反激变压器的设计
反激变压器设计实例

I2 SRMS
− IO2
= 1.3( A)
副边交流电损耗: Pac2 = I ac22 * Rac2 = 0.073(W )
副边绕组线圈总损耗: P2 = Pdc2 + Pac2 = 0.113(W )
总的线圈损耗: Pw = P1 + P2 = 0.153(W ) 2)磁芯损耗:
峰值磁通密度摆幅: ∆B = BMAX K RP = 0.1(T ) 2
原边交流电流分量有效值: Iac1 =
I2 RMS
− I AVG 2
= 0.107( A)
原边交流电损耗: Pac1 = I ac12 * Rac1 = 0.0229(W )
原边绕组线圈总损耗: P1 = Pdc1 + Pac1 = 0.04(W )
副边直流电阻: Rdc2 = ρ * l = 0.04(Ω) A
7
5
原边导线厚度与集肤深度的比值: Q = 0.83d d / s = 0.5678 ∆
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, ∆ 为集肤深度0.31mm。 原边交流电阻与直流电阻比:由于原边采用包绕法,故原边绕组层数可按两层考虑,根据上
式所求的Q值,查得 Fr = Rac1/ Rdc1 ≈ 1 。 原边交流电阻: Rac1 = Rdc1× Fr = 1.993(Ω)
选择磁芯材料为铁氧体,PC40。
4、选择磁芯的形状和尺寸:
在这里用面积乘积公式粗选变压器的磁芯形状和尺寸。具体公式如下:
反激变压器工作在第一象限,最高磁密应留有余度,故选取BMAX=0.3T,反激变压器的系数 K1=0.0085(K1是反激变压器在自然冷却的情况下,电流密度取420A/cm2时的经验值。)
30W反激变压器设计

30W反激变压器设计反激变压器(Flyback Transformer)是一种广泛应用于电源供应器中的变压器。
它的特点是可以实现高压变换、隔离和电源回馈控制,适用于各种电力供应器和逆变器应用。
在本篇文章中,将详细介绍30W反激变压器的设计原理和步骤。
首先,我们需要明确设计要求和规格。
根据需求,我们需要设计一个30W的反激变压器。
一般来说,该类型的变压器包括两个主要部分:主变压器和辅助电路。
主变压器用于输出电源的隔离和升降压,而辅助电路则用于控制开关管的导通和关断。
在设计过程中,我们需要考虑以下几个关键参数:1.输入电压和输出电压:根据应用需求,确定变压器的输入和输出电压范围。
2.输出功率:确定变压器的输出功率要求,以决定设计的变压器芯的尺寸和匝数。
3.开关频率:选择适当的开关频率,以确保变压器的效率和稳定性。
4.选择芯式和线圈材料:根据功率和频率要求,选择合适的芯式和线圈材料。
常用的芯式包括EE、EL、EP等。
5.线圈匝数计算:根据输入和输出电压的比例,计算主辅助线圈的匝数。
设计步骤如下:1.确定输入和输出电压:根据应用需求,选择合适的输入电压和输出电压。
2.计算变压比:计算输入和输出电压的比例,确定变压器的变压比。
3.计算输出电流:根据输出功率和输出电压,计算输出电流。
4.计算开关频率:选择适当的开关频率,一般在20kHz至100kHz之间。
5.选择芯式和线圈材料:根据功率和频率要求,选择合适的芯式和线圈材料。
6.计算线圈匝数:根据输入和输出电压的比例,计算主线圈和辅助线圈的匝数。
7.计算变压器的匝数比:根据主辅助线圈的匝数,计算变压器的匝数比。
8.计算变压器的电感:根据输入电压、开关频率和匝数,计算变压器的电感(L)。
9.计算开关管的导通时间:根据变压器的电感和输出电流,计算开关管的导通时间。
10.选择开关管:根据导通时间和输出电流,选择合适的开关管。
11.制作变压器线圈:根据计算得到的匝数和线径,制作主线圈和辅助线圈。
反激变压器设计过程

反激变压器设计过程1、初始值设定1.1 开关频率fkHz对于要接受EMI规格适用的产品,不要设定在150kHz预计余量的话120kHz左右以上;一般设定在65kHz左右;1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定;1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流在规格书上有规定的情况下3种类,进行设定;另外,在这最大输出电流中需包括对于各自偏差的余量;1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max V =接插件端输出电压+线间损失0.1~0.5V +整流元器件Vf 0.4~0.6V※ 在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同;只保证输出电压 ※只在装置试验时电压可变的情况下; 磁芯用最大输出电压来设计;绕线是用额定输出电压来设计;保证所有的性能※在实际使用条件下通常的电压可变的情况下; 磁芯、绕线都用最大输出电压来设计;1.5 一次电流倾斜率设定输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率;K 的设定公式如下;作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更;1.6 最大占空比设定一般设定为0.45~0.65;1.7 最大磁通密度设定Bmax设定为磁芯的产品目录上所记载的饱和磁通密度×0.8~0.9;设计的要点:单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右;图1-2中表示了TDK 制的磁珠磁芯PC44的B-H 曲线图; 磁芯的磁通密度BT,如图1-2所示,与磁场强度HA/m 成比例,增加;另外,当B 达到一定的值时,在那基础上,即使增加H,B 也不会增加;在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET 破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用;另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意;※磁芯的饱和磁通密度是根据温度而变动;在TDK 制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%;因此,如果在25℃的条件下设计的话,有可能发生使用时的故障;1.8 绕线电流密度设定绕线电流密度对绕线的温度上升有一定影响,因此一定要考虑冷却条件、使用温度范围、变压器构造等,再进行适当的设定;设计要点:・ 变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定2、变压器特性设计2.1 计算一次绕组的电流峰值变压器总输出功率P 2W 是瞬时最大值;在输出电流规格书中有设定峰值条件的情况下,用I o peak ×V N2max ;另外,多输出的情况下,将各电路的输出功率的总和作为变压器总输出功率;变压器效率一般为0.95;2.2 计算一次/二次绕组的匝数比匝数比根据输出入电压和最大占空比来决定;2.3 计算一次绕组的电感量3、变压器构造设计3.1 计算一次绕组的电流有效值 计算一次绕线电流有效值I N1 TYP RMS ;不用考虑瞬时最低动作输入电压、过电流、峰值最大电流;首先求出占空比α;接着用以上所求出的占空比α,求出一次绕线电流有效值;作为标准,从1.1.8项中设定的绕线电流密度I/SA/mm 2和一次绕线电流有效值I N1typrms A 中,计算出一次绕线截面积S N1mm 2;3.2 计算二次绕组的电流有效值※省略以下的详细计算,可以将直流输入电流的1.6倍作为一※可以省略以下的详细计算,将直流输出电流的1.4倍作为二在实使用条件的通常驻机构状态下,用在1.3.1项中算出的占空比α、一次绕线电流有效值IN1typrmsA,算出连续流出的最大的二次绕线电流有效值;替换为与各自的二次绕线和一次卷的绕线比,进行计算,另※多输出变压器的情况下,将N12中加上对于全功力的其电路输出功力的比率;外在所求得的IN2typrmsA作为标准,从在1.1.8项中设定的绕线电流密度I/SA/mm2与二次绕线电流有效值IN2typrms中,计算出二次绕线断面积Smm2;N2设计要点:・变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定的;绕线电流密。
反激变压器设计(标准格式)

副边有效值电流:
根据所选线径计算副边电流容量:
自供电绕组线径:由于自供电绕组的电流非常小只有5mA,因此对线径要求并不是很严格,在这里主要考虑为便于与次级更好的耦合及机械强度,因此也采用裸线径为0.35mm的漆包线进行绕置,使其刚好一层绕下,减小与次级之间的漏感,保证短路时使自供电电压降低。
7、计算变压器损耗和温升
变压器的损耗主要由线圈损耗及磁芯损耗两部分组成,下面分别计算:
1)线圈损耗:
原边直流电阻:
为100℃铜的电阻率为2.3×10-6( ·cm); 为原边绕组的线圈长度,实测为360cm;A为原边0.23mm漆包线的截面积。
原边直流损耗:
原边导线厚度与集肤深度的比值:
d为原边漆包线直径0.23mm,s为导线中心距0.27mm, 为集肤深度0.31mm。
根据所选线径计算原边绕组的电流密度:
计算副边绕组导线允许的最大直径(漆包线):
根据上述计算数据可采用裸线径DIASS=0.72mm的漆包线绕置,但由于在温度100℃、工作频率为60KHz时铜线的集肤深度: ,而0.72mm大于了2倍的集肤深度,使铜线的利用率降低,故采用两根0.35mm的漆包线并绕。
《参考文献》
1、《现代高频开关电源实用技术》 刘胜利 编著 电子工业出版社 2001年
2、《开关电源中磁性元器件》 赵修科 主编南京航空航天大学自动学院2004年
3、《TDK磁材手册》 日本TDK公司 2005年
5、计算变压器匝数、有效气隙电感系数及气隙长度。
6、选择绕组线圈线径。
7、计算变压器损耗和温升。
下面就按上述步骤进行变压器的设计。
二、设计过程:
1、电源参数:(有些参数为指标给定,有些参数从资料查得)
反激变压器的设计

反激变压器的设计————————————————————————————————作者: ————————————————————————————————日期:反激变压器的设计//========================================================反激变压器设计最简单的方法ﻫ我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: ﻫ1,VDC min=VAC min * 1.2VDC max=VAC max* 1.42,输出功率Po=P1+P2+Pn......ﻫ上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降ﻫ3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗) ﻫ4,输入平均电流:Iav = Pin/VDCminﻫ5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax/(Ip*fs) fs为开关频率ﻫ7,初级匝数:Np=VDC min *Dmax /(ΔB*Ae*fs) ﻫ上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(FlybackTransformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:2.转换效率高,损失小.1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.ﻫ4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实3. 变压器匝数比值较小. ﻫ现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1.输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2.转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM/ DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.ﻫ第二节. 工作原理ﻫ在图1所示隔离反驰式转换器(The isolatedflybackconverter)中, 变压器" T"有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:ﻫ当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp/ 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e=-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.ﻫ由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN/1-Dmax ﻫVIN:输入直流电压;Dmax: 最大工作周期Dmax = ton/ Tﻫ由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax= 0.4,以限制Vcemax≦ 2.2VIN.开关管Tron时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip =IL /n.因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp= NsIs而导出. Ip亦可用下列方法表示:Ic=Ip= 2Po/ (η*VIN*Dmax)η: 转换器的效率公式导出如下:输出功率:Po= LIp2η/ 2T输入电压:VIN = Ldi /dt设di = Ip,且1/ dt = f /Dmax,则:VIN = LIpf/ Dmax或Lp= VIN*Dmax / Ipf则Po又可表示为: ﻫPo= ηVINf DmaxIp2/2f Ip= 1/2ηVINDmaxIp∴Ip=2Po/ηVINDmax上列公式中:ﻫVIN:最小直流输入电压(V)ﻫDmax:最大导通占空比ﻫLp: 变压器初级电感(mH)ﻫIp :变压器原边峰值电流(A)f:转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。
反激变压器设计实例

反激变压器设计实例首先,需要确定输出功率。
假设需要输出功率为50W,根据功率平衡关系可知,输入功率和输出功率之间满足关系:输入功率=输出功率/效率。
假设效率为80%,则输入功率为62.5W。
接下来,需要确定工作频率。
工作频率是根据具体应用场景和电子元器件选择而定。
在一般应用中,常用的工作频率为20kHz-200kHz。
本文选择工作频率为50kHz。
根据输入功率和工作频率,可以确定变压器的整流磁链。
整流磁链的计算公式为:Bac = (2*P)/(f*Ae),其中Bac为整流磁链,P为输入功率,f为工作频率,Ae为有效磁路面积。
根据公式计算,整流磁链为0.25T。
接下来,需要确定变压器的变比。
变比是根据输入和输出电压之间的关系来确定的。
根据输入电压和输出电压的比值,可以确定变压器的变比。
本文选择输入电压为220V,输出电压为12V,变比为18.33然后,需要确定变压器的初始工作条件。
变压器在初始工作条件下需要满足一些性能指标,包括工作电流、磁通密度、差动感应电势等。
根据这些指标可以确定变压器的铁芯截面积和匝数。
在本文的实例中,输入电压为220V,输出电压为12V,变比为18.33,因此输入电流为0.28A,输出电流为4.34A。
根据输出电流和工作频率可以确定匝数。
根据变压器的铁芯材料和工作磁通密度,可以确定变压器的铁芯截面积。
最后,需要进行变压器的检验和调试。
对于反激变压器的设计,主要检验电路是否稳定、变压器的各项指标是否达标。
可以通过调试和测量来验证设计的正确性。
常见的检验和调试项目包括输出电压稳定性、效率、输入电流波形、输出电流波形等。
以上是一个反激变压器的设计实例。
设计反激变压器需要考虑各种因素,包括输入功率、输出功率、输入和输出电压、工作频率等。
通过合理的设计和调试,可以保证反激变压器的性能指标和稳定性,满足具体的应用要求。
反激式开关电源变压器设计

学习培训教材
汇报时间:12月20日
Annual Work Summary Report
一、变压器的设计步骤和计算公式: 1.1 变压器的技术要求: 输入电压范围; 输出电压和电流值; 输出电压精度; 效率η; 磁芯型号; 工作频率f; 最大导通占空比Dmax; 最大工作磁通密度Bmax; 其它要求。 1.2 估算输入功率,输出电压,输入电流和峰值电流: 1)估算总的输出功率:Po=V01xI01+V02xI02…… 2)估算输入功率:Pin= Po/η 3)计算最小和最大输入电流电压 Vin(MIN)=ACMINx1.414(DCV) Vin(MAX)=ACMAXx1.414(DCV)
4)计算最小和最大输入电流电流 Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5)估算峰值电流: K POUT IPK = VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路) K=2.8(半桥和正激电路) K=5.5(Boost,Buck- Boost 和反激电路)
1.3 确定磁芯尺寸 确定磁芯尺寸有两种形式,第一种按制造厂提供的图表,按各种磁芯可传递的能量来选择磁芯,例如下表: 表一 输出功率与大致的磁芯尺寸的关系 输出功率/W MPP环形 E-E、E-L等磁芯 磁芯直径/(in/mm) (每边)/(in/mm) <5 0.65(16) 0.5(11) <25 0.80(20) 1.1(30) <50 1.1(30) 1.4(35) <100 1.5(38) 1.8(47) <250 2.0(51) 2.4(60)
2.2 估算输入功率、输入电压、输入电流和峰值电流 1)输出功率:Po=5V*1A+2*12V*1A+24V*1.5A=65W 2) 输入功率:Pin=Po/η=65W/0.8=81.25W 3) 最低输入电压:Vin(min)=AC90V*1.414=DC127V 4) 最高输入电压:Vin(max)=AC240V*1.414=DC340V 5) 最大平均输入电流: Iin(max)=Pin/Vin(min)=81.25WDC127V=DC0.64A 6) 最小平均输入电流: Iin(min)=Pin/Vin(max)=81.25WDC340V=DC0.24A 7) 峰值电流:Ipk=5.5Po/Vin(min)=5.5*65W/127V=2.81A 2.3 确定磁芯型号尺寸 按照表1,65W可选用每边约35mm的EE35/35/10材料为PC30磁芯 磁芯Ae=100mm2, Acw=188mm2, W=40.6g 2.4 计算一次电感最小值Lpri Vin(min).Dmax 127*0.5 Lpri= = = 452*10-6H=452uH Ipk.f 2.81*50*103 此处选Dmax=0.5
反激电源变压器设计

反激电源变压器设计一、变压器参数的选择反激电源变压器的核心参数包括输入电压、输出电压、输出功率和工作频率。
在设计反激电源变压器时,首先要确定输入电压和输出电压的数值,通常可以根据电子设备的需求进行选择。
然后,根据输出功率计算变压器的功率大小,一般情况下可以按照变压器的负载能力来选择。
最后,确定工作频率,一般常用的工作频率有50Hz和60Hz两种,可以根据具体的应用需求来选择。
二、绕线的计算1.确定绕组的匝数比反激电源变压器通常是多绕组变压器,其中包括输入绕组、输出绕组和反馈绕组。
输入绕组的匝数Np从输入电压和功率的关系中可以计算得到,公式为Np = Vin * Iin / P,其中Vin表示输入电压,Iin表示输入电流,P表示输出功率。
输出绕组的匝数Ns可以由输出电压和功率的关系计算得到,公式为Ns = Vout * Iout / P,其中Vout表示输出电压,Iout表示输出电流,P表示输出功率。
反馈绕组的匝数Nf可以根据设计需求确定,通常取决于反馈网络的设计。
2.计算绕组的截面积绕制反激电源变压器时需要考虑绕组的电流和电阻损耗。
根据电流密度J,可以计算出绕组的截面积A,公式为A=I/J,其中I为电流密度,J为截面积。
电流密度的取值可以根据设计经验或者具体的应用需求来确定。
另外,要考虑绕组的电阻损耗,可以通过计算电阻来确定。
3.确定绕组的材料反激电源变压器的绕组通常采用铜导线,因为铜导线有较好的导电性能和热稳定性。
在选择铜导线时,要考虑导线的直径、长度和截面积等参数,同时还要根据绕组的电流来选择合适的导线规格,以保证导线能够承受相应的电流负荷。
三、设计注意事项1.绕制绕组时要注意匝数的计算和绕线的排列方式,以保证绕组的结构紧凑和电感性能的稳定。
2.反激电源变压器中会产生电磁干扰,因此在设计时要合理布局绕组,减小磁感应强度的泄漏。
3.反激电源变压器的绕组要用绝缘材料进行绝缘处理,以避免电气短路和绝缘击穿现象的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激变压器的设计//========================================================反激变压器设计最简单的方法我自己综合了一下众多高手的方法,自认为是比较简单的方法了!如下: 1,VDC min =VAC min * 1.2VDC max =VAC max * 1.42,输出功率Po=P1+P2+Pn......上式中P1=(Vo1+Vf)*I1 、P2 =(Vo2+Vf)*I2上式中Vo为输出电压,Vf为整流管压降3,输入功率Pin=(Po/η)*1.2(此处1.2为输入整流损耗)4,输入平均电流:Iav = Pin/VDC min5,初级峰值电流:Ip = 2*Iav/Dmax6,初级电感量:Lp=Vdc min *Dmax /(Ip*fs) fs为开关频率7,初级匝数:Np=VDC min * Dmax /(ΔB*Ae*fs)上式中ΔB推荐取值0.2 Ae为磁芯横截面积,查规格资料可得!8,次级匝数:NS =(Vout+Vd)*(1-Dmax)*Np / Vin min*Dmax至此变压器参数基本完成!另就是线径,可根据具体情况调整!宗旨就是在既定的BOBINN上以合适的线径,绕线平整、饱满!///================================反激式变压器设计原理(Flyback Transformer Design Theory)第一节. 概述.反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图.一、反激式转换器的优点有:1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求.2. 转换效率高,损失小.3. 变压器匝数比值较小.4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在85~265V间.无需切换而达到稳定输出的要求.二、反激式转换器的缺点有:1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下.2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大.3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂.第二节. 工作原理在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下:当开关晶体管Tr ton时,变压器初级Np有电流Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns 极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律: (e =-N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2.由图可知,导通时间ton的大小将决定Ip、Vce的幅值:Vce max = VIN / 1-DmaxVIN: 输入直流电压; Dmax : 最大工作周期Dmax = ton / T由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN.开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比n的大小即决定了Ic的大小,上式是按功率守恒原则,原副边安匝数相等NpIp = NsIs而导出. Ip亦可用下列方法表示:Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率公式导出如下:输出功率: Po = LIp2η / 2T输入电压: VIN = Ldi / dt设di = Ip,且 1 / dt = f / Dmax,则:VIN = LIpf / Dmax 或Lp = VIN*Dmax / Ipf则Po又可表示为:Po = ηVINf DmaxIp2 / 2f Ip = 1/2ηVINDmaxIp∴Ip = 2Po / ηVINDmax上列公式中:VIN : 最小直流输入电压(V)Dmax : 最大导通占空比Lp : 变压器初级电感(mH)Ip : 变压器原边峰值电流(A)f : 转换频率(KHZ)//========================================你看的书就会把你给绕进去...绕半天却找不到自己了。
其实反激的变压器很好计算的,基本是经验为主,公式为辅。
就比如12V1A的变压器,首先凭经验确定用多大变压器,当然你得根据外壳和板的实际情况确定用什么类型的变压器,如EE的,EF的,还有EFD的,再都RM,PQ...等等,其次是大小,12W的经典变压器主是EF20的,先按经验得知12W的初级用90匝左右,那就计算次级,次级电压比和匝比是等同的,12V*1.414=17V,最低输入电压是90V*1.414=127V,再127/17=7.47 这是他们的电压比,也就是匝比,再用初级匝数90/7.47=12 这就是次级匝数。
看明白了就是90V 输入12V输出,这是以最大占空比计算的,电感量也有公式计算,Lp=Vimin*Dmax /Ipk*fIpk=2Po/DmaxVimin,计算出来大概是1.8个mH,但根据经验得计算出来的电感量比实际上应用的要多一点,所以我们一般取1.5mH。
这频率是以67K为标准的。
///=========================================================反激式开关电源变压器设计反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其的发热尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。
算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。
下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。
第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。
可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来,这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。
此即是最大占空比了。
比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47第二步,确实原边电流波形的参数.原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。
现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和峰值电流的比值这个比值下图分别是最大脉动电流和峰值电流。
是在0和1之间的。
这个值很重要。
已知了KRP,现在要解方程了,都会解方程吧,这是初一的应用题啊,我来解一下,已知这个波形一个周期的面积等于电流平均值*1,这个波形的面积等于,峰值电流*KRP*D+峰值电流*(1-KRP)*D,所以有电流平均值等于上式,解出来峰值电流=电流平均值/(1-0.5KRP)*D。
比如说我这个输出是10W,设定效率是0.8.则输入的平均电流就是10/0.8*90=0.138A,我设定KRP的值是0.6而最大值=0.138/(1-0.5KRP).D=0.138/(1-0.5*0.6)*0.47=0.419A.三个电流参数,就是这个电流的有效值,电流有效值和平均值是不一样的,有效值的定义还记得吗,就是说把这个电流加在一个电阻上,若是其发热和另处一个直流电流加在这个电阻上发热效果一样的话,那么这个电流的有效值就等于这个直流的电流值.所以这个电流的有效值不等于其平均值,一般比其平均值要大.而且同样的平均值,可以对应很多个有效值,若是把KRP的值选得越大,有效值就会越大,有效值还和占空比D也有关系,总之.它这个电流波形的形状是息息相关的.我就直接给出有效值的电流公式,这个公式要用积分才能推得出来,我就不推了,只要大家区分开来有效值和平均值就可以了.电流有效值=电流峰值*根号下的D*(KRP的平方/3-KRP+1)如我现在这个,电流有效值=0.419*根号下0.47*(0.36/3-0.6+1)=0.20A.所以对应于相同的功率,也就是有相同的输入电流时,其有效值和这些参数是有关的,适当的调整参数,使有效值最小,发热也就最小,损耗小.这便优化了设计.第三步,开始设计变压器准备工作.已知了开关频率是100KHZ则开关周期就是10微秒了,占空比是0.47.那么TON就是4.7微秒了.记好这两个数,对下面有用.第四步,选定变压器磁芯,这个就是凭经验了,如果你不会选,就估一个,计算就行了,若是不行,可以再换一个大一点的或是小一点的,不过有的资料上有如何根据功率去选磁芯的公式或是区线图,大家不妨也可以参考一下.我一般是凭经验来的.第五步,计算变压器的原边匝数,原边使用的经径.计算原边匝数的时候,要选定一个磁芯的振幅B,即这个磁芯的磁感应强度的变化区间,因为加上方波电压后,这个磁感应强度是变化的,正是因为变化,所以其才有了变压的作用,NP=VS*TON/SJ*B,这几个参数分别是原边匝数,,最小输入电压,导通时间,磁芯的横节面积和磁芯振幅,一般取B 的值是0.1到0.2之间,取得越小,变压器的铁损就越小,但相应变压器的体积会大些.这个公式来源于法拉弟电磁感应定律,这个定律是说,在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,简单吧.我的这个NP=90*4.7微秒/32平方毫米*0.15,得到88匝0.15是我选取的了值.算了匝数,再确定线径,一般来说电流越大,线越热,所以需要的导线就越粗,,需要的线径由有效值来确定,而不是平均值.上面已经算得了有效值,所以就来选线,我用0.25的线就可以了,用0.25的线,其面积是0.049平方毫米,电流是0.2安,所以其电流密度是4.08,可以,一般选定电流密度是4到10安第平方毫米.记住这一点,这很重要.若是电流很大,最好采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好.第六步,确定次级绕组的参数,圈数和线径.记得原边感应电压吧,这就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原边以80V的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢,当然其遵守变压器那个匝数和电压成正比的规律啦.所以副边电压=NS*(UO+UF)/VOR,其中UF为肖特基管压降.如我这个副边匝数等于88*5.6/80,得6.16,整取6匝.再算副边的线径,当然也就要算出副边的有效值电流啦,副边电流的波形会画吗,我画给大家看一下吧画的不太对称,没关系,只要知道这个意思,就可以了.有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同的这下知道了这个波形的有效值是怎么算的了吧,哦,再提醒一句,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍哦.第七步确定反馈绕组的参数,反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP 的电源电压是5.7到9V,绕上7匝,那么其电压大概是6V多,这就可以了,记得,反馈电压是反激的,其匝数比要和幅边对应,懂什么意思吗,至于线,因为流过其的电流很小,所以就用绕原边的线绕就可以了,无严格的要求.第八步,确定电感量.记得原边的电流上升公式吗I=VS*TON/L.因为你已经从上面画出了原边电流的波形,这个I就是:峰值电流*KRP,所以L=VS.TON/峰值电流*KRP,知道了吗,从此就确定了原边电感的值.第九步,验证设计,即验证一下最大磁感应强度是不是超过了磁芯的允许值,有BMAX=L*IP/SJ*NP.这个五个参数分别表示磁通最大值,原边电感量,峰值电流,原边匝数,这个公式是从电感量L的概念公式推过来的,因为L=磁链/流过电感线圈的电流,磁链等于磁通乘以其匝数,而磁通就是磁感应强度乘以其截面积,分别代入到上面,即当原边线圈流过峰值电流时,此时磁芯达到最大磁感应强度,这个磁感应强度就用以上公式计算.BMAX的值一般一要超过0.3T ,若是好的磁芯,可以大一些,若是超过了这个值,就可以增加原边匝数,或是换大的磁芯来调.总结一下:设计高频变压器,有几个参数要自己设定,这几个参数就决定了开关电源的工作方式,第一是要设定最大占空比D,这个占空比是由你自己设定的感应电压VOR来确定的,再就是设定原边电流的波形,确定KRP的值,设计变压器时,还要设定其磁芯振幅B,这又是一个设定,所有这些设定,就让这个开关电源工作在你设定的方式之下了.要不断的调整,工作在一个对你来说最好的状态之下,这就是高频变压器的设计任务.总结一公式D=VOR/(VOR+VS ) (1)IAVE=P/效率*VS (2)IP=IAVE/(1-0.5KRP)*D (3)I有效值=电流峰值*根号下的D*(KRP的平方/3-KRP+1) (4)NP=VS*TON/SJ*B (5)NS=NP*(VO+VF)/VOR (6)L=VS.TON/IP.KRP (7)BMAX=L*IP/SJ.NP (8)不过总的来说,高频变压器是一个比较复杂的东西,我短短的篇幅在此也不足以说明,学习高频变压器,我苦搞了两个月。