控制环路设计

合集下载

基于tl431的控制环路设计

基于tl431的控制环路设计

基于tl431的控制环路设计基于TL431的控制环路设计引言:控制环路是电子系统中常见的一种设计方法,用于实现对某个系统的控制和调节。

在电源电路设计中,基于TL431的控制环路常被应用于电压稳压器的设计中。

TL431是一种可调节精度较高的电压参考源,可以用于实现电源电压的精确调节和稳定。

本文将详细介绍基于TL431的控制环路的设计原理和步骤。

一、TL431的工作原理:TL431是一种三端可调节精密稳压器,其工作基于比较器的原理。

它内部包含一个精密的参考电压源,通过比较输入电压和参考电压的大小,控制输出端的电流来实现电压的精准调节。

当输入电压高于参考电压时,输出电流增大,使得输出电压下降;当输入电压低于参考电压时,输出电流减小,使得输出电压上升。

通过不断调节输出电流,TL431可以实现对电源电压的稳定调节。

二、基于TL431的控制环路设计步骤:1. 确定电源电压调节范围和稳定要求:根据具体应用需求,确定电源电压调节的范围和所需的稳定性。

这将为后续的控制环路设计提供基础。

2. 选择参考电压:根据电源电压调节范围和稳定要求,选择合适的参考电压。

一般情况下,参考电压取电源电压调节范围的中间值,以保证在整个范围内都能实现较好的稳定性。

3. 设计反馈网络:根据所选择的参考电压和稳定要求,设计反馈网络来确保输出电压稳定。

反馈网络一般由电阻和电容组成,可根据需要选择合适的数值。

4. 设计误差放大器:误差放大器用于放大输入电压和参考电压之间的差异,以控制TL431的输出电流。

误差放大器一般由一个比较器和一个放大器组成,可以使用运算放大器等器件实现。

5. 设计输出级:输出级一般由功率晶体管组成,用于提供足够的输出电流来驱动负载。

根据负载的电流需求,选择合适的功率晶体管,并设计合适的驱动电路。

6. 进行仿真和优化:在完成上述设计后,使用电子电路仿真软件对整个控制环路进行仿真和优化。

通过仿真可以验证电路的性能,优化参数以满足设计要求。

反激电源的控制环路设计

反激电源的控制环路设计

反激電源の控制環路設計一环路设计用到の一些基本知识。

电源中遇到の零极点。

注:上面の图为示意图,主要说明不同零极点の概念,不代表实际位置。

二电源控制环路常用の3种补偿方式。

(1)单极点补偿,适用于电流型控制和工作在DCM方式并且滤波电容のESR零点频率较低の电源。

其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿の部分の相位达到180度以前使其增益降到0dB. 也叫主极点补偿。

(2)双极点,单零点补偿,适用于功率部分只有一个极点の补偿。

如:所有电流型控制和非连续方式电压型控制。

(3)三极点,双零点补偿。

适用于输出带LC谐振の拓扑,如所有没有用电流型控制の电感电流连续方式拓扑。

三,环路稳定の标准。

只要在增益为1时(0dB)整个环路の相移小于360度,环路就是稳定の。

但如果相移接近360度,会产生两个问题:1)相移可能因为温度,负载及分布参数の变化而达到360度而产生震荡;2)接近360度,电源の阶跃响应(瞬时加减载)表现为强烈震荡,使输出达到稳定の时间加长,超调量增加。

如下图所示具体关系。

所以环路要留一定の相位裕量,如图Q=1时输出是表现最好の,所以相位裕量の最佳值为52度左右,工程上一般取45度以上。

如下图所示:这里要注意一点,就是补偿放大器工作在负反馈状态,本身就有180度相移,所以留给功率部分和补偿网络の只有180度。

幅值裕度不管用上面哪种补偿方式都是自动满足の,所以设计时一般不用特别考虑。

由于增益曲线为-20dB/decade时,此曲线引起の最大相移为90度,尚有90度裕量,所以一般最后合成の整个增益曲线应该为-20dB/decade 部分穿过0dB.在低于0dB带宽后,曲线最好为-40dB/decade,这样增益会迅速上升,低频部分增益很高,使电源输出の直流部分误差非常小,既电源有很好の负载和线路调整率。

四,如何设计控制环路?经常主电路是根据应用要求设计の,设计时一般不会提前考虑控制环路の设计。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。

开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。

误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。

PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。

反馈环节通常由输出电压或电流反馈回路组成。

反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。

反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。

在开关电源控制环路设计中,需要考虑诸多因素。

首先是前馈环节的设计。

前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。

其次是PWM控制器的设计。

PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。

最后是反馈环节的设计。

反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。

同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。

开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。

稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。

在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。

总之,开关电源控制环路设计是一个复杂而关键的任务。

它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。

高精度有源钳位反激变换器小信号建模及控制环路设计

高精度有源钳位反激变换器小信号建模及控制环路设计

高精度有源钳位反激变换器小信号建模及控制环路设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!高精度有源钳位反激变换器小信号建模及控制环路设计1. 引言在电力电子领域,高精度有源钳位反激变换器因其在交流电源和直流电源之间提供高效能转换的能力而受到广泛关注。

开关电源控制环路设计

开关电源控制环路设计

开关电源控制环路设计稳压电源工作原理我们需要什么样的电源?2、与环路相关的基本概念电源系统框图Bode图(由奈奎斯特图测定稳态裕量是很麻烦的)穿越频率和相位裕量,增益裕量■ 穿越频率fc(crossover frequency):增益曲线穿越0dB线的频率点■ 相位裕量phase margin):相位曲线在穿越频率处的相位和-180度之间的相位差■ 增益裕量(Gain margin):增益曲线在相位曲线达到-180度的频率处对应的增益环路稳定性判据根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

■ 准则1:在穿越频率处,总开环系统要有大于30度的相位裕量;■ 准则2:为防止-2增益斜率的电路相位快速变化,系统的开环增益曲线在穿越频率附近的增益斜率应为-1( -20db/10倍频程)■ 准则3: 增益裕量是开环系统的模的度量,该变化可能导致曲线刚好通过-1 点。

一般需要6db的增益裕量。

备注:应当注意,并不是绝对要求开环增益曲线在穿越频率附近的增益斜率为必须为-1,但是由于-1增益斜率对应的相位曲线相位延迟较小,且变化相对缓慢,因此它能够保证,当某些环节的相位变化被忽略时,相位曲线仍将具有足够的相位裕量,使系统保持稳定。

要满足上述的3个准则,我们需要知道开环系统所有环节的增益和相位情况,引入传递函数,零极点的概念可以很好的分析这个问题。

传递函数零点极点如果输入和反馈支路是由不同的电阻和电容构成的,则幅频和相频曲线将会有许多种形式。

把阻抗Z1和Z2用复变量s(s=jw)表示,经过一系列的数学运算,将会得到传递函数。

由传递函数就可以绘制增益/相位曲线。

通过代数运算,把G(s)表示为G(s)=N(s)/D(s),其分子和分母都是s的函数,然后将分子和分母进行因式分解,表示成多个因式的乘积,即G(s)=N(s)/D(s)=[(1+s/2*pi*fz1)(1+s/2*pi*fz2)(1+/2*pi*fz3)]/[(s/2*pi*f0)*(1+s/2*pi*fp1)*( 1+s/2*pi*fp2)* (1+s/2*pi*fp3)],分子中对应的频率fz为零点频率,而与分母中对应的频率称fp为极点频率。

开关电源光耦反馈控制环路的稳定性设计

开关电源光耦反馈控制环路的稳定性设计
收稿 日期 : 2 0 1 2 — 1 2 — 2 4
当传递 函数中的分母为零时会产生一个极点 , 它对
应 于 波 特 图上 增 益 以 2 0 d B / 1 0倍 频 程 的斜 率 开始
递减时产生的极点。在频域范 围内, 当传递函数的 分子等于零时会产生一个零点 , 它对应于在波特图
S wi t c h i n g P o we r S u p p l y Op t o c o u p l e r F e e d b a c k Co n t r o l L o o p S t a b i l i t y D e s i g n
S HA Z h a n — y o u , MA H o n g — t a o
沙 占友 , 马洪涛
( 河 北科技 大学 , 河北 石 家庄 0 5 0 0 5 4 )

要 :首先 介绍 对光 耦反馈 控 制环 路 的基 本要 求 ,然后 详 细 阐述 光耦反 馈控 制 环路 的稳 定性设
计, 包括 设计 方 法、 步骤 及典 型 示例 ; 最后给 出提 升相 位裕 量 的设计 实例 。 关键 词 : 光耦 ; 反馈控 制 环路 ; 稳 定性设 计 ; 波特 图; 相 位裕 量
电压调整率 、 负载调整率 、 瞬态响应等技术指标。
利 用 幅频 特 性 曲线 和相 频 特 性 曲线 即可 合 并 成 一 幅波 特 图( B o d e Di a g r a m, 亦 称 伯 德 图) , 其 增 益 和频 率 的坐 标 均采 用对 数 刻 度 , 相 位则 采用 显 性 刻 度 。开关 电源 的波 特 图示 例 如 图 1所示 , 可为 计 算

I Hale Waihona Puke 增 止 盆 270.

反激电源设计及应用之六控制环路设计

反激电源设计及应用之六控制环路设计

反激电源设计及应用之六控制环路设计
一、简介
反激式电源是一种恒功率,半桥及全桥输出的稳压、纹波电源,可以实现从几千至几万瓦输出的宽广应用,包括电机控制、无线电等高功率应用。

反激式电源的控制环路是实现功率控制的关键环路,它的设计是控制电源的重要组成部分,能够实现对输出功率的良好控制,从而保证整个电源能够有效、安全的工作。

1、电路示意图
可以看出,反激式电源控制环路的主要电路结构是以电流反馈电路和电压反馈电路为主要组成部分,其中电流反馈电路有助于实现电流负反馈的控制,而电压反馈电路可以有效地控制输出电压,以保证反激式电源的质量。

2、电流反馈控制
电流反馈控制是反激式电源的主要控制环路,它是电源功率控制的基础。

电流反馈控制主要包括电流保护、负反馈控制和电流分配。

电流保护是电源控制的一项基本功能,它可以有效地限制最大输入电流,以保证电源的安全工作。

负反馈控制可以实现对输出电流的可控控制,而电流分配则可以有效平衡输出电流,以保证反激式电源的平衡工作。

3、电压反馈控制
电压反馈控制是电源输出电压的关键控制回路,是保证电源的安全工作的重要手段。

反激电源的控制环路设计

反激电源的控制环路设计

反激电源的控制环路设计反激电源(flyback power supply)是一种常用的开关电源拓扑结构。

反激电源的控制环路设计关键是根据电源的输出要求和负载特性来选择合适的控制策略,并确定合适的控制器参数。

本文将从控制策略和参数选择两个方面来进行详细探讨。

一、控制策略选择1.常规PWM控制:反激电源最常用的控制策略是基于脉冲宽度调制(PWM)的控制。

PWM控制可以通过改变开关管的导通时间来调整输出电压的大小。

可以选择常规的固定频率PWM控制,也可以选择可变频率PWM控制。

固定频率PWM控制简单且稳定,但效率稍低;可变频率PWM控制可以根据负载需求自适应调整频率,提高了效率,但控制复杂度更高。

2. 反馈控制:反激电源还可以根据输出电压的变化来进行反馈控制。

一种常用的方法是采用电流反馈控制策略,通过感测输出电流进行控制。

可以选择基于电流模式控制(current mode control)或者谐振模式控制(resonant mode control)。

电流模式控制具有抗负载波动能力强、稳定性好的特点,但谐振模式控制在高频率应用中效果更好,可提高效率和功率密度。

3. 工作模式控制:反激电源可采用不同的工作模式,如连续导通模式(continuous conduction mode, CCM)和断续导通模式(discontinuous conduction mode, DCM)。

CCM模式适用于大功率和高转换比应用,具有较小的波动度和较好的调整能力;而DCM模式适用于低功率和低转换比应用,具有简单的控制方案和较高的效率。

4.变压器设计:反激电源中的变压器设计对于控制环路的稳定性和性能至关重要。

变压器的选择应综合考虑输出功率、输入电压范围、输出电压波动和负载特性等因素,合理设计变压器的绕组比例、电感大小和匝数等。

二、参数选择1.参考电压设置:参考电压是控制器的基准电压,用于与反馈信号进行比较。

参考电压的选择应根据输出电压的需求和对稳定性的要求来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源控制环设计资料来源:Switching power supply control loop design(ASTEC-Application Note 5)译者:smartway1. 绪论在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。

因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。

由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。

下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。

给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。

测试结果和测量方法也包含在其中。

2. 基本控制环概念2.1 传输函数和博得图系统的传输函数定义为输出除以输入。

它由增益和相位因素组成并可以在博得图上分别用图形表示。

整个系统的闭环增益是环路里各个部分增益的乘积。

在博得图中,增益用对数图表示。

因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。

系统的相位是整个环路相移之和。

2.2 极点数学上,在传输方程式中,当分母为零时会产生一个极点。

在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。

图1举例说明一个低通滤波器通常在系统中产生一个极点。

其传输函数和博得图也一并给出。

2.3 零点零点是频域范围内的传输函数当分子等于零时产生的。

在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。

图2描述一个由高通滤波器电路引起的零点。

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。

伴随着增益递增,右半平面零点引起90度的相位滞后。

右半平面零点经常出现于BOOST和BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。

右半平面零点的博得图见图3。

3.0 开关电源的理想增益相位图设计任何控制系统首先必须清楚地定义出目标。

通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。

理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。

高的相位裕量能阻尼振荡并缩短瞬态调节时间。

宽的带宽允许电源系统快速响应线性和负载的突变。

高的增益保证良好的线性和负载调节率。

3.1 相位裕量参看图4,相位裕量是在穿越频率处相位高于0度的数量。

这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。

其中包括DC负反馈所提供的180度初始相移。

在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。

根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。

然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。

如果相位裕量小于45度,则系统在边界稳定。

当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。

3.2 增益带宽增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。

最大穿越频率的主要限制因素是电源的开关频率。

根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取。

在开关电源中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被控制环路所传递。

因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。

3.3 增益高的系统增益对于保证好的线性和负载调节率提供重要贡献。

它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。

4. 实际设计分析举例用经典环路控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM 电路,误差放大器补偿和反馈。

图5用方块图举例说明这四部分,图6举例说明一个开关电源电路图。

首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。

脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。

输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。

下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。

4.1 反馈网络H(s)反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:4.2 输出滤波部分G1(S)在电流模式控制系统中,输出电流被调节以达到目标的输出电压。

输出滤波部分把脉动的输出电流转换为目标输出电压。

小信号分析得到:输出电容的ESR和反馈网络的电阻(R1+R2=R FB)反映出输出滤波器传输函数的特性。

图7的电路分析给出ESR和R SENSE的影响。

传输函数G1(S)给出R FB的初始低频增益。

这个增益在f POLE=1/2*π*(R FB+ESR)*C处开始滚降,并在f ZERO=1/2*π*ESR*C变为水平。

G1(S)的博得图见图8。

4.3 PWM电路部分G2(S)光耦电路把误差放大网路产生的误差信号传输到主边。

AS3842 PWM电路把这个误差电压与通过主边功率变压器的电流进行比较。

然后功率场效应管的占空比被调制,以提供足够的电流到副边来维持想要的输出。

光耦的小信号传输函数是与光耦的电流传输比成比例的固定增益。

R5(原文误为R6,式5一并改为R5,译注)是与光耦的二极管串联的限流电阻,并且是AS3842误差放大器的输出阻抗(此句应该理解为R5是这个AS3842开关电源电路中,误差放大器部分的输出阻抗,译注)。

这一点在应用文档“Secondary error amplifier with the AS431”中有深入的阐述。

从误差放大器的输出到AS3842的COMP脚的传输函数是:V CATHODE是AS431的阴极电压,也就是误差补偿放大器的输出电压。

CTR是光耦的电流传输比。

R5(原文为R6,译注)是与光耦的二极管串联的限流电阻。

R COMP是AS3842的COMP 脚当其试图拉电流超过它的最大输出电流时的输出阻抗。

当误差信号传递到补偿脚以后,将其与电流检测信号比较。

图9表示一个电流检测比较器和开关部分的简单框图:在闭环系统中,V COMP与I SENSE维持同样的电平。

因此,I PRIMARY被V COMP有效的调节:从I SECONDARY以后(见图9),副边电流或者说输出电流与主边电流成比例,把等式(4)重新排列表示出副边电流与V COMP之间的关系。

结合等式(3)和(6)得到PWM部分的传输函数:传输函数G2(s)仅包含增益没有相移。

4.4 误差放大器补偿网络G3(S)一旦输出滤波器和PWM电路部分的传输函数确定下来,然后可以设定误差放大器补偿网络以取得最优化的系统性能。

图10例举出一个在低频时提供高的频率滚降和高增益的补偿方案。

这个补偿方案有一些很好的特性适合于误差放大器的补偿,它有很高的直流增益和易控的滚降。

4.5 整个系统因为这是一个线性系统,可以用叠加的方法得到整个系统的传输函数。

通过把整个环路各部分的增益和相位叠加起来,产生整个系统的博得图。

通过放置补偿网络的极点和零点使系统的性能最优化。

图11把各部分的博得图结合起来,负反馈系统的180度相移也加入进来了。

5. 测量结果构造一个150W的电流模式正激转换器,经过修正的小信号环路特性显示出它在系统瞬态响应时所起的作用。

图13(原文误为图12,译注)给出它的增益-相位图。

与图11所展示的一样,获得了相同的博得图曲线。

此增益相位图显示这个系统有86.7度的相位裕量。

意味着稳定的系统有快速的瞬态响应。

图15(原文误为图13,译注)给出系统的瞬态响应。

为了展示相位裕量的作用,通过增加整个系统的增益和提高穿越频率,系统的相位裕量会减少。

穿越频率提高时系统的相位裕量在减少。

图12(原文误为图14,译注)给出更高的穿越频率和更少的相位裕量(65度)时的系统博得图。

其瞬态响应见图14(原文误为图15,译注),注意更少的相位裕量导致更大的振荡和更长的调节时间。

表1比较了这两个不同增益大小的系统之间线性和负载调节率的变化。

正如前面所述,高的环路增益得到更紧密的线性和负载调节率。

还应该注意需在高的相位裕量和较低的环路增益之间取得平衡。

6.测量方法为了保证准确的结果,测试信号接入节点的阻抗必须大于它的输出阻抗。

在图6的测试电路中,误差放大器在副边,PWM电路在主边。

测试信号在光耦的输出和AS3842的V COMP 输入之前接入。

输入阻抗是从V COMP脚看入时的阻抗,输出阻抗是光耦的输出阻抗。

在其他误差放大器和PWM电路没有隔离的应用中,测试信号可以在输出滤波电容之后接入,使其与误差放大器的输入相串联。

全文完2006-6-6。

相关文档
最新文档