自动控制系统课程设计报告

合集下载

自动控制原理课程设计报告

自动控制原理课程设计报告

指导教师评定成绩:审定成绩:自动控制原理课程设计报告设计题目:单位负反馈系统校正单位(二级学院):学生姓名:专业:班级:学号:指导教师:设计时间:年月XXXXXXX大学XXXX学院制目 录1.设计题目已知单位负反馈系统被控制对象的开环传递函数)15.0()(0+=s s K s G用相应的频率域校正方法对系统进行校正设计,使系统满足如下动态及静态性能指标:(1)选取相应的频率域校正方法(2)在斜坡信号t t r 2)(=作用下,系统的稳态误差02.0≤ss e ; (3)系统校正后,相位裕量050)(>''c ωγ。

(4)当 c ωω'<时,系统开环对数频率特性,不应有斜率超过dB 40-/十低频的线段。

要求:(1)分析设计要求,说明校正的设计思路(滞后校正,超前校正或滞后-超前校正);(2)详细设计(包括的图形有:校正结构图,校正前系统的Bode 图,校正装置的Bode 图,校正后系统的Bode 图);(3)MATLAB 编程代码及运行结果(包括图形、运算结果); (4)校正实现的电路图及结果(校正前后系统的阶跃响应图);2.设计报告正文2.1摘要利用超前网络或PD 控制器进行串联校正的基本原理,是利用超前网络和PD 控制器的相角超前特性。

只要正确的将超前网络的交接频率1/aT 和1/T 选在待校正系统截止频率的两旁,并适当选取a 和T ,就可以是已校正系统的截止频率和相角裕度满足性能指标的要求,从而改善闭环系统的动态性能。

闭环系统的稳态性能要求,可通过选择已校正系统的开环增益来保证。

关键词: 稳态误差ss e ,相位裕量γ',超前校正 2.2设计思路1)根据稳态误差ss e 要求,确定开环增益K 。

2)利用已确定的开环增益K ,计算待校正系统的相位裕度r 。

3)根据截止频率wc "的要求,计算超前网络参数a 和T 。

在本步骤中,关键是选择最大超前角频率等于要求的系统截止频率,即wm=wc ",以保证系统的响应速度,并充分利用网络的相角超前特性。

自动控制系统课程设计.ppt

自动控制系统课程设计.ppt

保护电路
三相交流电源
三相全控桥
直流电动机
双闭环调速
触发电路
图2-3 系统设计框图
变流器主电路和保护环节设计
• 整流变压器
• 在一般情况下,晶闸管装置所要求的交流供电电 压与电网电压往往不一致;此外,为了尽量减小 电网与晶闸管装置的相互干扰,要求它们相互隔 离,故通常要配用整流变压器,这里选项用的变 压器的一次侧绕组采用△联接,二次侧绕组采用Y 联接。
课程设计的主要任务
• (一) 系统各环节的选型:
1、主回路方案确定; 2、控制回路选择;
• (二) 主要电气设备的计算和选择:
1、整流变压器计算; 2、晶闸管整流元件; 3、系统各主要环节的设计; 4、平波电抗器选择计算;
• (三) 系统参数计算:
1、电流调节器ACR中 、 计算; 2、转速调节器ASR中 、 计算;
本设计采用如下图阻容吸收回路来抑制过电压
图3-3 元件换相保护原理图
• 其中
C (2 ~ 4)IT 103
• 电阻功率选择 PR 1.75 fCUTm 2 10 6 (W )
• 过电流保护
• 将快速熔断器安装在交流侧或直流侧,在直流侧与元件直 接串联。
• 选择时应注意以下问题: • ① 快熔的额定电压应大于线路正常工作电压的有效值。 • ② 熔断器的额定电流应大于溶体的额定电流。 • ③ 溶体的额定电流 计算公式 三相交流电路的一次侧过电流保护 • 在本设计中,选用快速熔断器与电流互感器配合进行三
• β=0.77V/A,α=0.007Vmin/r
直流拖动系统系统总体设计
• 主要任务
1、系统总体方案的选择; 2、系统方案的实体设计; 3、系统各主要保护环节的设计; 4、系统的动态工程设计;

自动控制操作课程设计

自动控制操作课程设计

自动控制操作课程设计一、课程目标知识目标:1. 让学生理解自动控制系统的基本原理,掌握控制系统的组成、分类及工作方式。

2. 使学生掌握自动控制系统的数学模型,并能运用相关公式进行简单计算。

3. 帮助学生了解自动控制系统的性能指标,如稳定性、快速性、准确性等。

技能目标:1. 培养学生运用所学知识分析自动控制系统的能力,能对实际系统进行简单的建模与仿真。

2. 让学生学会使用自动控制设备,进行基本操作和调试,具备一定的动手实践能力。

3. 培养学生利用自动控制系统解决实际问题的能力,提高创新意识和团队协作能力。

情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发学习热情,形成积极的学习态度。

2. 引导学生认识到自动控制在国家经济建设和科技进步中的重要作用,增强学生的社会责任感和使命感。

3. 培养学生严谨的科学态度,养成勤奋刻苦、团结协作的良好品质。

本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。

课程内容紧密联系课本,确保学生所学知识的实用性和针对性。

通过本课程的学习,使学生能够在理论知识和实践操作方面均取得较好的成果。

二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。

主要包括以下几部分:1. 自动控制原理:介绍自动控制系统的基本概念、分类及其应用,重点讲解开环控制系统和闭环控制系统的原理及特点。

2. 控制系统数学模型:讲解控制系统的数学描述方法,包括传递函数、状态空间表达式等,并通过实例进行分析。

3. 控制系统性能分析:介绍控制系统的稳定性、快速性、准确性等性能指标,结合教材章节,进行深入讲解。

4. 自动控制设备操作与调试:教授自动控制设备的基本操作方法,包括控制器参数设置、传感器和执行器的使用等,并安排实践环节,让学生动手操作。

5. 自动控制系统仿真与设计:结合教材内容,指导学生运用仿真软件对自动控制系统进行建模、仿真和分析,培养学生的实际操作能力。

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告

《电力拖动自动控制系统》课程设计报告(1)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊目录一﹑前言 (2)1. 1设计目的 (2)1. 2设计内容 (2)二﹑伺服系统的基本组成原理及电路设 (2)1.伺服系统基本原理及系统框图 (2)三﹑调试后的图 (8)四﹑设计心得与体会 (13)五﹑参考文献 (14)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊《电力拖动自动控制系统》课程设计报告一、前言1.1设计目的和要求1.使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2.使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3.熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

1.2设计内容1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图;2、分析并理解具有三环结构的伺服系统原理。

二﹑伺服系统的基本组成原理及电路设计2.1伺服系统基本原理及系统框图伺服系统三环的PID控制原理以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号.┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-1 转台伺服系统框图伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路.转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示.图2-2 伺服系统位置环框图┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊图2-3 伺服系统速度环框图图2-4 伺服系统电流框图图中符号含义如下:r为位置指令;θ为转台转角;u K为PWM功率放大倍数;d K为速度环放大倍数;v K为速度环反馈系数;i K为电流反馈系数;L为电枢电感;R为电枢电阻;m K为电机力矩系数;e C为电机反电动势系数;J为等效到转轴上的转动惯量;b为粘性阻尼系数,其中J=m J+L J,b=m b+L b,m J和L J分别为电机和负载的转动惯量,m b和L b分别为电机和负载的粘性阻尼系数;f T为扰动力矩,包括摩擦力矩和耦合力矩。

自动控制课程设计总结

自动控制课程设计总结

自动控制课程设计总结自动控制课程设计总结摘要:本文总结了我参与的自动控制课程设计的经历和感受。

在课程设计中,我们学习了自动控制的基本概念、理论和方法,并在实践中应用这些知识进行了一些实际项目的设计和实现。

在这个过程中,我们遇到了一些挑战,如如何选择合适的控制器、如何优化控制效果等,但我们也从中学到了很多,如如何根据实际情况选择合适的控制策略、如何在实践中不断提高自己的技能等。

本文还总结了我们在课程设计中的一些经验和教训,包括如何设计合理的课程内容和教学方法、如何评估学生的学习效果等。

最后,本文还提出了一些自动控制课程设计的展望和建议,以帮助其他教师和学生更好地进行课程设计和实现。

关键词:自动控制;课程设计;实践项目;经验总结;教训与建议正文:一、自动控制的基本概念和理论自动控制是一类重要的学科,主要研究如何通过控制器来实现系统的自动控制。

自动控制的基本概念包括系统模型、控制器设计、控制策略等。

其中,系统模型是指描述系统性质的数学模型,控制器设计是指根据系统模型设计出适合的控制器,控制策略是指控制器根据系统的状态和输入输出信号,采取的控制措施。

自动控制的基本理论包括控制原理、控制律、PID控制等。

其中,控制原理是指控制器输出信号与预期输出信号之间的误差关系,控制律是指控制器的输出信号与预期输出信号之间的数学表达式,PID控制是指根据系统的特性和目标,采用比例、积分和微分等控制方法来实现控制系统的稳定性和精度要求。

二、自动控制课程设计的经历和感受在进行自动控制课程设计时,我们主要从以下几个方面入手:1. 确定课程目标和教学内容根据学生的实际情况和课程的要求,确定课程的教学目标和教学内容。

我们主要学习了自动控制的基本概念、理论和方法,包括控制系统的建模、控制器的设计、控制策略的实现等。

2. 设计课程教学方法设计合适的教学方法可以有效提高学生的学习效果。

我们采用了讲座、案例分析、实践项目等方式进行教学,其中案例分析和实践项目是课程设计的重点。

自动控制系统课程设计

自动控制系统课程设计

自动控制系统课程设计一、课程目标知识目标:1. 让学生掌握自动控制系统的基本概念、分类及工作原理,理解并能够描述典型自动控制系统的结构组成。

2. 使学生了解自动控制系统中常用的数学模型,并能够运用这些模型分析系统的性能。

3. 让学生掌握自动控制系统的性能指标及其计算方法,能够评价系统的稳定性、快速性和准确性。

技能目标:1. 培养学生运用数学工具进行自动控制系统建模、分析及设计的能力。

2. 使学生具备使用相关软件(如MATLAB等)进行自动控制系统仿真的技能。

3. 培养学生解决实际自动控制工程问题的能力,提高团队协作和沟通表达能力。

情感态度价值观目标:1. 培养学生对自动控制技术的兴趣和热情,激发他们探索未知、勇于创新的精神。

2. 培养学生严谨的科学态度,注重实践,养成良好的学习习惯。

3. 增强学生的环保意识,让他们明白自动控制技术在节能、减排等方面的重要作用,提高社会责任感。

本课程针对高年级学生,结合自动控制系统的学科特点,注重理论联系实际,强调知识、技能和情感态度价值观的全面发展。

通过本课程的学习,使学生能够为从事自动控制领域的研究和实际工程应用打下坚实基础。

二、教学内容1. 自动控制系统概述:介绍自动控制系统的基本概念、分类、应用领域,使学生建立整体认识。

教材章节:第一章 自动控制系统导论2. 自动控制系统的数学模型:讲解线性微分方程、传递函数、状态空间等数学模型,以及它们在自动控制系统中的应用。

教材章节:第二章 自动控制系统的数学模型3. 自动控制系统的性能分析:讲解稳定性、快速性、准确性等性能指标,以及相应的计算方法。

教材章节:第三章 自动控制系统的性能分析4. 自动控制系统的设计方法:介绍PID控制、状态反馈控制、最优控制等设计方法,培养学生实际设计能力。

教材章节:第四章 自动控制系统的设计方法5. 自动控制系统仿真:结合MATLAB等软件,讲解自动控制系统仿真的基本方法。

教材章节:第五章 自动控制系统仿真6. 自动控制系统的应用案例分析:分析典型自动控制系统的实际应用案例,提高学生解决实际问题的能力。

自动控制原理课程设计报告

自动控制原理课程设计报告

自动控制原理课程设计报告自动控制是工程学的重要组成部分,它是一种数学模型,可以控制复杂的过程和系统,从而使其稳定运行,并获得最佳的性能。

自动控制的原理在许多工程领域中都有广泛的应用,如化工、航空航天、机械、电力等。

本文将介绍如何利用自动控制原理来设计一个系统,以优化系统性能。

首先要设计一个控制系统,可以实现对系统的自动控制。

控制系统的第一步是定义系统模型。

一般来说,系统模型有两种:非线性模型和线性模型,其中线性模型更为简单,也是设计自动控制系统的常用模型。

接下来,需要确定控制系统的类型。

一般来说,自动控制系统可以分为闭环控制系统和开环控制系统,其中闭环控制系统具有更高的精度和更好的稳定性,它通过检测控制量的反馈信号与设定值进行比较,以实现对系统的控制。

此外,还需要为控制系统设计一个优化的控制器,用于控制系统的运行状态。

一般来说,有两种主要的控制器:PID控制器和经验模型控制器。

PID控制器是最常用的控制器,它可以控制系统的振荡和滞后,并且可以根据不同情况自动调整参数。

另一种控制器是经验模型控制器,它主要用于复杂的非线性系统,可以有效的抑制噪声,并对系统的响应时间进行调节。

完成了以上步骤后,就可以搭建出一个自动控制系统,以达到优化系统性能的目的。

实际的设计过程要根据实际的应用场景进行相应的调整,实现最佳的系统性能。

例如,在机器人控制系统中,需要使用传感器和控制器来实现对机器人运动的控制,以达到最佳性能。

综上所述,自动控制原理在设计控制系统时十分重要,可以有效的解决复杂的控制问题,并有助于优化系统性能。

本文只是简要介绍了自动控制系统的基本原理,实际的设计和实现过程要根据具体的应用环境而定,还需要从不同的方面进行充分的研究。

电力拖动自动控制系统课程设计报告

电力拖动自动控制系统课程设计报告

一.课程设计的目的与内容1.1课程设计的目的电力拖动自动控制系统课程设计是自动化专业的一门专业课,它是一次综合性的理论与实际相结合的训练,也是本专业的一次基本技能训练,其主要目的是:(1)理论联系实际,掌握根据实际工艺要求,设计直流拖动自动控制系统的基本方法;(2)对典型的直流拖动自动控制系统进行综合性的实验,掌握各部件和整个系统的调试步骤与方法,加强基本技能训练;(3)掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力;(4)培养分析问题、解决问题的能力,学会实验数据的分析与处理,编写设计说明和技术总结报告。

1.2课程设计的内容本课程的具体对象是直流调速系统,其主要内容为:(1)测定综合实验中所用控制对象的参数;(2)根据给定指标设计调速系统的调节器,并选择各环节参数;(3)按设计结果组成系统,进行系统调试以满足给定指标;(4)研究参数变化对系统性能的影响;(5)在不可逆系统调试的基础上,组成可逆系统并进行调试;(6)设计并计算主回路参数;(7)书写课程设计论文一份(6000-10000字),绘制双闭环逻辑无环流可逆调速系统原理图一张(2#图)。

二.主电路的设计2.1主电路电气原理图及说明主电路采用转速电流双闭环调速系统,是电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。

二者串级连接,即把电流调节器的输出作为转速调节器的输入,再用转速调节器的输出控制电力电子变换器UPE,从而改变电机的转速,通过电流和转速反馈电路来实现电动机无静差地运行。

2.2整流变压器参数的选择变压器副边电压采用如下公式进行计算:已知Udmax=220V,取Ut=1V,n=2,A=2.34In/I2n=1 C=0.5 则U2=110V由此得:变压器的变化为:K=U1/U2=380/110=3.45一次侧电流和二次侧电流I1、I2的计算:I1=1.05*287*0.861/3.45=75AI2=0.861*287=247A变压器容量的选择:S1=M1U1I1=85.5KV AS2=M2U2I2=81.5KV AS=0.5*(S1+S2)=83.5KV A因此整流变压器的参数为:变化K=3.45,容量S=83.5KV A2.3平波电抗器参数的确定Ud=2.34U2cosαUd=Un=220V, 取α=0U2=Ud/2.34cos0=94.0171VId min=(5%-10%)In,这里取10%,则有:L=0.693*U2/I d min=37.2308mHα=U*min/n N=0.0067β=U*im/2In=0.28752.4晶闸管参数的计算晶闸管的额定电压通常选取断态重复峰值电压U DRM和反向重复电压U RRM 中较小的值作为该器件的额定电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制系统课程设计报告课程名称:自动控制系统课程设计报告设计题目:错位控制无环流可逆调速系统设计院系:班级:设计者:学号:同组人:指导教师:设计时间:课程设计(论文)任务书指导教师签字:系(教研室)主任签字:年月日目录一、错位控制无环流可逆调速系统的原理................................................................... - 4 -1、可逆调速系统的原理.................................................................................... - 4 -2、环流的介绍.................................................................................................... - 4 -1、环流的定义............................................................................................. - 4 -2、环流的分类........................................................................................... - 5 -3、错位控制无环流系统 ................................................................................. - 5 -1、静态环流的错位消除原理.................................................................. - 5 -2、错位控制无环流系统的结构............................................................. - 5 -3、错位控制无环流系统的优缺点 ........................................................ - 6 -二、系统的设计 ................................................................................................................... - 6 -1、主电路的设计及参数选择 ........................................................................ - 6 -1、变压器的选择...................................................................................... - 6 -2、晶闸管的选择...................................................................................... - 7 -3、电抗的选择........................................................................................... - 7 -2、同步变压器及触发器的设计.................................................................... - 7 -1、触发电路的设计.................................................................................... - 7 -2、同步变压器的设计............................................................................. - 8 -3、保护电路的设计........................................................................................... - 9 -1、过电流保护........................................................................................... - 9 -2、过电压保护........................................................................................... - 9 -3、缓冲电路............................................................................................... - 9 -4、检测环节 ...................................................................................................... - 10 -1、转速检测............................................................................................. - 10 -2、电流检测 ............................................................................................... - 10 -3、电压检测............................................................................................. - 10 -5、控制电路的设计......................................................................................... - 11 -1、AVR电压内环的设计 ..................................................................... - 11 -2、ACR电流环的设计.......................................................................... - 12 -3、ASR转速环的设计........................................................................... - 13 -4、AVR、ACR和ASR的限幅设计 .................................................. - 14 -5、AR反相器的设计............................................................................. - 14 -三、设计小结...................................................................................................................... - 15 -四、参考文献...................................................................................................................... - 15 -一、错位控制无环流可逆调速系统的原理1、可逆调速系统的原理图1 两组晶闸管装置发并联线路较大功率的可逆直流调速系统多采用晶闸管—电动机系统。

由于晶闸管的单向导电性,需要可逆运行时经常需要采用俩组晶闸管可控整流装置反并联的可逆线路,如图1,电动机正转时,由正组晶闸管VF供电;反转时,由反组晶闸管VR供电。

两组晶闸管分别由两组触发装置进行控制,都能灵活的控制电机的起动、制动和升速、降速。

但在一般情况下不允许让两组晶闸管同时处于整流状态,否则将造成电源短路。

在可逆调速系统中,正转运行时可利用反组晶闸管实现回馈制动,反转时同样可利用正组晶闸管实现回馈制动,总结起来,可将可逆线路的正反转时的晶闸管和电机状态总结为表1。

表1 V-M系统反并联可逆线路的工作状态2、环流的介绍1、环流的定义采用两组晶闸管反并联的可逆V-M系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。

如图2中的Ih 。

一般情况,这样的环流对负载无益,徒然加重晶闸管和变压器的负担,消耗功率,环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。

图2 反并联可逆V —M 系统中的环流(Ih — 环流 Id — 负载电流)2、环流的分类(1)静态环流:两组可逆线路在一定控制角下稳定工作时出现的环流,其中又有两类:直流平均环流---由晶闸管装置输出的直流平均电压所产生的环流称作直流平均环流 瞬时脉动环流---两组晶闸管输出的直流平均电压差为零,但因电压波形不同,瞬时电压差仍会产生脉动的环流,称作瞬时脉动环流。

(2)动态环流:仅在可逆V-M 系统处于过渡过程中出现的环流。

3、错位控制无环流系统1、静态环流的错位消除原理采用配合控制的原理,当一组晶闸管装置整流时,让另一组处于待逆变状态,而且两组触发脉冲的零位错开的比较远,避免了瞬时脉动环流产生的可能性,这就是错位控制无环流可逆系统。

具体地说,在α=β配合控制的有换流可逆调速系统中,两组触发脉冲的配合关系是ο180=+r f αα,0=c U 时的初始相位整定在ο9000=+r f αα,从而消除了直流平均环流,但仍存在瞬时脉动环流。

在错位控制的无环流可逆调速系统中,同样采用配合控制的触发移相方法,但两组脉冲的关系是ο300=+r f αα,甚至是ο360=+r f αα,也就是说初始相位整定在οο18015000或=+r f αα。

相关文档
最新文档