2020届高三物理一轮复习专题分类练习题卷:圆周运动中常见模型

合集下载

新教材高考物理一轮复习课时练12圆周运动含解析新人教版

新教材高考物理一轮复习课时练12圆周运动含解析新人教版

圆周运动1.(圆周运动的动力学分析)(2020浙江高三月考)如图所示是游乐场中的一种过山车,轨道车套在轨道上且在轨道的外侧做圆周运动。

设图中轨道半径为R,则对轨道车中某一乘客而言()A.速度大于√gg才能通过最高点B.过最高点时车对人的作用力一定向上C.过最低点时车对人的作用力一定向上D.过最低点时的速度一定大于过最高点时的速度2.(圆周运动的运动学分析)如图,修正带是通过两个齿轮的相互咬合进行工作的。

其原理可简倍,则下列化为图中所示的模型。

A、B是转动的齿轮边缘的两点,若A轮半径是B轮半径的32说法中正确的是()A.A、B两点的线速度大小之比为3∶2B.A、B两点的角速度大小之比为2∶3C.A、B两点的周期之比为2∶3D.A、B两点的向心加速度之比为1∶13.(圆周运动的动力学分析)(2020江西南昌开学考试)摩天轮在一些城市是标志性设施,如图所示的摩天轮,某同学在周末去体验了一下,他乘坐该摩天轮随座舱在竖直面内做匀速圆周运动。

设座舱对该同学的作用力为F,该同学的重力为G,下列说法正确的是()A.该同学经过最低点时,F=GB.该同学经过最高点时,F=GC.该同学经过与转轴等高的位置时,F>GD.该同学经过任一位置时,F>G4.(圆周运动的动力学分析)如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()A.过山车在过最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座位不可能产生大小为mg的压力C.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg5.(圆周运动的动力学分析)(2020广东深圳月考)如图所示,小物块(可看作质点)以某一竖直向下的初速度从半球形碗的碗口左边缘向下滑,半球形碗一直静止在水平地面上,物块下滑到最低点的过程中速率不变,则关于下滑过程的说法正确的是()A.物块下滑过程中处于平衡状态B.半球碗对物块的摩擦力逐渐变小C.地面对半球碗的摩擦力方向向左D.半球碗对地面的压力保持不变6.(竖直面内的圆周运动)质量为m的小球在竖直平面内的光滑圆管轨道内运动,小球的直径略小于圆管的直径,如图所示。

专题09 圆周运动模型(4)-高考物理模型法之过程模型法(解析版)2020年高考物理

专题09 圆周运动模型(4)-高考物理模型法之过程模型法(解析版)2020年高考物理

专题09 圆周运动模型(4)模型演练11.“六十甲子”是古人发明用来计时的方法,也是一种表示自然界五行之气循环流转的直观表示法。

某学校物理兴趣小组用空心透明粗糙塑料管制作了如图所示的竖直“60”造型。

两个“O ”字型圆的半径均为R 。

让一质量为m 、直径略小于管径的小球从入口A 处无初速度放入,B 、C 、D 是轨道上的三点,E 为出口,其高度低于入口A 。

已知BC 是“O ”字型的一条竖直方向的直径,D 点是左侧“O ”字型上的一点,与圆心等高,A 比C 高R ,当地的重力加速度为g ,不计一切阻力,则小球在整个运动过程中A.如果是光滑小球,在D 点处,塑料管的左侧对小球的压力为4mgB.如果是光滑小球,小球一定能从E 点射出C.如果是不光滑小球,且能到达C 点,此处塑料管对小球的作用力小于mgD.如果是不光滑小球,小球不可能停在B 点 【答案】AB支持力恰好等于小球的重力,C 错误;若小球运动过程中机械能损失较快,小球不能上升到C 点时,则小球在B 点两侧经过多次往复运动,将相对于B 的机械能全部克服摩擦力做功消耗完时,将停于B 点,D 错误。

12.某兴趣小组设计了如图所示的玩具轨道,其中“2008”,四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切。

弹射装置将一个小物体(可视为质点)以v=5m/s 的水平初速度由a 点弹出,从b 点进入轨道,依次经过“8002 ”后从p 点水平抛出。

小物体与地面ab 段间的动摩擦因数μ=0.3 ,不计其它机械能损失。

已知ab 段长L=1 . 5m ,数字“0”的半径R=0.2m ,小物体质量m=0 .0lkg ,g=10m/s 2 。

求: ( l )小物体从p 点抛出后的水平射程。

( 2 )小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向。

练11图【答案】(1)0.8m (2)0.3N ,方向竖直向下【解析】( l )设小物体运动到p 点时的速度大小为v ,对小物体由 a 运动到p 过程应用动能定理得-μmgL -2Rmg=12mv 2-12mv 02 ①小物体自p 点做平抛运动,设运动时间为:t ,水平射程为:s 则 2R=12gt 2 ②s=vt ③ 联立①②③式,代人数据解得s=0.8m ④F=0.3N ⑥ 方向竖直向下 (III)半球面模型如图5所示,小球从光滑半球面顶端E 开始运动.○a 小球只在重力和球面弹力作用下运动时,不可能沿球面从顶端运动底端. ○b 小球从顶端由静止开始下滑,离开球面时的位置H 满足32cos =θ. ○c 小球在顶端E 时的速度V 越大,离球面时的位置H 越靠近顶端,θ角越小即小球能沿球下滑的距离越短. ○d 当小球在球面顶端的速度gR v E ≥时,小球直接从E 点离开球面做平抛运动.例8.如图所示,从光滑的1/4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面为水平,若要使小物块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,图5半球的半径为R 2,则R 1和R 2应满足的关系是( )21212121A. B.2C. D. 2R R R R RR R R ≤≤≥≥ 【答案】D【解析】为使小物块不沿半球面下滑,则它在球顶端的速度v ≥2112mgR mv =,联立解得D 为正确选项. 模型演练13.半径为R 的光滑半圆球固定在水平面上如图1所示,顶部有一个物体A ,今给A 一个水平初速度v 0=gR ,则A 将 ( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .按半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动 【答案】D【解析】由于A的初速度gR v =0,物体在A点时与半球面之间的压力满足Rv mN mg 20=-,即020=-=Rv m mg N ,故物体在A点时立即离开半球面,物体离开半球面后只在重力作用下做平抛运动,D正确.14.皮带传送机传送矿石的速度v 大小恒定,在轮缘A 处矿石和皮带恰好分离,如图所示,则通过A 点的半径OA 和竖直方向OB 的夹角θ为 ()练13图例8题图A.Rg 2sinv arc B.Rg 2cotv arcC.Rgv 2arctanD.Rgv 2arccos【答案】D(iii)天体的圆周运动 ①天体在圆形轨道上的运行 (I)向心力中心天体对运行天体的万有引力全部提供向心力ma mv Tmr mr r v m r GMm =====ωπω222224 (II)各物理量与轨道半径的关系 ○a 线速度:rr GM v 1∝= ○b 角速度:331r r GM ∝=ω ○c 周期:33r GMr T ∝= ○d 向心加速度:221r r GM a ∝= ○e 动能: 练14图r m r GMm mv E k ∝==2212 ○f 势能: 与高度有关,质量相同情况下高度越高势能越大. ○g 总能量: 与高度有关,质量相同情况下高度越高总能量越大.注:天体的运行速度是相对于中心天体中心的速度,而非相对中心天体表面的速度. (III)运动时间的计算vRT t θπθ==2 式中θ是运行天体在圆形轨道上从一位置到另一位置转过的圆心角度.(IV)地球万有引力作用下的三种典型的圆周运动的对比分析重要参数(地球自转参数=T=24h24×3600s, 地球半径R =6.4×103km, g=9.8m/s 2)例9.为了探测X 星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r 1圆轨道上运动,周期为T 1,总质量为m 1。

部编版2020年高考物理一轮复习 专题4.14 竖直面内或斜面内的圆周运动的杆模型千题精练

部编版2020年高考物理一轮复习 专题4.14 竖直面内或斜面内的圆周运动的杆模型千题精练

专题4.14 竖直面内或斜面内的圆周运动的杆模型一.选择题1. (2018北京密云质检)如图所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R ,下列说法正确的是( )A .甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B .乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C .丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 【参考答案】.BC【名师解析】甲图中,由mg=m 2v R 可知,当轨道车以一定的速度v=gR 通过轨道最高点时,座椅给人向上的力为零,选项A 错误;乙图中,由F -mg=m 2v R 可知,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力F = mg+m 2v R ,选项B 正确;丙图中,由F -mg=m 2v R可知,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力F = mg+m 2v R,选项C 正确;由于过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,丁图中,轨道车过最高点的最小速度可以为零,选项D 错误。

2. (2017·辽宁铁岭联考)飞机由俯冲到拉起时,飞行员处于超重状态,此时座椅对飞行员的支持力大于飞行员所受的重力,这种现象叫过荷。

过荷过重会造成飞行员四肢沉重,大脑缺血,暂时失明,甚至昏厥。

受过专门训练的空军飞行员最多可承受9倍重力的影响。

g取10 m/s2,则当飞机在竖直平面上沿圆弧轨道俯冲、拉起的速度为100 m/s时,圆弧轨道的最小半径为( )图10A.100 mB.111 mC.125 mD.250 m【参考答案】C3.(2017·山东青岛期末) (多选)如图11所示,内壁光滑的大圆管,用一细轻杆固定在竖直平面内;在管内有一小球(可视为质点)做圆周运动。

专题08 圆周运动模型(3)-高考物理模型法之过程模型法(原卷版)2020年高考物理

专题08 圆周运动模型(3)-高考物理模型法之过程模型法(原卷版)2020年高考物理

专题08 力学中圆周运动模型(3)模型界定本模型只局限于力学范围内的圆周运动,(一)讨论圆周运动中的传动及水平面内的匀速圆周运动,(二)讨论竖直平面内的圆周运动及天体的圆周运动问题.本模型不涉及电磁学范围内的圆周运动,电磁学范围内的圆周运动另有等效重力场、动态圆模型等进行专题研究.模型破解3.圆周运动中的动力学问题(ii)竖直平面内的圆周运动①圆周运动中的速度 在向心加速度的表达式Rv a 2中,v 是物体相对圆心的瞬时速度,在圆心静止时才等于物体的对地速度 ②变速圆周运动中的向心力在变速圆周运动中,向心力不是物体所受合外力,是物体在半径方向上的合力.③竖直平面内圆周运动的类型竖直平面内的圆周运动分为匀速圆周运动和变速圆周运动两种.常见的竖直平面内的圆周运动是物体在轨道弹力(或绳、杆的弹力)与重力共同作用下运动,多数情况下弹力(特别是绳的拉力与轨道的弹力)方向与运动方向垂直对物体不做功,而重力对物体做功使物体的动能不断变化,因而物体做变速圆周运动.若物体运动过程中,还受其他力与重力平衡,则物体做匀速圆周运动.④变速圆周运动中的正交分解 应用牛顿运动定律解答圆周运动问题时,常采用正交分解法.以物体所在的位置为坐标原点,建立相互垂直的两个坐标轴:一个沿半径(法线)方向,此方向上的合力即向心力改变物体速度的方向;另一个沿切线方向,此方向的合力改变物体速度的大小.⑤处理竖直平面内圆周运动的方法在物体从一点运动至另点的过程中速度之间的联系由能量观点(动能定理、机械能守恒定律)列方程,在物体经过圆周上某一点时速度与外力之间的联系由牛顿运动定律列方程,两类方程相结合是解决此类问题的有效方法.⑥竖直平面内变速圆周运动的最高点与最低点例1.如图所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则A.该盒子做匀速圆周运动的周期一定小于2 B.该盒子做匀速圆周运动的周期一定等于2 C.盒子在最低点时盒子与小球之间的作用力大小可能小于2mgD.盒子在最低点时盒子与小球之间的作用力大小可能小于2mg例2.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。

2024年高考物理一轮复习:圆周运动常考模型(解析版)

2024年高考物理一轮复习:圆周运动常考模型(解析版)

1圆周运动常考模型1.目录题型一圆周运动中的运动学分析题型二水平面内的圆周运动类型1 圆锥摆模型类型2 生活中的圆周运动题型三圆周运动中的临界极值问题类型1水平面内圆周运动的临界问题类型2 竖直面内的圆周运动的临界问题类型3 斜面上圆周运动的临界问题题型四圆周运动与图像结合问题类型1 水平面内圆周运动与图像结合问题类型2 竖直面内圆周运动与图像结合题型一:圆周运动中的运动学分析【解题指导】1.对公式v =ωr 的理解当ω一定时,v 与r 成正比.当v 一定时,ω与r 成反比.2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比.3.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比.1(2023·浙江·模拟预测)在东北严寒的冬天,人们经常玩一项“泼水成冰”的游戏,具体操作是把一杯开水沿弧线均匀快速地泼向空中。

图甲所示是某人玩“泼水成冰”游戏的瞬间,其示意图如图乙所示。

泼水过程中杯子的运动可看成匀速圆周运动,人的手臂伸直,在0.5s 内带动杯子旋转了210°,人的臂长约为0.6m 。

下列说法正确的是()2A.泼水时杯子的旋转方向为顺时针方向B.P 位置飞出的小水珠初速度沿1方向C.杯子在旋转时的角速度大小为7π6rad/sD.杯子在旋转时的线速度大小约为7π5m/s【答案】D【详解】AB .由图乙中做离心运动的轨迹可知,杯子的旋转方向为逆时针方向,P 位置飞出的小水珠初速度沿2方向,故AB 错误。

C .杯子旋转的角速度为ω=ΔθΔt=76π0.5rad/s =7π3rad/s 故C 错误。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

高考物理2020届一轮复习习题:第4章_第3讲_圆周运动及向心力公式的应用_word版含参考答案(已纠错)

高考物理2020届一轮复习习题:第4章_第3讲_圆周运动及向心力公式的应用_word版含参考答案(已纠错)

第3讲圆周运动及向心力公式的应用A组基础题组1.(2013海南单科,8,5分)(多选)关于物体所受合外力的方向,下列说法正确的是( )A.物体做速率逐渐增加的直线运动时,其所受合外力的方向一定与速度方向相同B.物体做变速率曲线运动时,其所受合外力的方向一定改变C.物体做变速率圆周运动时,其所受合外力的方向一定指向圆心D.物体做匀速率曲线运动时,其所受合外力的方向总是与速度方向垂直2.(2016宁夏银川二中三练)(多选)如图所示,两物块A、B套在水平、粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴OO'转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到OO'轴的距离为物块A到OO'轴距离的两倍,现让该装置从静止开始转动,使转速逐渐增大,从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A、B物块受到的静摩擦力都是一直增大B.A受到的静摩擦力是先增大后减小,B受到的静摩擦力一直增大C.A受到的静摩擦力是先指向圆心后背离圆心,B受到的静摩擦力一直增大后保持不变D.A受到的静摩擦力是先增大后减小又增大,B受到的静摩擦力一直增大后保持不变3.(2016安徽淮北三校联考)如图所示,细绳长为L,挂一个质量为m的小球,球离地的高度h=2L,当绳受到大小为2mg的拉力时就会断裂,绳的上端系一质量不计的环,环套在光滑水平杆上,现让环与球一起以速度v=向右运动,在A处环被挡住而立即停止,A离墙的水平距离也为L,球在以后的运动过程中,球第一次碰撞点离墙角B点的距离ΔH是(不计空气阻力)( )A.ΔH=LB.ΔH=LC.ΔH=LD.ΔH=L4.(2015福建理综,17,6分)如图,在竖直平面内,滑道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上。

若小滑块第一次由A 滑到C,所用的时间为t 1,第二次由C 滑到A,所用的时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A.t 1<t 2B.t 1=t 2C.t 1>t 2D.无法比较t 1、t 2的大小5.[2015河北名校联盟质量监测(二),19](多选)如图,三个质点a 、b 、c 质量分别为m 1、m 2、M(M ≫m 1,M ≫m 2)。

专题07 圆周运动模型(2)-高考物理模型法之过程模型法(原卷版)2020年高考物理

专题07 圆周运动模型(2)-高考物理模型法之过程模型法(原卷版)2020年高考物理

专题07 力学中圆周运动模型(2)三模型演练6.如图所示,在验证向心力公式的实验中,质量相同的钢球①放在A 盘的边缘,钢球②放在B 盘的边缘,A 、B 两盘的半径之比为2∶1.a 、b 分别是与A 盘、B 盘同轴的轮.a 轮、b 轮半径之比为1∶2,当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力之比为( )A .2∶1B .4∶1C .1∶4D .8∶17. 如图所示,细绳一端系着质量为M=0.6kg 的物体,静止于水平面,另一端通过光滑小孔吊着质量为m=0.3kg 的物体,M 的中点与圆孔距离为0.2m ,并知M 与水平面的最大静摩擦力为2N 。

现使此平面绕中心轴转动,问角速度ω在什么范围m 会处于静止状态?(g m s =102/)8..如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。

A 的质量为m k g A =2,离轴心r c m 120=,B 的质量为m k g B =1,离轴心r c m 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求(1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力?练8图练7图练6图(2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102/)9.一光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,其顶角为60 ,如图所示,一条长为L 的轻绳,一端固定在锥顶O 点,另一端拴一质量为m 的小球,小球以速率v 绕圆锥的轴线做水平面内的匀速圆周运动,求:(1)当v gL =16时,绳上的拉力多大? (2)当v gL =32时,绳上的拉力多大?10.如图所示,两根长度不同的细线分别系有两个小球,细线的上端都系于O 点。

设法让两个小球在同一水平面上做匀速圆周运动。

已知细线长之比为L 1∶L 2=3∶1,L 1跟竖直方向成60º角。

下列说法中正确的有 ( )A .两小球做匀速圆周运动的周期相等B .小球m 1的周期大C .L 2跟竖直方向成30º角练9图D .L 2跟竖直方向成45º角11..质量为100 t 的火车在轨道上行驶,火车内外轨连线与水平面的夹角为θ=37°,如图所示,弯道半径R=30 m.问:(g 取10 m/s 2)(1)当火车的速度为v 1=10 m/s 时,轨道受到的侧压力为多大?方向如何?(2)当火车的速度为v 2=20 m/s 时,轨道受到的侧压力为多大?方向如何?12.将一个半径为R 的内壁光滑的半球形碗固定在水平地面上,若使质量为m 的小球贴着碗的内壁在水平内以角速度ω做匀速圆周运动,如图所示,求圆周平面距碗底的高度,若角速度ω增大,则高度、回旋半径、向心力如何变化?13.如图所示,OO ′为竖直轴,MN 为固定在OO ′上的水平光滑杆,有两个质量相同的金属球A 、B 套在水平杆上,AC 和BC 为抗拉能力相同的两根细线,C 端固定在转轴OO ′上.当绳拉直时,A 、B 两球转动半径之比恒为2∶1,当转轴的角速度逐渐增大时( )A .AC 先断B .BC 先断C .两线同时断D .不能确定哪根线先断14.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,则F T 随ω2变化的图象是下图中的()练11图例12题图练13图15.如图所示,把一个质量m =1 kg 的物体通过两根等长的细绳与竖直杆上A 、B 两个固定点相连接,绳a 、b 长都是1 m ,杆AB 长度是1.6 m ,直杆和球旋转的角速度等于多少时,b 绳上才有张力?16.如图所示,V 形细杆AOB 能绕其对称轴OO’转动,OO’沿竖直方向,V 形杆的两臂与转轴间的夹角均为α=45°.两质量均为m=0.1kg 的小环,分别套在V 形杆的两臂上,并用长为L=1.2m 、能承受最大拉力F max =4.5N 的轻质细线连结,环与臂间的最大静摩擦力等于两者间弹力的0.2倍.当杆以角速度ω转动时,细线始终处于水平状态,取g=10m/s 2.(1)求杆转动角速度ω的最小值;(2)将杆的角速度从(1)问中求得的最小值开始缓慢增大,直到细线断裂,写出此过程中细线拉力随角速度变化的函数关系式;(3)求第(2)问过程中杆对每个环所做的功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中常见模型题型一水平面内圆盘模型的临界问题【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动题型二 竖直面内圆周运动的临界极值问题球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L 的细绳一端拴一质量为m 小球,另一端固定在O 点,绳的最大承受能力为11mg ,在O 点正下方O ′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面完整的圆周运动,则钉的位置到O 点的距离为 ( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L 【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg 【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为ac b+a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【变式2】如图所示,半径为R的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P点的水平距离为()A.2RB.3RC.5RD.6R球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R的圆周运动,如图所示,则下列说法正确的是()A.小球过最高点时,杆所受到的弹力可以等于零B.小球过最高点的最小速度是gRC.小球过最高点时,杆对球的作用力一定随速度增大而增大D.小球过最高点时,杆对球的作用力一定随速度增大而减小【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过0.3 s后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R=1 m,小球可看做质点且其质量为m=1 kg,g取10 m/s2.则()A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB .小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 题型三 斜面上圆周运动的临界问题【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω 转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是 ( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL 题型四 圆周运动的动力学问题【例5】如图所示,一根细线下端拴一个金属小球A ,细线的上端固定在金属块B 上,B 放在带小孔的水平桌面上,小球A 在某一水平面内做匀速圆周运动.现使小球A 改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B 在桌面上始终保持静止,则后一种情况与原来相比较,下面的判断中正确的是( )A .金属块B 受到桌面的静摩擦力变大 B .金属块B 受到桌面的支持力减小C .细线的张力变大D .小球A 运动的角速度减小【变式】两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个摆球在运动过程中,相对位置关系示意图正确的是( )车辆转弯模型1、受力分析:如图所示火车受到的支持力和重力的合力水平指向圆心,成为使火车拐弯的向心力。

2、动力学方程:根据牛顿第二定律得rvmmg2tan=θ其中r是转弯处轨道的半径,v是使内外轨均不受侧向力的最佳速度。

3、分析结论:解上述方程可知θtangrv=可见,最佳情况是由v、r、θ共同决定的。

当火车实际速度为v时,可有三种可能,当vv=时,内外轨均不受侧向挤压的力;当vv>时,外轨受到侧向挤压的力(这时向心力增大,外轨提供一部分力);当vv<时,内轨受到侧向挤压的力(这时向心力减少,内轨抵消一部分力)。

还有一些实例和这一模型相同,如自行车转弯,高速公路上汽车转弯等等【例6】如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车()A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2 D.通过小圆弧弯道的时间为5.58 s【变式】(2019·甘肃省兰州一中模拟)在修筑铁路时,弯道处的外轨会略高于内轨.如图所示,当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度大小为v,重力加速度为g,两轨所在面的倾角为θ,则()A.该弯道的半径r=v2g tan θB.当火车质量改变时,规定的行驶速度大小不变C.当火车速率大于v时,内轨将受到轮缘的挤压D.当火车速率大于v时,外轨将受到轮缘的挤压参考答案题型一水平面内圆盘模型的临界问题【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【答案】ABD【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【答案】ABC【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为1∶3,故A正确;滑块相对盘开始滑动前,根据加速度公式:a=Rω2,又R A∶R B=2∶1,ωA:ωB=1∶3,所以A、B的向心加速度之比为a A∶a B=2∶9,故B正确;滑块的最大静摩擦力分别为F f A =μm A g,F f B=μm B g,则最大静摩擦力之比为F f A∶F f B=m A∶m B;转动中所受的静摩擦力之比为F f A′∶F f B′=m A a A∶m B a B =m A∶4.5m B,由上可得滑块B先达到最大静摩擦力而先开始滑动,故C正确,D错误.【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动【答案】AC【解析】两物体A和B随着圆盘转动时,合外力提供向心力,则F=mω2r,B的半径比A的半径大,所以B所需向心力大,细绳拉力相等,所以当圆盘转速加快到两物体刚好还未发生滑动时,B的静摩擦力方向指向圆心,A的最大静摩擦力方向指向圆外,有相对圆盘沿半径指向圆内的运动趋势,根据牛顿第二定律得:F T-μmg=mω2r,F T+μmg=mω2·2r,解得:F T=3μmg,ω=2μgr,故A、C正确,B错误.烧断细绳瞬间A物体所需的向心力为2μmg,此时烧断细绳,A的最大静摩擦力不足以提供向心力,则A做离心运动,故D错误.题型二竖直面内圆周运动的临界极值问题球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L的细绳一端拴一质量为m小球,另一端固定在O点,绳的最大承受能力为11mg,在O点正下方O′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O ′为轴完成竖直面完整的圆周运动,则钉的位置到O 点的距离为 ( )A .最小为25LB .最小为35LC .最大为45LD .最大为910L 【答案】 BC【解析】当小球恰好到达圆周运动的最高点时小球的转动半径为r ,重力提供向心力,则有mg =m v 2r,根据机械能守恒定律可知,mg (L -2r )=12mv 2,联立解得:r =25L ,故钉的位置到O 点的距离为L -25L =35L ;当小球转动时,恰好达到绳子的最大拉力时,即F =11mg ,此时一定处在最低点,设半径为R ,则有:11mg -mg =m v 20R,根据机械能守恒定律可知,mgL =12mv 20,联立解得:R =15L ,故此时离最高点距离为45L ,则可知,距离最小为35L ,距离最大为45L ,故B 、C 正确,A 、D 错误.【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg 【答案】A【解析】小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为ac b+a D .若v 2=b ,小球运动到最低点时绳的拉力为6a 【答案】 ABD【解析】 在最高点,F T +mg =m v 2L ,解得:F T =m v 2L -mg ,可知纵截距的绝对值为a =mg ,g =a m,图线的斜率k =a b =m L ,解得绳子的长度L =mb a ,故A 、B 正确;当v 2=c 时,轻质绳的拉力大小为:F T =m c L -mg =ac b-a ,故C 错误;当v 2=b 时拉力为零,到最低点时根据动能定理得:2mgL =12mv 22-12mv 2,根据牛顿第二定律:F T ′-mg =m v 22L,联立以上可得拉力为:F T ′=6mg =6a ,故D 正确.【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R 【答案】D【解析】小球从P 点飞出后,做平抛运动,设做平抛运动的时间为t ,则2R =12gt 2,解得t =2R g ,在最高点P 时,有mg +12mg =m v 2R,解得v =3gR 2,因此小球落地点到P 点的水平距离为x =vt =6R ,选项D 正确. 球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小【答案】A【解析】轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R,随v 增大,F 增大,故C 、D 均错误.【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小【答案】 A【解析】 当小球到达最高点弹力为零时,有mg =m v 2R,解得v =gR ,即当速度v =gR 时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R,轻杆的作用力随着速度增大而增大,所以C 、D 错误.【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )B .小球在斜面上的相碰点C 与B 点的水平距离是0.9 mB .小球在斜面上的相碰点C 与B 点的水平距离是1.9 mC .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N【答案】AC.【解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2B R,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误. 题型三 斜面上圆周运动的临界问题【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s【答案】C【解析】 当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2rω=g (μcos 30°-sin 30°)r =10×(32×32-12)2.5 rad/s =1.0 rad/s ,故选项C 正确. 【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL 【答案】C【解析】在A 点,对小球,临界情况是绳子的拉力为零,小球靠重力沿斜面方向的分力提供向心力,根据牛顿第二定律得:mg sin θ=m v 2A L ,解得A 点的最小速度为:v A =12gL ,对AB 段过程研究,根据机械能守恒得:12mv 2A +mg ·2L sin30°=12mv2B,解得B点的最小速度为:v B=5gL2=1210gL,故C正确,A、B、D错误.题型四圆周运动的动力学问题【例5】如图所示,一根细线下端拴一个金属小球A,细线的上端固定在金属块B上,B放在带小孔的水平桌面上,小球A在某一水平面内做匀速圆周运动.现使小球A改到一个更低一些的水平面上做匀速圆周运动(图上未画出),金属块B在桌面上始终保持静止,则后一种情况与原来相比较,下面的判断中正确的是()A.金属块B受到桌面的静摩擦力变大B.金属块B受到桌面的支持力减小C.细线的张力变大D.小球A运动的角速度减小【答案】D【解析】.设A、B质量分别为m、M,A做匀速圆周运动的向心加速度为a,细线与竖直方向的夹角为θ,对B研究,B受到的静摩擦力f=T sin θ,对A,有:T sin θ=ma,T cos θ=mg,解得a=g tan θ,θ变小,a减小,则静摩擦力大小变小,故A错误;以整体为研究对象知,B受到桌面的支持力大小不变,应等于(M+m)g,故B错误;细线的拉力T=mgcos θ,θ变小,T变小,故C错误;设细线长为l,则a=g tan θ=ω2l sin θ,ω=gl cos θ,θ变小,ω变小,故D正确.【变式】两根长度不同的细线下面分别悬挂两个小球,细线上端固定在同一点,若两个小球以相同的角速度,绕共同的竖直轴在水平面内做匀速圆周运动,则两个摆球在运动过程中,相对位置关系示意图正确的是()【答案】B【解析】小球做匀速圆周运动,对其受力分析如图所示,则有mg tan θ=mω2L sin θ,整理得:L cos θ=gω2,则两球处于同一高度,故B正确.车辆转弯模型2、受力分析:如图所示火车受到的支持力和重力的合力水平指向圆心,成为使火车拐弯的向心力。

相关文档
最新文档