x x x x =-+=+=+-=-´-4049=故选A16.18-【分析】先根据一元二次方程的解的定义得到2310m m +-=,即231m m =-+,323m m m =-+,再把355m m n -+化简为用m 和n 的一次式表示得到()53m n +-,再根据根与系数的关系得到3m n +=-,然后利用整体代入的方法计算即可.【详解】解:∵m 、n 是方程2310x x +-=的两根,∴2310m m +-=,且0m ¹,3m n +=-,∴231m m =-+,∴323m m m =-+,2355m m m n=-+-+()33145m m n=--+-+553m n =+-()53m n =+-,∴原式()53318=´--=-,故答案为:18-.【点睛】本题考查根与系数的关系:若1x ,2x 是一元二次方程()200ax bx c a ++=¹的两根时,则12b x x a+=-,12c x x a =.掌握一元二次方程根与系数的关键是解题的关键,也考查一元二次方程的解的定义,运用了整体代入和恒等变换的思想.17. 2 122,2x x ==-【分析】若一元二次方程20(a 0)++=¹ax bx c 的两个根为12,x x ,则1212,b c x x x x a a+=-=g .【详解】解:整理方程得:20ax b -=由题意得:260m m +-=∴2m =故两个根为:122,262x m x m ===-=-故答案为:2;122,2x x ==-【点睛】本题考查一元二次方程根与系数的关系,理解这两个根和为0是解题的关键.18.C【分析】根据一元二次方程根与系数的关系分别求出b ,c 的值即可得到结论.【详解】解:∵关于x 的方程220x bx c ++=的根为12x =-,23x =,∴121222b c x x x x +=-=, ∴232322b c -+=--´=,,即b=-2,c=-12∴21214b c +=--=-.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-ba,x1•x2=ca.19.﹣2【分析】根据根与系数的关系及两同学得出的结论,即可求出p,q的值.【详解】解:由小明看错了系数p,解得方程的根为1和﹣3;可得q=1×(﹣3)=﹣3,小红看错了系数q,解得方程的根为4和﹣2,可得﹣p=4﹣2,解得p=﹣2,故答案为:﹣2.【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记“两根之和等于﹣ba,两根之积等于ca.”是解题的关键.20.【分析】先计算出一元二次方程判别式,即△=2k2+8,从而得到△>0,于是可判断不论k为何值,方程总有两个不相等实数根;再利用方程的解的定义得到x12-2kx1=-12k2+2,根据根与系数的关系可得x1x2=12k2-2,则-12k2+2+2·(12k2-2)=5,然后解关于k的方程即可.【详解】(1)证明:△=(-2k)2-4(12k2-2)=2k2+8>0,所以不论k为何值,方程总有两个不相等实数根;(2)∵x1是方程的根,∴x12-2kx1+12k2-2=0,∴x12-2kx1=-12k2+2,∵x12-2kx1+2x1x2=5,x1x2=12k2-2,∴-12k2+2+2·(12k2-2)=5,整理得k2-14=0,∴.故答案为【点睛】本题考查一元二次方程的根与系数的关系,一元二次方程根的判别式,关键是熟练掌握一元二次方程根的判别式和根与系数的关系.21.32【分析】本题主要考查了一元二次方程根与系数的关系,正确得到31,22s t st +==-是解题的关键.由题意可知实数s 、t 是关于x 的方程22310x x --=的两个不相等的实数根,由此可得答案.【详解】解:Q 实数s 、t 满足22310s s --=,22310t t --=,且s t ¹,\实数s 、t 是关于x 的方程22310x x --=的两个不相等的实数根,32s t \+=.故答案为:32.22.3【分析】本题考查了一元二次方程根与系数的关系,完全平方公式的应用,先根据已知条件得到m 、n 是关于x 的一元二次方程的两个不等实数根,然后根据根和系数的关系得到结果,再根据完全平方公式计算即可,理解m 、n 是关于x 的一元二次方程的两个不等实数根是解题的关键.【详解】解:由题可得:210m m --=,210n n --=,∴m 、n 是关于x 的一元二次方程210x x --=的两个不等实数根,∴1,1m n mn +==-,∴()()222221213m n m n mn +=+-=-´-=,故答案为:3.23.2或16【分析】本题考查一元二次方程的根,一元二次方程根与系数的关系等,分情况讨论,当a b =时,2b a a b+=;当a b ¹时, a 和b 是方程2620x x -+=的两个根,再由根与系数的关系求出a b +和ab ,再将b a a b +变形为()22a b ab ab+-,即可求解.【详解】解:分两种情况:当a b =时,112b a a b+=+=;当a b ¹时,Q 21312b b =-,\21163b b =+,\2620b b -+=,又Q 21163a a =+,\2620a a -+=,\a 和b 是方程2620x x -+=的两个根,\661a b -+=-=,2ab =,\()22222622162a b ab b a b a a b ab ab +-+-´+====,故答案为:2或16.24【分析】本题考查一元二次方程根与系数的关系,根据题意可以得到2a 和b 是方程2310x x --=的两根,然后解方程即可.【详解】解:由题意得:42310a a --=()222310a a --=,2310b b --=,∴2a 2x=∴2b a =25.A 【分析】根据一元二次方程的根与系数的关系求出方程220ax ax c ++= 的另一个根,设1x t -=,根据方程220ax ax c ++= 的根代入求值即可得到答案;【详解】解:∵一元二次方程220ax ax c ++= (0)a ¹的一个根为m ,设方程另一根为n ,∴22a n m a+=-=-,解得:2n m =--,设1x t -=,方程21210a x a x c -+-+=()()变形为220at at c ++=,由一元二次方程220ax ax c ++= (0)a ¹的根可得,1t m =,22t m =--,∴12x m -=--,1x m -=,∴11x m =--,21x m =+,故答案为:A .【点睛】本题考查一元二次方程的根与系数的关系及换元法解一元二次方程,解题的关键是用换元法变形方程代入求解.26.-3或29【分析】设方程20x ax b ++=的两个根为a b ,,其中a b ,为整数,且a ≤b ,则方程20x cx a ++=的两根为11a b ++,,根据题意列出式子,再进行变形即可求出.【详解】解:设方程20x ax b ++=的两个根为a b ,,其中a b ,为整数,且a ≤b ,则方程20x cx a ++=的两根为11a b ++,,由题意得,(1)(1)a a a b a b +=-++=,两式相加得2210ab a b +++=,即()()223a b ++=,所以21{23a b +=+=,;或23{2 1.a b +=-+=-,解得1{1a b =-=,;或5{ 3.a b =-=-,又因为(),,[(1)(1)]a b c a b ab a b =-+==-+++所以012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-或29.故答案为-3或29【点睛】主要考查一元二次方程的整数根与有理根,一元二次方程根与系数关系的应用;利用根与系数的关系得到两根之间的关系是解决本题的关键;27.648【分析】由根与系数的关系得a b +,+c d 的值,两式相加得的值,根据一元二次方程根的定义可得2890a ac d --=,代入可得272980a a c ac -+-=,同理可得272980c c a ac -+-=,两式相减即可得a c +的值,进而可得+++a b c d 的值.【详解】解:由根与系数的关系得8a b c +=,8c d a +=,两式相加得()8a b c d a c +++=+.因为a 是方程2890x cx d --=的根,所以2890a ac d --=,又8d a c =-,所以272980a a c ac -+-=①同理可得272980c c a ac -+-=②①-②得()()810a c a c -+-=.因为a c ¹,所以81a c +=,所以()8648a b c d a c +++=+=.故答案为648【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.28.D【分析】设方程x 2+px +q =0的两根为x 1、x 2,方程y 2+qy +p =0的两根为y 1、y 2.根据方程解的情况,结合根与系数的关系可得出x 1•x 2=q >0,y 1•y 2=p >0,即可判断A 与C ;②由方程有两个实数根结合根的判别式得出p 2﹣4q ≥0,q 2﹣4p ≥0,利用不等式的性质以及完全平方公式得出(p ﹣2)2+(q ﹣2)2>8,即可判断B 与D .【详解】解:设方程x 2+px +q =0的两根为x 1、x 2,方程y 2+qy +p =0的两根为y 1、y 2.∵关于x 的一元二次方程x 2+px +q =0有两个同号非零整数根,关于y 的一元二次方程y 2+qy +p =0也有两个同号非零整数根,∴x 1•x 2=q >0,y 1•y 2=p >0,故选项A 与C 说法均错误,不符合题意;∵关于x 的一元二次方程x 2+px +q =0有两个同号非零整数根,关于y 的一元二次方程y 2+qy +p =0也有两个同号非零整数根,∴p 2﹣4q ≥0,q 2﹣4p ≥0,∴(p ﹣2)2+(q ﹣2)2=p 2﹣4q +4+q 2﹣4p +4>8(p 、q 不能同时为2,否则两个方程均无实数根),故选项B 说法错误,不符合题意;选项D 说法正确,符合题意;故选:D .【点睛】本题考查了根与系数的关系以及根的判别式,逐一分析四个选项说法的正误是解题的关键.29.A【分析】由题意可知:菱形ABCD 的边长是5,则2225AO BO +=,则再根据根与系数的关系可得:2213AO BO m AO BO m +=-+´=+,;代入22AO BO +中,得到关于m 的方程后,求得m 的值.【详解】由直角三角形的三边关系可得:2225AO BO +=,又有根与系数的关系可得:221,3AO BO m AO BO m +=-+´=+,∴()()()222222212325AO BO AO BO AO BO m m +=+-´=-+-+=,整理得:22150m m --=,解得:m =−3或5.又∵0D >,∴22(21)4(3)0,m m --+> 解得114m <-∴3m =-.故选:A.【点睛】考查一元二次方程根与系数的关系以及菱形的性质,注意掌握勾股定理在解题中的应用.30.111<<m 【分析】先根据一元二次方程的根与系数的关系求得两根和与两根积,经过变形得到两根差的值,即可求得第三边的范围.【详解】解:∵三角形两边长是方程x 2−11x +30=0的两个根,∴x 1+x 2=11,x 1x 2=30,∵(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=121−120=1,∴x 1−x 2=1,又∵x 1−x 2<m <x 1+x 2,∴1<m <11.故答案为:1<m <11.【点睛】本题主要考查了三角形的三边关系和一元二次方程的根与系数的关系,要知道第三边大于两边差,小于两边和.31.B【分析】此题考查了正方形的性质,一元二次方程根与系数的关系.首先根据正方形的性质得到AB AD =,然后根据一元二次方程根与系数的关系得到1AB CD ×=,进而求出1AB CD ==,即可得到正方形ABCD 的周长.【详解】∵四边形ABCD 是正方形∴AB AD=∵正方形ABCD 的两邻边AB ,AD 的长度恰为方程210x mx -+=的两个实数根,∴1AB CD ×=,∴1AB CD ==∴正方形ABCD 的周长为4.故选:B .32.(1)94k £(2)不存在,理由见解析【分析】本题考查了根与系数的关系和根的判别式,勾股定理,能熟记根与系数的关系和根的判别式的内容是解此题的关键.(1)求出D 的值,根据已知得出不等式,求出即可;(2)根据根与系数的关系得出123x x +=,12x x k =,根据已知得出22212x x +=,变形后代入求出k 的值,进行判断即可.【详解】(1)解:Q 关于x 的一元二次方程230x x k -+=有两个实根1x 和2x ,()23410k \D =--´´³,解得:94k £;(2)1x 和2x 一元二次方程230x x k -+=的两根,123x x \+=,12x x k =,1x Q 和2x ,22212x x \+=,()2121222x x x x \+-=,922k \-=,解得:72k =,94k £Q ,7924>,72k \=不符合题意,\不存在矩形,1x 和2x .33.10t -<<【分析】本题考查了一元二次方程根和系数的关系,不等式的性质,由根和系数的关系可得,12x x a +=-,12x x b =,得到()()12111t x x =---,由1212x x <<<可得()()120111x x <--<,即得到()()1211110x x -<---<,即可求解,掌握一元二次方程根和系数的关系是解题的关键.【详解】解:由根和系数的关系可得,12x x a +=-,12x x b =,∴()12a x x =-+,12b x x =,∴()()()121212111t a b x x x x x x =+=-++=---,∵1212x x <<<,∴1011x <-<,2011x <-<,∴()()120111x x <--<,∴()()1211110x x -<---<,即10t -<<,故答案为:10t -<<.34.5m ³-【分析】根据一元二次方程根的分布,根的判别式以及根与系数的关系列出不等式组,并解答求得m 的取值范围.本题主要考查了一元二次方程根的分布,根的判别式和根与系数的关系等知识点,解此题的关键是得到()()2Δ54450504m m ìéù=--´´-+³ëûïí+-£ïî.【详解】解:Q 关于x 的方程245(5)0x x m --+=的解中,仅有一个正数解,\()()2Δ54450504m m ìéù=--´´-+³ëûïí+-£ïî,解得5m ³-.故答案为:5m ³-.35.A【分析】据2p -4q ³0,得出方程有两个实数根,再根据已知条件得出两根之积>零、两根之和<零时,由此得到关于p ,q 的不等式,然后确定它们的取值范围即可.【详解】2p Q -4q ³0,\方程有两个实数根.设1x ,2x 是该方程的两个负数根,则有1x +2x <0,x 1x 2>0,1x +2x =-p,12x x =q ,\-p<0,,q>0.\p>0,,q>0.故选A.【点睛】本题考查一元二次方程根的符号的确定,应利用一元二次方程根与系数的关系与根的判别式.36.B【分析】利用根的判别式0D >及两根之积为负数,即可得出关于m 的一元一次不等式组,解之即可得出实数m 的取值范围.【详解】解:∵关于x 的一元二次方程22120x x m ++-=的两个实数根之积为负数,∴()2Δ241120120m m ì=-´´->í-<î解得:12m >,∴实数m 的取值范围是12m >.故选:B .【点睛】本题考查了根与系数的关系以及根的判别式,牢记“当0D >时,方程有两个不相等的实数根”及“两根之积等于c a ”是解题的关键.37.(1)是,证明见解析(2)23m =或2-(3)224b ac c -=【分析】本题考查了根与系数的关系,解一元二次方程,理解新定义是解题的关键.(1)分别根据因式分解法解一元二次方程,然后根据定义判断即可;(2)先根据因式分解法解一元二次方程,然后根据定义列出绝对值方程,解方程即可求解;(3)根据求根公式求得1x ,2x ;根据新定义列出方程即可求解.【详解】(1)方程26510x x -+=是“差积方程”,证明:26510x x -+=,即(21)(31)0x x --=,解得112x =,213x =,11112323-=´Q ,26510x x \-+=是差积方程;(2)解:()2220x m x m -++=,()()20x m x --=解得方程的解为:12x =,2x m =,2(2)20x m x m -++=Q 是差积方程,22m m \-=,即:22m m -=或22m m -=-.解得:23m =或2-,(320 (0)a ¹解得1x =,2x =20ax bx c ++=Q (0)a ¹是差积方程,1212x x x x \-=×,即224b ac c -=.38.2-或0##0或―2【分析】本题考查根与系数的关系.设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,利用完全平方公式的变形式进行计算即可.【详解】解:设方程的两个根为()1212,x x x x <,由题意,得:12121,m m x x x x =+-=-,211x x -=,∴()()()2222112124141x x x x x x m m -=+-=-+=,解得:2m =-或0m =,故答案为:2-或0.39.25【分析】首先根据韦达定理求解两根之和与两根之积,然后代入原式根据定义进行求解.【详解】由m ,n 是22170x x -+=的两个不相等的实数根可得:21m n +=,7mn =故[()@(21@m n mn +=======25=【点睛】本题考查了一元二次方程的根与系数关系(也叫韦达定理),实数的定义新运算,此类题型一定要严格按照题目中的定义来求解,注意过程的正确性.40.(1)此方程为“限根方程”,理由见解析(2)5【分析】本题考查了因式分解法解一元二次方程,一元二次方程的根与系数的关系.理解题意,熟练掌握因式分解法解一元二次方程,一元二次方程的根与系数的关系是解题的关键.(1)因式分解法解一元二次方程得1272x x =-=-,,根据定义,求解作答即可;(2)由()22980x k x k ++++=,可得129x x k +=--,1228x k x =+,代入12121111121x x x x ++=-,整理得,211300k k -+=,解得,5k =或6k =,分当5k =时,当6k =时,两种情况求解,然后判断作答即可.【详解】(1)解:此方程为“限根方程”,理由如下:∵29140x x ++=,∴()()720x x ++=,解得,1272x x =-=-,,∵7342-<<-,∴方程为“限根方程”;(2)解:∵()22980x k x k ++++=,∴129x x k +=--,1228x k x =+,∵12121111121x x x x ++=-,∴()121211112x x x x ++=-,即()29812111k k --++=-,整理得,211300k k -+=,∴()()560k k --=,解得,5k =或6k =,①当5k =时,214330x x ++=,解得,12113x x =-=-,,∵11343-<<-,∴5k =符合题意;②当6k =时,215440x x ++=,解得,12114x x =-=-,,∵1134-<-,∴6k =不符合题意,舍去;∴k 的值为5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数的关系(一) 姓名
◆课前预习
1.如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么x 1+x 2=____,x 1x 2=____. 2.如果方程x 2+px+q=0的两个根是x 1,x 2,那么x 1+x 2=_____,x 1x 2=________;以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是__________. ◆互动课堂
【例1】写出下列方程的两根和与积
(1)2
x 3x-5=0- (2)2
2x +3x 8=0- (3)52
x 7x 10-+=
【例2】设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程,求下列各式的值: (1)x 12+x 22; (2)(x 1-3)(x 2-3);(3)21121x x x x x +++; (4)│x 1-x 2│.
【例3】已知方程2
5x +kx 6=0-的一个根为2,求k 的值及另一个根 【例4】已知关于x 的一元二次方程x 2-(2k+1)x+4k -3=0。

(1)求证:无论x 取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt △ABC 的斜边长b 和c 恰好是这个方程的两个根时,求△ABC 的周长.
【例5】已知关于x 的一元二次方程2
2x +3x m+1=0-的两实根的倒数和为3, 求m 的值. ◆跟进课堂
1.如果方程x 2+px+q=01
,那么p=_____,q=_____. 2.已知一元二次方程x 2-5x -6=0的两个根分别为x 1,x 2,则x 12+x 22=_______.
3.已知x 1、x 2是关于x 的一元二次方程a 2x 2-(2a -3)x+1=0的两个实数根,如果1
2
11x x +=-2,
那么a 的值是_______.
4.已知关于x 的方程x 2-3x+m=0的一个根是另一个根的2倍,则m 的值为______. 5.已知方程x 2+3x -1=0的两个根为α、β,那么a βαβ
+
=_______.
6.设方程x 2+x -1=0的两个实数根分别为x 1,x 2,则1
2
11x x +
的值为( ).
A .1
B .-1 C
D 7.对于方程x 2+bx -2=0,以下观点正确的是( ).
A .方程有无实数根,要根据b 的取值而定
B .无论b 取何值,方程必有一正根,一负根
C .当b>0时,方程两根为正;b<0时,方程两根为负
D .∵-2<0,∴方程两根肯定为负 8.已知一个直角三角形两条直角边的长恰好是方程x 2-8x+7=0的两个根,•则这个直角三角形的斜边长是( ). A .5 B .3 C .
D .9
9.已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是( ). A .x 2+5x+6=0 B .x 2-5x+6=0 C .x 2-5x -6=0 D .x 2+5x -6=0 10.一元二次方程ax 2+bx+c=0(a ≠0)有两异号实数根的条件是( ). A .b a
>0 B .b a <0 C .c a >0 D .c a <0
◆课外作业
1.设x 1,x 2是方程x 2-4x+2=0的两实数根,则x 1+x 2=____,x 1·x 2=_____.
2.关于x 的一元二次方程x 2+bx+c=0的两根为x 1=1,x 2=2,则x 2+bx+c•分解因式的结果为_______. 3.如果一个矩形的长和宽是一元二次方程x 2-10x+20=0的两个根,•那么这个矩形的周长是______.
4.已知x 1,x 2是方程x 2-x -3=0的两个根,那么x 12+x 22的值是( ) A .1 B .5 C .7 D .494
5.已知关于x 的一元二次方程x 2
-mx+2m -1=0的两个实数根的平方和为7,那么m•的值是( ) A .5 B .-1 C .5或-1 D .-5或1
6.下列说法中正确的是( )
A .方程x 2+2x -7=0的两实数根之和是2
B .方程2x 2-3x -5=0的两实数根之积为52
C .方程x 2-2x -7=0的两实数根的平方和为18
D .方程2x 2+3x -5=0的两实数根的倒数和为
35
7.若ab≠1,且有5a 2+2002a+9=0及9b 2+2002b+5=0,则
a
b
的值是( ) A .95
B .59
C .-20025
D .-20029
8.设x 1,x 2是方程2x 2+4x -3=0的两个根,利用根与系数的关系,求下列各式的值: (1)(x 1+1)(x 2+1); (2)x 12x 2+x 1x 22; (3)211
2
x x x x +; (4)(x 1-x 2)2.
9.已知关于x 的一元二次方程x 2+(2m -3)x+m 2=0的两个不相等的实数根α,β,满足11α
β
+=1,
求m 的值.
10.已知x 1,x 2是关于x 的方程x 2+mx+n=0的两根,x 1+1,x 2+1是关于x 的方程x 2+nx+m=0的两根,求m ,n 的值.
11.已知关于x 的方程x 2-2kx+k -14
=0的一个根大于1,另一个根小于1,求实数k•的取值范围.
12.已知x 1,x 2是一元二次方程2x 2-2x+m+1=0的两个实数根. (1)求实数m 的取值范围.(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.
13.已知关于x 的一元二次方程x 2-(m+2)x+14
m 2-2=0.
(1)当m 为何值时,这个方程有两个相等的实数根.(2)如果这个方程的两个实数根x 1,x 2满足x 12+x 22=18,求m 的值.
答案:
1.-,1 2.37 3.1
2
4.2 5.-11
6.A 7.B 8.C 9.B 10.D
11.(1)-5
2
(2)3 (3)-
14
3
(4)10 12.m=-3
13.m=-1,n=-3 14.k>3 4
15.(1)m≤-1
2
(2)m=-2或m=•-1。

相关文档
最新文档