最详细的开关电源反馈回路设计说课讲解
开关电源-原边反馈技术 ppt课件

使用谐振反推法还要注意一点是,由于膝点前后斜率差别较大,TFB偏 大和偏小时,误差时间TERR=TR/4 – TFB在大于0和小于0的时候具有完 全不同的环路增益。
从市场的角度来说,隔离和非隔离都是需要的,如果用相同的技术来解决, 无疑可以节省大量研发成本。
VSND
VSND
VSND
.
VO
VO
VO
.
.
.
IC
.
IC
.
IC
VSES
17
VSES
VSES_L VSES_H
PPT课件
概要
PSR简介 PSR的输出检测方法 ★PSR特有的问题
18
PPT课件
PSR固有的问题
.
.
VCC IC
.
VSES
4
PPT课件
不使用辅助线圈是否可行
如果不要求辅助线圈供电,那么是否可以用其他检测方法,比如在初 级线圈上检测来做原边反馈?
理论上是可行的,思路如下:
在初级线圈上并联一个高阻支路,对初级线圈进行采样,同时提供TOFF期 间初级线圈的回路。
考虑到检测电压必须为正,因此有两种基本形式,如下图:
TOFF的测量也依赖于膝电压的时 刻,但是需要的不是电压值,而
是膝点的时刻。
11
.
. .
ISES_PK IPK_SES
ISND_PK IOUT_AV
TON
TOFF TDEAD
T
PPT课件
电流和电压检测的共同点
共同之处就是都需要检测到膝点。
开关电源反馈环路设计

开关电源反馈环路设计开关电源是一种将输入直流电压转换为所需输出电压的电源装置。
为了实现稳定可靠的输出电压,开关电源需要建立反馈环路进行控制。
开关电源的反馈环路主要包括内部反馈环路和外部反馈环路。
内部反馈环路是指内部电路中的反馈控制电路,用于控制开关管的导通与截止,以维持输出电压的稳定。
外部反馈环路是指从输出端以回路的形式连接到内部反馈电路,通过比较输出电压与参考电压的差异,产生一个控制信号,用于调整开关电源的开关时间和频率,从而调整输出电压。
设计开关电源的反馈环路时,需要考虑以下几个方面:1.选择合适的参考电压源:参考电压源是反馈环路的重要组成部分,它提供一个稳定的参考电压,用作与输出电压进行比较的基准。
一般可选择使用稳压二极管、参考电压芯片或者精密电位器来作为参考电压源。
2.设计错误放大器:错误放大器是反馈环路中的核心部分,它承担着将输出电压与参考电压进行比较的作用,并产生一个误差信号。
常见的错误放大器有比较器、运算放大器等。
在设计选择错误放大器时,需要考虑它的稳定性、带宽、输入阻抗等因素。
3.设计补偿网络:由于开关电源在转换过程中存在一定的延迟、输出的电压下降等因素,所以需要通过补偿网络来减小这些不稳定因素对输出电压的影响。
常见的补偿网络包括零点补偿网络和极点补偿网络。
零点补偿网络主要通过增加相位较大的零点,来提高系统稳定性;极点补偿网络主要通过增加相位较小的极点,来提高系统的相位裕度。
4.设计输出滤波器:开关电源的输出电压通常包含一定的纹波,需要通过输出滤波器来降低纹波,使输出电压更加稳定。
输出滤波器一般由电感、电容和电阻组成,通过调整它们的数值和组合方式,可以实现对纹波的去除或衰减。
在进行开关电源反馈环路的设计时,还需要进行一系列的仿真和实验,包括频率响应的模拟分析、稳态和动态的性能测试等,以确保设计的反馈环路能够实现对输出电压的稳定控制。
总之,开关电源的反馈环路设计是一项复杂的任务,需要综合考虑电源的性能要求、稳定性要求和实际应用需求等因素,通过选择适当的参考电压源、设计错误放大器、补偿网络和输出滤波器等,来实现对输出电压的稳定控制。
最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计开关电源是一种常用的电源供应方式,具有高效率和稳定输出电压的特点。
为了确保开关电源能够稳定工作,需要设计合理的反馈回路。
开关电源的反馈回路是一个闭环控制系统,通过对输出电压进行采样,与参考电压进行比较,计算出误差信号,再经过调整和补偿,使得输出电压稳定在设定值。
首先,需要选择合适的反馈控制策略。
常用的反馈控制策略有电压模式控制(Voltage Mode Control)和电流模式控制(Current Mode Control)。
电流模式控制具有更快的动态响应和更好的稳定性,但需要更复杂的设计和调试,因此在设计中需进行合理选择。
在电压模式控制中,可以使用一个误差放大器进行电压比较,产生误差信号。
误差放大器一般采用差分放大电路,通过输入电压和参考电压的差值乘以一个放大倍数,生成一个调整后的误差信号。
误差放大器的输出信号会经过一个滤波器进行滤波处理,以消除高频噪声。
接下来,需要设计一个比例积分(PI)控制器。
PI控制器可以提供稳定的、无超调的输出响应。
PI控制器的输入是经过滤波器处理后的误差信号,根据误差的大小来调整控制器的输出。
比例增益(Kp)决定了控制器对误差的响应速度,而积分时间常数(Ti)决定了控制器对误差的积分时间,即系统的稳定性。
在设计PI控制器时,可以根据经验公式来选择合适的参数。
通过实际测试和调整,可以优化控制器性能,使得开关电源的输出电压更加稳定。
最后,需要对开关电源进行保护设计。
开关电源反馈回路应具备过压保护、过流保护和短路保护等功能。
过压保护可以避免输出电压过高,过流保护可以防止过大的输出电流,短路保护可以防止输出端短路。
总之,开关电源反馈回路设计需要合理选择控制策略,设计误差放大器和滤波器、PI控制器,并进行参数调整和保护设计。
通过以上步骤,可以设计出稳定可靠的开关电源反馈回路。
最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计开关电源反馈回路设计是个挺有意思的话题。
听起来高深,其实很多细节值得我们好好琢磨。
今天我们就从几个方面聊聊,深入浅出,轻松搞定这些概念。
一、反馈回路的基本概念1.1 什么是反馈回路首先,反馈回路就是把输出信号的一部分送回输入。
这么做的目的是调节输出,使其稳定。
想象一下,开关电源就像一个小孩,时不时需要父母的指导。
没有这些反馈,小孩可能就会偏离轨道,输出的电压也可能出现大起大落。
1.2 反馈类型反馈可以分为两种:正反馈和负反馈。
正反馈就像是推波助澜,鼓励小孩继续做某件事情。
而负反馈则是提醒小孩停下来,纠正错误。
大部分情况下,我们更喜欢负反馈,因为它能帮助系统保持稳定。
通过负反馈,输出电压的波动会被抑制,电源的性能也会更可靠。
二、开关电源的基本结构2.1 开关管的作用开关电源的核心是开关管。
它负责控制电流的开关,调节输出电压。
可以把它想象成一个开关,时而打开,时而关闭。
这个过程中,它的工作频率决定了电源的效率。
频率高了,能量损失就小,输出稳定;频率低了,损失就增加,系统也会变得不稳定。
2.2 变压器的功能变压器在这里也占据重要位置。
它的作用是将输入的高压电压转换为适合的低压电压。
变压器就像是一个聪明的调酒师,能将各种成分混合,调配出最合适的“鸡尾酒”。
这里的鸡尾酒就是我们所需的电压。
2.3 整流与滤波整流和滤波是最后一步,确保我们得到的是平滑的直流电。
整流就像是把粗糙的石头打磨成光滑的宝石。
滤波则是去除电流中的杂音,确保输出的电流干净。
这个过程至关重要,稍有不慎,电源的稳定性就会受到影响。
三、反馈回路设计的要点3.1 控制环路设计设计反馈回路时,控制环路的选择非常关键。
控制环路决定了系统的响应速度和稳定性。
要确保环路的增益合适。
增益太高,系统可能会出现震荡;增益太低,系统反应迟缓。
这里的平衡就像走钢丝,得小心翼翼。
3.2 选择合适的传感器在设计反馈回路时,传感器的选择也不能忽视。
第六章 开关电源反馈设计

第六章 开关电源反馈设计除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。
它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。
开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。
当负载或输入电压突变时,快速响应和较小的过冲。
同时能够抑制低频脉动分量和开关纹波等等。
为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。
并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。
最后对仿真作相应介绍。
6.1 频率响应在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。
经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。
我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。
6.1.1 频率响应基本概念电路的输出与输入比称为传递函数或增益。
传递函数与频率的关系-即频率响应可以用下式表示)()(f f G Gϕ∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠ϕ(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。
典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。
图 6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角ϕ。
两者一起称为波特图。
在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。
当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高频截止频率与低频截止频率之间称为中频区。
《开关电源教案》课件

《开关电源教案》PPT课件第一章:开关电源概述1.1 教学目标让学生了解开关电源的定义、特点和应用领域让学生掌握开关电源的基本工作原理1.2 教学内容开关电源的定义和特点开关电源的应用领域开关电源的基本工作原理1.3 教学方法采用PPT课件展示开关电源的相关图片和示意图,帮助学生直观理解通过案例分析,让学生了解开关电源在实际应用中的重要性第二章:开关电源的组件和工作原理2.1 教学目标让学生掌握开关电源的主要组件及其功能让学生了解开关电源的工作原理2.2 教学内容开关电源的主要组件及其功能开关电源的工作原理示意图开关电源的输入和输出特性2.3 教学方法通过PPT课件展示开关电源组件的实物图片和功能介绍,帮助学生理解和记忆利用示意图和电路图,讲解开关电源的工作原理,引导学生思考和理解第三章:开关电源的设计和应用3.1 教学目标让学生了解开关电源的设计原则和方法让学生掌握开关电源在实际应用中的注意事项3.2 教学内容开关电源的设计原则和方法开关电源在实际应用中的注意事项开关电源的常见问题和解决方法3.3 教学方法通过PPT课件展示开关电源的设计案例,让学生了解设计原则和方法结合实际情况,讲解开关电源在应用中的注意事项,引导学生思考和讨论第四章:开关电源的测试和维护4.1 教学目标让学生掌握开关电源的测试方法和工具让学生了解开关电源的维护和保养知识4.2 教学内容开关电源的测试方法和工具开关电源的维护和保养知识开关电源的故障诊断和排除方法4.3 教学方法通过PPT课件展示开关电源的测试方法和工具,让学生了解测试过程讲解开关电源的维护和保养知识,引导学生掌握维护技巧第五章:开关电源的最新发展5.1 教学目标让学生了解开关电源的最新发展动态让学生掌握开关电源的未来发展趋势5.2 教学内容开关电源的最新发展动态开关电源的未来发展趋势开关电源的技术创新和应用前景5.3 教学方法通过PPT课件展示开关电源的最新发展成果,让学生了解行业动态引导学生思考开关电源的未来发展趋势,激发学生的创新意识第六章:开关电源的效率和稳定性6.1 教学目标让学生理解开关电源的效率概念让学生掌握提高开关电源稳定性的方法6.2 教学内容开关电源的效率及其影响因素开关电源稳定性的重要性提高开关电源效率和稳定性的方法和技术6.3 教学方法通过PPT课件展示开关电源效率的计算方法和实例,帮助学生理解分析实际案例,讲解提高开关电源稳定性的常见措施,引导学生思考第七章:开关电源的环保和节能7.1 教学目标让学生了解开关电源在环保和节能方面的意义让学生掌握开关电源的环保和节能技术7.2 教学内容开关电源在环保和节能方面的作用开关电源的环保和节能技术开关电源的能效标准和认证7.3 教学方法通过PPT课件展示开关电源在环保和节能方面的优势,帮助学生认识其重要性讲解环保和节能技术,引导学生关注开关电源的可持续发展第八章:开关电源的安全性和保护措施8.1 教学目标让学生理解开关电源安全性的重要性让学生掌握开关电源的保护措施8.2 教学内容开关电源安全性分析开关电源的保护措施及其作用开关电源的安全标准和规范8.3 教学方法通过PPT课件展示开关电源安全性问题和案例,帮助学生认识到安全性的重要性讲解保护措施,分析其原理和应用,引导学生理解并掌握第九章:开关电源的实例分析9.1 教学目标让学生通过实例了解开关电源的实际应用让学生掌握开关电源的性能评估方法9.2 教学内容开关电源的实例解析开关电源性能评估方法和指标实例中开关电源的优缺点分析9.3 教学方法通过PPT课件展示实例,让学生了解开关电源在实际中的应用情况引导学生分析实例中的性能指标,评估开关电源的性能第十章:开关电源的的未来挑战和机遇10.1 教学目标让学生了解开关电源面临的挑战让学生掌握开关电源的机遇和发展方向10.2 教学内容开关电源面临的挑战和问题开关电源的机遇和发展方向开关电源行业的发展趋势和前景10.3 教学方法通过PPT课件展示开关电源面临的挑战和问题,帮助学生认识到问题的存在讲解开关电源的机遇和发展方向,引导学生思考未来的发展潜力重点和难点解析一、开关电源的定义和特点:理解开关电源的基本概念和区别于其他电源的特点是理解后续内容的基础。
最详细的开关电源反馈回路设计

最详细的开关电源反馈回路设计嘿,朋友们!今天咱们聊聊那个让电子世界起舞的秘密武器——开关电源。
想象一下,你正坐在电脑前,眼睛盯着屏幕,手指在键盘上飞快地跳动,而这一切的背后,是那个默默工作的开关电源在为你提供能量。
你得知道,开关电源就像是个超级英雄,它有着强大的“电”力,能够瞬间点亮你的电脑、手机甚至家里的灯泡。
但这个超级英雄可不是随随便便就能出现的哦,它需要经过精心设计和调试,才能成为你最可靠的伙伴。
接下来,咱们来聊一聊开关电源的“电”话。
你得了解它的工作原理。
简单来说,开关电源就是通过控制电流的通断来调节电压的装置。
想象一下,如果你的手机电池电量不足,你会怎么做?当然是去充电啦!开关电源也是一样,它会在你不需要高电压时,自动降低输出电压,让你的设备更省电;在你急需高电压时,又会迅速提升输出电压,让你的设备瞬间充满电。
然后,咱们再来说说开关电源的“电”话。
在这个“电”话中,最重要的一环就是反馈回路的设计。
反馈回路就像是开关电源的“耳朵”,它能够感知到电路中的电流变化,并及时调整输出电压,确保电路的稳定性和可靠性。
那么,如何设计一个既简单又有效的反馈回路呢?你得选择合适的电阻和电容。
这些元器件就像电路中的“音符”,它们能够和谐地演奏出美妙的音乐。
例如,你可以使用一个小电阻作为分压器,将输入电压分成两部分,一部分用于驱动负载,另一部分则用于反馈。
这样,你就可以通过调整反馈电阻的大小来调节输出电压了。
接下来,你得学会读懂电路图。
电路图就像是一张张详细的地图,它能够帮助你快速定位到各个元件的位置和连接方式。
当你遇到问题时,只需仔细阅读电路图,就能找到解决问题的关键所在。
别忘了实践出真知。
理论虽然重要,但实际操作才能真正检验你的设计是否成功。
你可以试着搭建一个简单的开关电源实验台,亲自动手进行调试和优化。
在这个过程中,你可能会遇到各种问题,但只要你保持耐心和信心,就一定能够找到解决问题的方法。
开关电源的“电”话是一门深奥而又有趣的学问。
《开关电源反馈》课件

功率反馈
总结词
功率反馈通过监测开关电源的输出功 率来控制其输出。
详细描述
功率反馈的工作原理是将开关电源的 输出功率的变化转化为电信号,并将 其反馈到控制电路中。控制电路根据 反馈信号调整开关电源的输出,以保 持输出功率的稳定。
开关电源反馈系统的控制方式
总结词
开关电源反馈系统的控制方式主要有比例控制、积分控制和微分控制等。
反馈环路的设计原则
包括电源、反馈网络、比较器和误差放大 器等。
将输出电压或电流与参考值进行比较,产 生误差信号,用于调节开关电源的输出。
确保系统的稳定性和快速响应能力,同时 减小误差。
反馈元件的选择与设计
电阻的选择
根据系统要求选择适当的电阻值和精度 ,以满足系统性能要求。
运算放大器的选择
根据系统增益、带宽和精度要求选择适 当的运算放大器。
《开关电源反馈》ppt课件
目录
• 开关电源反馈系统概述 • 开关电源反馈系统的工作原理 • 开关电源反馈系统的设计
目录
• 开关电源反馈系统的应用 • 开关电源反馈系统的优化与改进
01
开关电源反馈系统概述
开关电源反馈系统的定义与作用
01
02
定义
作用
开关电源反馈系统是指通过反馈控制理论和技术,对开关电源的输出 电压或电流进行实时监测和调节,以保证输出稳定、可靠的系统。
这有助于提高光伏逆变器的效率和稳定性,延长其使 用寿命。
05
开关电源反馈系统的优化 与改进
提高开关电源的效率
01
02
03
优化控制策略
采用先进的控制算法,如 PID控制、模糊控制等, 提高开关电源的效率。
降低损耗
优化电路设计,减小导线 和元件的损耗,提高整体 效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最详细的开关电源反馈回路设计
开关电源反馈回路设计
开关电源反馈回路主要由光耦(如PC817)、电压精密可调并联稳压器(如TL431)等器件组成。
要研究如何设计反馈回路,首先先要了解这两个最主要元器件的基本参数。
1、光耦
PC817的基本参数如下表:
2、可调并联稳压器
由TL431的等效电路图可以看到,Uref是一个内部的2.5V 基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF 端(同相端)的电压非常
接近Uref(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管VT的电流将从1 到100mA 变化。
当然,该图绝不是TL431 的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是很有帮助的。
前面提到TL431 的内部含有一个2.5V 的基准电压,所以当在REF 端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如图2 所示的电路,当R1 和R2 的阻值确定时,两者对Vo 的分压引入反馈,若Vo 增大,反馈量增大,TL431 的分流也就增加,从而又导致Vo 下降。
显见,这个深度的负反馈电路必然在Uref等于基准电压处稳定,此时
Vo=(1+R1/R2)Vref。
图2
选择不同的R1 和R2 的值可以得到从2.5V 到36V 范围内的任意电压输出,特别地,当R1=R2 时,Vo=5V。
需要注意的是,在选择电阻时必须保证
TL431 工作的必要条件,就是通过阴极的电流要大于1 mA。
了解了TL431和PC817的基本参数后,来看实际电路:
图3
反馈回路主要关注R6、R8、R13、R14、C8这几个器件的取值。
首先来看R13。
R13、R14是TL431的分压电阻,首先应先确定R13的值,再根据Vo=(1+R14/R13)Vref 公式来计算R14的值。
1.确定R13.、R14取值
确定R13的值考虑以下两个条件:
1、TL431 参考输入端的电流,一般此电流为2uA 左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13 的电流为参考段电流的100 倍以上,所以此电阻要小于2.5V/200uA=12.5K。
2、考虑到待机功耗及瞬态响应,若取值太小,则通过的电流大,根据
P=I2R公式,待机功耗大;若取值太大,则通过的电流小,反馈回路瞬态响应将受到影响。
故,R13在满足条件1的情况下尽量取中间值或大于中间值。
本设计为5V/1.5A适配器设计,R13取5.6K,理论上要得到5V输出,R13与R14值相等即可,但考虑适配器实际应用存在线损,故选R14值略大于
R13,取6.2K。
计算得:Vo=(1+6.2/5.6)*2.5=5.26V,结合使用的输出线规格及线损,在输出满载情况下,线末端能够得到5V电压。
2.确定R6、R8取值
由输出为5V知a点电压略高于5V,取5.3V
图4为TL431内部电路图,由图中可知,K端与R端相差一个PN节(即三极管工作在饱和状态时,K端将比R端电压高0.7V(硅管)),当开关电源工作时,下图中的Q1将工作在放大模式,根据三极管的放大特性,K端电压将比R端电压至少大0.7V,根据经验,K端电压比R端电压高1.5V~1.7V,即图3中
的c点电压比d点电压高1.5V~1.7V,d点电压为TL431基准电压,为2.5V,则c点电压为4V~4.2V。
图4
由光耦参数表可知,发光二极管正向压降为0.8~1.4V(取1V,IF为3~5mA 时),这样可得b点电压为5V~5.2V
由上述条件,我们已经计算出图2中
a点电压为5.3V;
b点电压为5~5.2V(取5.1V);
c点电压为4~4.2V(取4.1V);
d点电压为2.5V;
由发光二极管参数知,IF<50mA,根据经验,IF一般取3mA。
R8电阻是为TL431提供死区电流而设计的,查阅TL431参数知,要保证工作正常,TL431的Ika 需大于1mA,小于100mA,一般取3~5mA。
计算得R6=(5.3V-5.1V)/3~5mA =40Ω~67Ω。
本设计取56R。
R8<(1.2V/1mA)=1.2K,根据经验,一般取1K或470Ω
3.确定C8取值
有的电路设计中为提升低频增益,用一个电阻和一个电容串接于TL431控制端和输出端,来压制低频(100Hz)纹波和提高输出调整率,即静态误差,目的就是提升相位,要放在带宽频率的前面来增加相位裕度,具体位置要看其余功率部分在设计带宽处的相位是多少,电阻和电容的频率越低,其提升的相位越高,当然最大只有90 度,但其频率很低时低频增益也会减低,一般放在带宽的1/5 初,约提升相位78 度。
根据计算,一般选用104电容或104电容与1K电阻串联。
(具体计算比较复杂)
以上数据仅为理论计算,具体应根据实际测试情况进行微调处理。