开关电源控制环设计过程大揭秘
【最牛笔记】开关电源设计全过程!

【最⽜笔记】开关电源设计全过程!反激变换器设计笔记1、概述开关电源的设计是⼀份⾮常耗时费⼒的苦差事,需要不断地修正多个设计变量,直到性能达到设计⽬标为⽌。
本⽂step-by-step 介绍反激变换器的设计步骤,并以⼀个6.5W 隔离双路输出的反激变换器设计为例,主控芯⽚采⽤NCP1015。
基本的反激变换器原理图如图 1 所⽰,在需要对输⼊输出进⾏电⽓隔离的低功率(1W~60W)开关电源应⽤场合,反激变换器(Flyback Converter)是最常⽤的⼀种拓扑结构(Topology)。
简单、可靠、低成本、易于实现是反激变换器突出的优点。
2、设计步骤接下来,参考图 2 所⽰的设计步骤,⼀步⼀步设计反激变换器1.Step1:初始化系统参数------输⼊电压范围:Vinmin_AC 及Vinmax_AC------电⽹频率:fline(国内为50Hz)------输出功率:(等于各路输出功率之和)------初步估计变换器效率:η(低压输出时,η取0.7~0.75,⾼压输出时,η取0.8~0.85)根据预估效率,估算输⼊功率:对多路输出,定义KL(n)为第n 路输出功率与输出总功率的⽐值:单路输出时,KL(n)=1.2. Step2:确定输⼊电容CbulkCbulk 的取值与输⼊功率有关,通常,对于宽输⼊电压(85~265VAC),取2~3µF/W;对窄范围输⼊电压(176~265VAC),取1µF/W 即可,电容充电占空⽐Dch ⼀般取0.2 即可。
⼀般在整流后的最⼩电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC:3. Step3:确定最⼤占空⽐Dmax反激变换器有两种运⾏模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。
两种模式各有优缺点,相对⽽⾔,DCM 模式具有更好的开关特性,次级整流⼆极管零电流关断,因此不存在CCM 模式的⼆极管反向恢复的问题。
开关电源环路设计要点

开关电源环路设计要点开关电源是一种电源供电方式,主要通过开关电器元件(如MOS管)在开关状态下实现电能转换和电压变换。
开关电源具有高效率、小体积、低成本等优点,被广泛应用于各种电子设备中。
下面就开关电源环路设计的要点进行详细介绍。
一、开关电源环路基本结构开关电源环路一般由输入电源滤波、脉宽调制、开关器件、输出滤波、反馈控制五个部分组成。
其中,输入电源滤波主要用于滤除输入电源中的交流干扰,保证开关电源工作的稳定性;脉宽调制控制开关器件的导通时间,进而控制输出电压的大小;开关器件用于控制电能的转换和电压变换;输出滤波用于去除开关导通时产生的高频噪声;反馈控制通过检测输出电压,调整脉宽调制信号,实现输出电压的稳定。
二、开关频率的选择开关频率是指开关电源中开关器件(如MOS管)的工作频率。
开关频率的选择要根据具体应用需求来确定。
一般情况下,高开关频率可以实现较高的转换效率,但也会增加开关器件和元件的压力,增加损耗。
因此,在选择开关频率时需要综合考虑功率损耗、损耗成本、EMI等因素,合理选择开关频率。
三、开关器件的选型开关电源中的开关器件是实现能量转换和电压变换的核心关键部分。
目前常见的开关器件有MOS管、IGBT等。
在选型时需要综合考虑开关电源的输出功率、工作温度、开关频率等因素。
此外,还要考虑开关器件的导通电阻、关断电阻、开关速度、电流承载能力等性能参数。
四、输出滤波电路设计输出滤波电路用于去除开关器件开关工作时产生的高频噪声。
一般情况下,输出滤波电路由电感和电容组成。
通过选取合适的电感和电容参数,可以实现对高频噪声的有效滤除,并保证输出电压的稳定。
此外,还可以通过设计共模电感、差模电感等结构来进一步提高滤波效果。
五、反馈控制回路设计反馈控制回路用于检测并调整输出电压,保证输出电压的稳定性。
常见的反馈控制回路结构有电压反馈和电流反馈两种。
电压反馈是通过采样电路和比较器将输出电压与设定值进行比较,从而产生反馈信号;电流反馈是通过采样电阻和比较器将输出电流与设定值进行比较,从而产生反馈信号。
反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
开关电源的环路设计及仿真

1 基本理论开关电源的输出电压Vo是由一个控制电压Vc来控制的,即由Vc与锯齿波信号比较,产生PWM波形。
根据锯齿波产生的方式不同,开关电源的控制方式可分为电压型控制和电流型控制。
电压型的锯齿波是由芯片内部产生的,如LM5025,电流型的锯齿波是输出电感的电流转化成电压波形得到的,如UC3843。
对于反激电路,变压器原边绕组的电流就是产生锯齿波的依据。
输出电压Vo与控制电压Vc的比值称为未补偿的开环传递函数Tu,Tu=Vo/Vc。
一般按频率的变化来反映Tu的变化,即Bode图。
电压型控制的电源其Tu是双极点,以非隔离的BUCK为例,形式为:电流型控制的电源其Tu是单极点,以非隔离的BUCK为例,形式为:各种电路的未补偿的开环传递函数Tu可以从资料中找到。
本讲座的目的是提供一种直观的环路设计手段。
2 计算机仿真开关电源未补偿的开环传递函数Tu2.1 开关平均模型开关电源的各个量经平均处理后,去掉高频开关分量,得到低频(包括直流)的分量。
开关电源的建模、静态工作点、反馈设计、动态分析等都是基于平均模型基础之上的。
若要得到实际的工作波形,应按实际电路进行时域仿真(Time Transient Analysis)。
将开关电路中的开关器件经平均化处理后,就得到开关平均模型,用开关平均模型可以搭建各种电路。
以下是几个开关电源的平均模型仿真例子,从电路波形中看不到开关量,只是平均量,比如电感中流过的电流是实际电感中的电流平均值,电容两端的电压是实际电容两端电压的平均值等等。
2.1.1 CCM BUCK(连续模式BUCK)先直流扫描Vc,得到所需的输出电压,即得到了电路的静态工作点。
然后交流扫描,得到Tu的Bode图。
Tu为双极点。
此处Vc等同于占空比d。
2.1.2 DCM BUCK(断续模式BUCK)按以上方法得到Tu,在DCM下,Tu变成单极点函数。
模型CCM-DCM即可用于连续模式,也可用于断续模式。
此处Vc仍等同于占空比d。
开关电源从原理图到PCB设计的流程解析

开关电源从原理图到PCB设计的流程解析描述一、从原理图到PCB的设计流程建立元件参数-输入原理网表-设计参数设置-手工布局-手工布线-验证设计-复查-CAM输出。
二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。
最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。
当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。
例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。
每一个开关电源都有四个电流回路:(1)。
电源开关交流回路(2)。
输出整流交流回路(3)。
输入信号源电流回路(4)。
输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。
所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。
如何一步一步设计开关电源?开关电源设计调试步骤全过程

如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。
设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。
万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。
开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。
在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。
1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。
在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。
2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。
无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进行分解。
分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。
3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。
设计前最好都先看一下相应的datasheet,确认一下简单的参数。
无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。
一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。
4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。
当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。
开关电源环路设计与实例详解

# !
/66
"
第六章
反馈环路的稳定
具有 !"#$%&" 倍频程的增益变化。
图 ’ ( ! ( )) 有 ( !"#$%&" 倍频程的增益, 如果每 &" 倍频程有 *+ 积分电路在超过 ! , - &%! !"& #& 时, 则这条直线的斜率为 ( &。这种电路被称为 ( & 斜率电路。 ( .) !"#$ 的线性衰减, *+ 微分电路有 / 增益逐渐接近于 "#$。如果每 &" 倍频有 !"#$ !"#$%&" 倍频程的增益。在 ! 0 - &%! $ +! - "!, !"! #! 处, 的线性增加, 则这条直线的斜率为 / &。这种电路称为 / & 斜率电路。 ( 1) ( "3 2+ 滤波器在临界阻尼 的条件下, 直到转折频率 & 145 - &%! 增益为 "。频率超过 & 145 后, 开始以 ( 6"#$% - !% 3 % # 3 ) ! !% 3 # 3 , 当频率每 &" 倍频增加的时候, 阻抗 $ 2 和 $ 1 分别以 &" 倍增加和 &" 倍频程的速率衰减。这是因为, 减少。如果每 &" 倍频程有 !"#$ 的衰减, 则这条直线的斜率为 ( &, 每 &" 倍频程有 6"#$ 的衰减, 则这 条直线的斜率为 ( !。这种电路称为 ( ! 斜率电路
一个典型正激变换器的闭环反馈环路
开关电源环路设计及实例详解

开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。
开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。
二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。
2. 整流桥:将输入交流电转换为直流电信号。
3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。
4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。
5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。
三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。
2. 选择合适的变压器。
3. 设计整流桥和直流滤波器。
4. 设计开关变换器,包括选择合适的开关管和控制电路。
5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。
6. 进行整个电路的仿真和优化。
7. 进行实际电路的搭建和调试。
四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。
1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。
2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。
通过计算得到变压比为1:2。
3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。
4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。
控制信号通过脉冲宽度调制(PWM)技术进行控制。
同时,在输入端加入输入滤波器进行滤波处理。
5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。
同时,加入输出滤波电容进行滤波处理。
6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源控制环设计过程大揭秘
1. 绪论
在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。
因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。
由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。
下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。
给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。
测试结果和测量方法也包含在其中。
2. 基本控制环概念
2.1 传输函数和博得图
系统的传输函数定义为输出除以输入。
它由增益和相位因素组成并可以在博得图上分别用图形表示。
整个系统的闭环增益是环路里各个部分增益的乘积。
在博得图中,增益用对数图表示。
因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。
系统的相位是整个环路相移之和。
2.2 极点
数学上,在传输方程式中,当分母为零时会产生一个极点。
在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。
图1举例说明一个低通滤波器通常在系统中产生一个极点。
其传输函数和博得图也一并给出。
2.3 零点
零点是频域范围内的传输函数当分子等于零时产生的。
在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。
图2
描述一个由高通滤波器电路引起的零点。
存在第二种零点,即右半平面零点,它引起相位滞后而非超前。
伴随着增益递增,右半平面零点引起90度的相位滞后。
右半平面零点经常出现于BOOST和
BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。
右半平面零点的博得图见图3。
3.0 开关电源的理想增益相位图
设计任何控制系统首先必须清楚地定义出目标。
通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。
理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。
高的相位裕量能阻尼振荡并缩短瞬态调节时间。
宽的带宽允许电源系统快速响应线性和负载的突变。
高的增益保证良好的线性和负载调节率。
3.1 相位裕量
参看图4,相位裕量是在穿越频率处相位高于0度的数量。
这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。
其中包括DC负反馈所提供的180度初始相移。
在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。
根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。
然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。
如果相位裕量小于45度,则系统在边界稳定。
当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。
3.2 增益带宽
增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。
最大穿越频率的主要限制因素是电源的开关频率。
根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取
在开关电源中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被控制环路所传递。
因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。
3.3 增益
高的系统增益对于保证好的线性和负载调节率提供重要贡献。
它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。
4. 实际设计分析举例
用经典环路控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM电路,误差放大器补偿和反馈。
图5用方块图举例说明这四部分,图6举例说明一个开关电源电路图。
首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。
脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。
输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。
下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。
4.1 反馈网络H(s)
反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:
4.2 输出滤波部分G1(S)
在电流模式控制系统中,输出电流被调节以达到目标的输出电压。
输出滤波部分把脉动的输出电流转换为目标输出电压。
小信号分析得到:
输出电容的ESR和反馈网络的电阻(R1+R2=RFB)反映出输出滤波器传输函数的特性。
图7的电路分析给出ESR和RSENSE的影响。
传输函数G1(S)给出RFB的初始低频增益。
这个增益在fPOLE=1/2*π*(RFB+ESR)*C处开始滚降,并在f ZERO=1/2*π*ESR*C变为水平。
G1(S)的博得图见图8。
4.3 PWM电路部分G2(S)
光耦电路把误差放大网路产生的误差信号传输到主边。
AS3842 PWM电路把这个误差电压与通过主边功率变压器的电流进行比较。
然后功率场效应管的占空比被调制,以提供足够的电流到副边来维持想要的输出。
光耦的小信号传输函数是与光耦的电流传输比成比例的固定增益。
R5(原文误为R6,式5一并改为R5,译注)是与光耦的二极管串联的限流电阻,并且是AS3842误差放大器的输出阻抗(此句应该理解为R5是这个AS3842开关电源电路中,误差放大器部分的输出阻抗,译注)。
这一点在应用文档“Secondary error amplifier with the AS431”中有深入的阐述。
从误差放大器的输出到AS3842的COMP脚的传输函数是:
VCATHODE是AS431的阴极电压,也就是误差补偿放大器的输出电压。
CTR是光耦的电流传输比。
R5(原文为R6,译注)是与光耦的二极管串联的限流电阻。
RCOMP 是AS3842的COMP脚当其试图拉电流超过它的最大输出电流时的输出阻抗。
当误差信号传递到补偿脚以后,将其与电流检测信号比较。
图9表示一个电流检测比较器和开关部分的简单框图:
在闭环系统中,VCOMP与ISENSE维持同样的电平。
因此,IPRIMARY被VCOMP有效的调节:
从ISECONDARY以后(见图9),副边电流或者说输出电流与主边电流成比例,把等式(4)重新排列表示出副边电流与VCOMP之间的关系。
结合等式(3)和(6)得到PWM部分的传输函数:
传输函数G2(s)仅包含增益没有相移。
4.4 误差放大器补偿网络G3(S)
一旦输出滤波器和PWM电路部分的传输函数确定下来,然后可以设定误差放大器补偿网络以取得最优化的系统性能。
图10例举出一个在低频时提供高的频率滚降和高增益的补偿方案。
这个补偿方案有一些很好的特性适合于误差放大器的补偿,它有很高的直流增益和易控的滚降。
4.5 整个系统
因为这是一个线性系统,可以用叠加的方法得到整个系统的传输函数。
通过把整个环路各部分的增益和相位叠加起来,产生整个系统的博得图。
通过放置补偿网络的极点和零点使系统的性能最优化。
图11把各部分的博得图结合起来,负反馈系统的180度相移也加入进来了。
5. 测量结果
构造一个150W的电流模式正激转换器,经过修正的小信号环路特性显示出它在系统瞬态响应时所起的作用。
图13(原文误为图12,译注)给出它的增益-相位图。
与图11所展示的一样,获得了相同的博得图曲线。
此增益相位图显示这个系统有86.7度的相位裕量。
意味着稳定的系统有快速的瞬态响应。
图15(原文误为图13,译注)给出系统的瞬态响应。
为了展示相位裕量的作用,通过增加整个系统的增益和提高穿越频率,系统的相位裕量会减少。
穿越频率提高时系统的相位裕量在减少。
图12(原文误为图14,译注)给出更高的穿越频率和更少的相位裕量(65度)时的系统博得图。
其瞬态响应见图14(原文误为图15,译注),注意更少的相位裕量导致更大的振荡和更长的调节时间。
表1比较了这两个不同增益大小的系统之间线性和负载调节率的变化。
正如前面所述,高的环
路增益得到更紧密的线性和负载调节率。
还应该注意需在高的相位裕量和较低的环路增益之间取得平衡。
6. 测量方法
为了保证准确的结果,测试信号接入节点的阻抗必须大于它的输出阻抗。
在图6的测试电路中,误差放大器在副边,PWM电路在主边。
测试信号在光耦的输出和AS3842的VCOMP输入之前接入。
输入阻抗是从VCOMP脚看入时的阻抗,输出阻抗是光耦的输出阻抗。
在其他误差放大器和PWM电路没有隔离的应用中,测试信号可以在输出滤波电容之后接入,使其与误差放大器的输入相串联。