特高压交直流输电的优缺点对比
浅谈高压直流输电与交流输电各自优缺点

浅谈高压直流输电与交流输电各自优缺点追溯历史,最初采用的输电方式是直流输电,于1874年出现于俄国。
当时输电电压仅100V。
随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V。
但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难。
由于不能直接给直流电升压,输电距离受到极大的限制,不能满足输送容量增长和输电距离增加的要求。
19世纪80年代末,人类发明了三相交流发电机和变压器。
1891年,世界上第一个三相交流发电站在德国竣工。
此后,交流输电普遍代替了直流输电。
随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流输电遇到了一系列技术困难。
大功率换流器(整流和逆变)的研究成功,为高压直流输电突破了技术上的障碍,直流输电重新受到人们的重视。
1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电装置;1954年,建起了世界上第一条远距离高压直流输电工程。
之后,直流输电在世界上得到了较快发展,现在直流输电工程的电压等级大多为±275~±500kV,投入商业运营的直流工程最高电压等级为±600kV(巴西伊泰普工程),我国计划在西南水电送出的直流工程中采用±800kV电压等级。
在现代直流输电系统中,只有输电环节是直流电,发电系统和用电系统仍然是交流电。
在输电线路的送端,交流系统的交流电经换流站内的换流变压器送到整流器,将高压交流电变为高压直流电后送入直流输电线路。
直流电通过输电线路送到受端换流站内的逆变器,将高压直流电又变为高压交流电,再经过换流变压器将电能输送到交流系统。
在直流输电系统中,通过控制换流器,可以使其工作于整流或逆变状态。
我国目前建成的高压直流输电工程均为两端直流输电系统。
两端直流输电系统主要由整流站、逆变站和输电线路三部分组成。
两端直流输电系统可以采用双极和单极两种运行方式。
在双极运行方式中,利用正负两极导线和两端换流站的正负极相连,构成直流侧的闭环回路。
特高压交直流区别讲解

2. 直流输电技术的不足
(1)换流装置较昂贵。这是限制直流输电应 用的最主要原因。在输送相同容量时,直流 线路单位长度的造价比交流低;而直流输电两 端换流设备造价比交流变电站贵很多。这就 引起了所谓的“等价距离”问题。 (2)消耗无功功率多。一般每端换流站消耗 无功功率约为输送功率的40%~60%,需要无 功补偿。
tg ε,γE ,,, ,, ,, bEb
3.特高压交流输电的主要优点
(1)提高传输容量和传输距离。随着电网区 ቤተ መጻሕፍቲ ባይዱ的扩大,电能的传输容量和传输距离也不 断增大。所需电网电压等级越高,紧凑型输 电的效果越好。 (2)提高电能传输的经济性.输电电压越高输 送单位容量的价格越低。 (3)节省线路走廊和变电站占地面积。一般 来说,一回1150 kV输电线路可代替6回500 kV 线路。采用特高压输电提高了走廊利用率。
tg ε,γE ,,, ,, ,, bEb
(6)不能用变压器来改变电压等级。直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。与直流输电比较,现有的交流500kV输电(
2. 直流输电技术的不足
(5)从运行维护来说,直流线路积污速度快、 污闪电压低,污秽问题较交流线路更为严重。与 西方发达国家相比,目前我国大气环境相对较差 ,这使直流线路的清扫及防污闪更为困难。设备 故障及污秽严重等原因使直流线路的污闪率明显 高于交流线路。 (6)不能用变压器来改变电压等级。直流输电 主要用于长距离大容量输电、交流系统之间异步 互联和海底电缆送电等。与直流输电比较,现有 的交流500kV输电(经济输送容量为1 000 kW,输 送距离为300~500 km)已不能满足需要,只有提 高电压等级,采用特高压输电方式,才能获得较 高的经济效益。
特高压交流与特高压直流输电技术特点对比分析

特高压交流与特高压直流输电技术特点对比分析1 特高压交流输电的技术特点(1)特高压交流输电中间可以落点,具有电网功能,可以根据电源分布、负荷布点、输送电力、电力交换实际需要构成国家特高压骨干网架。
特高压交流电网明显的优点是:输电能力大(每提高一个电压等级,在满足短路电流不超标的前提下,电网输送功率的分区控制规模可以提高两倍以上,见表附-1)、覆盖范围广(可以覆盖全国范围)、网损小(铜耗与电压平方成反比;为了降低地面场强、减少电晕损耗,特高压交流线路一般采用八分裂导线,导线电流密度一般选择0.5~0.6A/2mm 左右)、节省架线走廊(如果都按照自然功率输送同等容量的电力1000万千瓦,采用500kV 交流输电,需要8~10回;采用1000kV 交流输电,仅需要2回,可以明显减少输电走廊,如果采用同塔双回,将进一步节省输电走廊,这对寸土寸金的长三角地区是很有意义的)。
特高压交流电网适合电力市场运营体制。
适应随着时间推移“西电东送、南北互补”电力流的变化。
附表-1短路电流控制水平及相应的系统分区控制规模(2)随着电网发展装机容量增加,等值转动惯量加大,电网同步功率系数逐步加强(设功角特性曲线的最大值为M P ,运行点功角为0δ,则同步功率系数为功角特性曲线上运行点功率的微分,0δCOS P P M S =,0δ越小,S P 越大,同步能力越强),交流同步电网的同步能力得到较充分利用。
同步电网结构越坚强,送受端电网的概念越模糊,如欧洲电网那样普遍密集型电网结构,功角稳定问题不突出,电压稳定问题上升为主要稳定问题。
法国联合电网1978年“12.19”大面积停电事故剖析:这次事故损失负荷29GW,约占当时全法国负荷75%,停电8.5小时,少送电1亿kWh。
造成这次大面积停电事故的主要原因是:低温造成系统负荷大量增加,系统无功备用容量不足,导致系统电压崩溃。
当时法国气温比往年同期低5~7℃,负荷水平比预计多1.2~1.3GW。
浅谈高压直流输电的优缺点

浅谈高压直流输电的优缺点摘要:综述了输电方式的变化及直流输电系统的构成,对其优缺点进行了比较研究。
关键词:高压直流;特高压;输电输电是发电和用电的中间环节,现代输电工程中并存着两种输电方式,高压交流输电和高压直流输电,两种方式各有自己的长处和不足,同时使用它们,可以取得更大的经济效益。
一、输电方式的变化人类输送电力,已有一百多年的历史了。
输电方式是从直流输电开始的,1874年俄国彼得堡第一次实现了直流输电,当时输电电压仅100V,随着直流发电机制造技术的提高,到1885年,直流输电电压已提高到6000V,但要进一步提高大功率直流发电机的额定电压,存在着绝缘等一系列技术困难,由于不能直接给直流电升压,使得输电距离受到极大的限制。
不能满足输送容量增长和输电距离增加的要求。
19世纪80年代末发明了三相交流发电机和变压器。
1891年,世界上第一个三相交流发电站在德国劳风竣工,以3 104V高压向法兰克福输电,此后,交流输电就普遍的代替了直流输电。
但是随着电力系统的迅速扩大,输电功率和输电距离的进一步增加,交流电遇到了一系列不可克服的技术上的障碍,大功率换流器(整流和逆流)的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到了人们的重视。
1933年,美国通用电器公司为布尔德坝枢纽工程设计出高压直流输电的装置;1954年在瑞典,从本土到果特兰岛,建立起了世界上第一条远距离高压直流输电工程。
二、直流输电系统3逆变器是可以相互转换的。
三、高压直流远距离输电方式具有明显的优点一是经济效率高,可较大幅度地提高发电机组的有功功率的输出和线路传输效率,这是高压直流输电方式的主要追求。
二是大幅度降低线路建设投资成本,节省输电走廊,提高线路传输能力。
直流电能的输送只需1根(单极)或2根(双极)导线与大地构成传输回路。
例如±500kV 蔡白线输电线路的两极导线(每极均为四分裂导线),分别与在三峡蔡家冲和上海白鹤两头的换流站接地极(大地)构成传输回路,使设计输送功率达到300万kW;与同等交流输电容量等级的线路相比,直流输电线路的铁塔与铁塔基础设计要小得多。
简述高压直流输电技术现状发展前景

简述高压直流输电技术现状发展前景摘要:随着我国经济的快速发展,用电需求不断增加,为了满足国内直流输电工程的建设需要,紧跟直流输电设备制造水平的前沿技术,对直流输电技术发展的最新成果进行总结。
支出将电流自然换相技术与柔性直流技术相结合构成多端直流输电技术是未来直流输电技术的发展方向。
本文在我国直流输电发展的基础上,结合我国直流输电的现状和规划,对我国今后直流输电的发展趋势进行深入研究。
关键词:高压直流输电;直流输电;发展趋势一、高压直流输电优劣势分析1.劣势由于直流输电换流变电所多,结构比较复杂,造价高,元器件损耗严重,如晶闸管换流时消耗大量无功功率,直流输电特性造成接地技术问题,直流电流没有过零投切,给断路器灭弧带来的困难,所以应采取充分研究并采取预防措施。
2.优势由于直流输电架空线路需要两级导线正极和负极,线杆结构简单、造价低、损耗小,在直流电压下,线路电容不存在,没有电容电流,不易老化,不用考虑输电的稳定性,有助于远距离大容量送电,提高电力系统的质量和可靠性,有利于增容建设、节省投资效率。
二、直流输电主接线拓扑结构1. 特高压直流输电国家电网公司主导建设的特高压直流输电工程采用双 12 脉动阀组串联技术。
特高压直流拓扑最显著的特点为解决了为提高系统可用率而产生的换流器的在线投退问题。
对一个极而言,既可以采用单组 12 脉动换流阀运行,也可以采用 2 组12脉动换流阀串联运行,每个阀组都并联了旁路断路器和旁路隔离开关,允许一个阀组退出运行后另一个阀组继续运行。
该接线方案中,每极高低 12脉动换流器两端设计电压相同,其正送和反送率传输方向下运行方式有 40 余种,灵活的运行方式也大大提高了特高压直流输电系统的可靠性。
2. 多端直流多端直流即由多个换流站及其间连接的输电线路组成的高压直流系统,早在20 世纪 60 年代就有相关原理阐述。
目前投运的系统包括意大利—科西嘉—撒丁岛三端系统、魁北克—新型格兰系统等。
特高压交直流输电系统技术经济分析

特高压交直流输电系统技术经济分析摘要:发展特高压交直流输电是缓解我国电力供应紧张状况的有效途径,也是改善电网结构,促进全国联网的需要。
随着高压输电的不断发展,满足了企业生产以及人们生活上的用电需求。
特高压输电技术很好地解决了我国远距离输电的问题,同时也进一步提高了输电的稳定性、安全性和经济性。
关键词:特高压直流输电系统;技术;经济;分析一、特高压输电1.范围分析发展特高压输电就是促进水电、火电、核电的开发,优化电力的分布,节省电力开支、降低用电成本,实现电力上的科学发展。
2.现状分析特高压输电最早起步于国外的一些发达国家,美国等一些发达国家都对特高压输电有一定的研究,并取得了很好的效果,所以关于特高压技术一直都是世界较为关注的课题。
我国作为一个电力大国,也相当重视对特高压输电技术的研究与发展。
国家和地方政府加强了对特高压技术的研究,国家的政策和先进的技术促进了特高压技术产业的发展。
(1)国内特高压输电技术发展现状我国对特高压应用技术的研究始于20世纪80年代,在过去的几十年里,科研机构在特高压领域做了大量的工作和研究,现在,特高压工程、技术被广泛地应用于我们的现实生活中。
我国相继开展了更高一级的电压远距距离输电方式和电压等问题的研究。
(2)国外特高压输电技术的发展现状从60年代中期开始国外一些国家就先后对特高压输电展开了一系列的研究和建设。
1985年苏联就已经建成了输电线路和变电站;之后的一些国家也在相继地进行建设和研究,从而得到了显著的成果。
国外的相关研究和实践经验也为我国特高压技术的发展提供了丰富的理论知识。
3.发展趋势我国正在成为工业大国,目前,工业制造业是国民经济的重要支柱,工业的发展所带来的好处是显而易见的,但我们也能看到工业上大量的用电,尤其是在重工业生产方面,所以我国重工业的聚集地对用电的需求远远大于电量的输出。
我国的用电量在逐年增加,这也使得电力资源严重的匮乏。
对于我国经济的发展,特高压输电为我国的经济发展、平稳运行提供了有力支撑,对我国能源安全意义深远。
特高压直流的优缺点
特高压直流输电的线路走廊较窄,能够减少土地资源的占用。同时,这种输电方 式在运行过程中产生的电磁辐射较小,对环境的影响也较小。
运行方式灵活
总结词
特高压直流输电系统具有灵活的运行方式,能够实现快速调 节和优化资源配置。
详细描述
特高压直流输电系统可以根据电力需求的变化进行快速调节 ,实现电力资源的优化配置。同时,这种输电方式还可以通 过多回线路并联运行,提高电网的稳定性和可靠性。
提高稳定性
控制系统升级
升级特高压直流的控制系统,提高其快速响应和抗干扰能力,确保输电的稳定性和可靠性。
加强运维管理
建立完善的运维管理制度和流程,加强设备的日常检查和维护,确保特高压直流输电系统的长期稳定运行。
感谢您的观看
THANKS
城市供电
• 城市供电:在城市供电领域,特高压直流输电技术有助于提 高供电的可靠性和稳定性。它能够降低因输电线路故障导致 的停电风险,保障城市居民和企业的正常用电需求。此外, 特高压直流输电还有助于优化城市电网结构,提升电网运行 效率。
04
未来发展
技术创新
持续研发
特高压直流技术仍需在材料、设 备、控制等方面进行持续研发, 以提升其性能和稳定性。
03
应用场景
跨区域输电
• 跨区域输电:特高压直流输电技术适用于大容量、远距离的电 力传输,尤其在跨区域输电场景中表现出色。它能有效地将电 能从发电丰富的地区输送到需求大的地区,优化资源配置,缓 解区域间的电力供需矛盾。
分布式能源并网
• 分布式能源并网:特高压直流输电技术能够实现分布式能源的高效并网。通过特高压直流输电,各种可再生能源(如风能、 太阳能)可以方便地接入电网,提高能源利用效率和可再生能源的消纳能力。
特高压交、直流输电的适用场合及其技术比较
4下 2017年 第12期(总第566期)CHINESE & FOREIGN ENTREPRENEURS133Technology and Management 【科技与管理】特高压输电技术具有远距离、大容量、低损耗、节约土地占用和经济性等特点。
因此,特高压输电技术可以满足当今社会对于电力日益增长的需求,既可以满足电力需求,又可以保证在运输过程中把损失降到最低。
特高压输电技术主要分为两种,一种是特高压交流输电技术,另一种是特高压直流输电技术。
一、特高压输电技术的含义特高压输电就是用高于1000kV 德尔电压进行远距离输送电力。
这种方法分为特高压直流输电和特高压交流输电。
当前,对特高压交流输电技术的研究主要集中在线路参数特性和传输能力、稳定性、经济性以及绝缘与过电压、电晕及工频电磁场等方面。
主要存在的技术问题就是稳定性问题以及如何最大程度减少费用。
特高压直流输电是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。
特高压直流输电的主要特点是输送容量大、输电距离远,电压高,可用于电力系统非同步联网。
二、国内外特高压输电技术现状我国的特高压输电技术起步比较晚,所以技术水平并不高。
我国是从1986年开始立项研究交流特高压输电技术。
“八五”期间又开展了“特高压外绝缘特性初步研究”,对长间隙放电的饱和性能进行了分析和探讨,对实际结构布置下导线与塔体的间隙放电进行了试验研究。
1994年在武汉高压研究所建成了我国第一条百万伏级特高压输电研究线段。
自此我国特高压输电技术的研究进入正轨,进入21世纪之后,特高压输电技术得到很大提高,但是仍然存在一些难以解决的技术问题,比如如何将输送过程中电力损失降到最低,如何降低工程施工的难度。
美国的一些电力公司及意大利电力公司也分别于20世纪70年代建成了1000~1500kV 试验线路。
此外,美、前苏联、日、意、加等国还建成了相应的研究特高压输电的试验室、试验场,并对特高压输电可能产生的许多问题如过电压、可听噪声、无线电干扰、生态环境影响等进行了大量的研究,并取得了相当多的成果,可以说对1200kV 以下电压的科研工作已基本完成。
±800kV特高压直流输电和1000kV特高压交流输电在长距离电力传输中的应用
±800kV特高压直流输电和1000kV特高压交流输电在长距离电力传输中的应用作者:张佳良来源:《科技创新导报》2017年第21期摘要:进入21世纪以来,全球能源消耗不仅稳步增长,而且远远超过很多地方的能源供给能力,长距离运输能源的问题越来越重要。
±800kV特高压直流输电和1000kV特高压交流输电不仅仅是在我国广泛应用,而且在国际上也是广泛应用。
本文探讨两者在长距离电力传输中的应用。
关键词:±800kV直流输电 1000kV交流输电特高压中图分类号:TM72 文献标识码:A 文章编号:1674-098X(2017)07(c)-0032-02能源运输通常采用这几种方式,石油运输通常通过超级油轮,天然气运输一般采用管道中,用于电力生产的煤炭使用铁路运输,所以选择靠近煤源的火电厂发电,并将其传输给消费者会更加高效和经济。
许多可再生能源如水电、风能和太阳能在电力生产中较为依赖于建厂位置,往往无法作为电力长距离传输的解决方案。
在长距离电力传输方案中,特高压能大大提升中国电网的输送能力。
在我国,特高压是指交流1000kV、直流±800kV及以上的电压等级。
截至2016年12月,我国国家电网特高压建设已经实现“六交五直”“一带一路”国家发展战略以及雾霾治理和清洁能源外送的需求共同促进,使得我国特高压建设进入快速发展轨道。
1 特高压长距离电力传输中的应用1.1 特高压应用过程交流和直流发电机都是在相对较低的电压水平下产生电力。
如果这种电压用于长距离传输,则会导致高昂的损失。
交流技术非常灵活地通过连接不同位置形成电网,允许向消费者提供非常强大和可靠的电力供应。
早期的电力供应可靠性问题主要存在于:由于发电量相对接近消费端,因此优先考虑的焦点不在于远距离传输大量电力。
为了使交流电更适合这种散点传输,采取典型的措施是对线路采用串联补偿。
当电力从一个点传输到另一个点时,这样做的效果非常好,但是电力流量不可预测。
特高压交直流输电的优缺点对比
特高压交直流输电的优缺点对比一、直流输电技术的优点1.经济方面:(1)线路造价低。
对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。
对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。
(2)年电能损失小。
直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。
另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。
所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。
2.技术方面:(1)不存在系统稳定问题,可实现电网的非同期互联。
由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。
而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。
因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。
(2)限制短路电流。
如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。
然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。
(3)调节快速,运行可靠。
直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。
在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。
(4)没有电容充电电流。
直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特高压交直流输电的优缺点对比一、直流输电技术的优点 1.经济方面:(1)线路造价低。
对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。
对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。
(2)年电能损失小。
直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。
另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。
所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。
2.技术方面:(1)不存在系统稳定问题,可实现电网的非同期互联。
由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。
而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。
因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。
(2)限制短路电流。
如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。
然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。
(3)调节快速,运行可靠。
直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。
在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。
(4)没有电容充电电流。
直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。
(5)节省线路走廊。
按同电压500 kV考虑,一条直流输电线路的走廊~40 m,一条交流线路走廊~50 m,而前者输送容量约为后者2倍,即直流传输效率约为交流2倍。
二、直流输电技术的不足:(1)换流装置较昂贵。
这是限制直流输电应用的最主要原因。
在输送相同容量时,直流线路单位长度的造价比交流低;而直流输电两端换流设备造价比交流变电站贵很多。
这就引起了所谓的“等价距离”问题。
(2)消耗无功功率多。
一般每端换流站消耗无功功率约为输送功率的40%~60%,需要无功补偿。
(3)产生谐波影响。
换流器在交流和直流侧都产生谐波电压和谐波电流,使电容器和发电机过热、换流器的控制不稳定,对通信系统产生干扰。
(4)就技术和设备而言,直流波形无过零点,灭弧困难。
目前缺乏直流开关而是通过闭锁换流器的控制脉冲信号实现开关功能。
若多条直流线路汇集一个地区,一次故障也可能造成多个逆变站闭锁,而且在多端供电方式中无法单独地切断事故线路而需切断全部线路,从而会对系统造成重大冲击。
(5)从运行维护来说,直流线路积污速度快、污闪电压低,污秽问题较交流线路更为严重。
与西方发达国家相比,目前我国大气环境相对较差,这使直流线路的清扫及防污闪更为困难。
设备故障及污秽严重等原因使直流线路的污闪率明显高于交流线路。
(6)不能用变压器来改变电压等级。
直流输电主要用于长距离大容量输电、交流系统之间异步互联和海底电缆送电等。
与直流输电比较,现有的交流500kV输电(经济输送容量为1 000MW,输送距离为300~500 km)已不能满足需要,只有提高电压等级,采用特高压输电方式,才能获得较高的经济效益。
三、特高压交流输电的主要优点:(1)提高传输容量和传输距离。
随着电网区域的扩大,电能的传输容量和传输距离也不断增大。
所需电网电压等级越高,紧凑型输电的效果越好。
(2)提高电能传输的经济性.输电电压越高输送单位容量的价格越低。
(3)节省线路走廊和变电站占地面积。
一般来说,一回1150 kV输电线路可代替6回500 kV线路。
采用特高压输电提高了走廊利用率。
(4)减少线路的功率损耗, 就我国而言, 电压每提高 1 % , 每年就相当于新增加500万kW 的电力, 500 kV输电比1200 kV的线损大5倍以上。
(5)有利于连网,简化网络结构,减少故障率。
四、特高压输电的主要缺点:特高压输电的主要缺点是系统的稳定性和可靠性问题不易解决。
自1965-1984年世界上共发生了6次交流大电网瓦解事故,其中4次发生在美国,2次在欧洲。
这些严重的大电网瓦解事故说明采用交流互联的大电网存在着安全稳定、事故连锁反应及大面积停电等难以解决的问题。
特别是在特高压线路出现初期,不能形成主网架,线路负载能力较低,电源的集中送出带来了较大的稳定性问题。
下级电网不能解环运行,导致不能有效降低受端电网短路电流,这些都威胁着电网的安全运行。
另外,特高压交流输电对环境影响较大。
总结:输电线路的建设主要考虑的是经济性,而互联线路则要将系统的稳定性放在第一位。
在超高压交流输电方面,若在500kV电压等级上采用750kV(最高运行电压800kV),有可能因两级电压相距太近,会造成电磁环网多、潮流控制困难、电网损耗大等问题,而且,即使今后采用灵活交流输电技术或紧凑型输电技术,输电容量的有限增加仍难以满足电力系统长远发展的需要。
综上所述,与750kV交流输电相比较,特高压在大容量远距离输电和建设全国的坚强电网方面具有一定的优势,在技术和设备上并无不可逾越的技术难题,在建设投资和运行上也较为经济。
高压直流输电虽然输送容量大且可以非同步并网,但由于其换流站成本高昂,控制复杂并不适合构成电力系统的骨架。
高压直流输电更适用于不同区域网架之间的连接,以及远距离大容量的电力输送。
而(特)高压交流系统则适合作为大区域中枢,担当网架的主干。
两者优势互补,各有分工。
事实上,在我国特高压电网建设中,将以1000kV 交流特高压输电为主形成特高压电网骨干网架,实现各大区电网的同步互联;±800kV 特高压直流输电则主要用于远距离、中间无落点(难以引出分支线路,换流站昂贵)、无电压支撑的大功率输电工程。
中国科学院院士、中国电科院研究员周孝信指出,直流输电和交流输电只能互补,不能互相取代。
他介绍,直流输电只具有输电功能、不能形成网络,类似于“直达航班”,中间不能落点,定位于超远距离、超大容量“点对点”输电。
直流输电可以减少或避免大量过网潮流,潮流方向和大小均能方便地进行控制。
但高压直流输电必须依附于坚强的交流电网才能发挥作用。
交流输电则具有输电和构建网络双重功能,类似于“公路交通网”,可以根据电源分布、负荷布点、输送电力、电力交换等实际需要构成电网。
中间可以落点,电力的接入、传输和消纳十分灵活,定位于构建坚强的各级输电网络和经济距离下的大容量、远距离输电,广泛应用于电源的送出,为直流输电提供重要支撑。
一、首先我们来看高压直流输电的特点:1.换流器控制复杂,造价高;2.直流输电线路造价低,输电距离越远越经济;3.没有交流输电系统的功角稳定问题,适合远距离输电;4.适合海底电缆(海岛供电、海上风电)和城市地下电缆输电;5.能够非同步(同频不同相位,或不同频,或不同电压等级)连接两个交流电网,且不增加短路容量;6.传输功率的可控性强,控制速度快,可有效支援交流系统;7.换流器大量消耗无功(注意这是对LCC-HVDC而言,VSC-HCDC整流侧和逆变侧均可独立灵活控制无功,两种系统差别下文将单独说明。
),且产生谐波;8.双极不对称大地回线运行时存在直流偏磁问题和电化学腐蚀问题(地电流危害);9.不能向无源系统供电(依然是对LCC-HVDC系统而言),构成多端直流系统困难(由于直流没有过零点,难以熄弧,所以现在缺少大容量直流断路器,无法切除输电线路的短路故障,从而限制了多端直流输电的发展。
最近ABB貌似把这个东西搞出来了,不明觉厉。
)。
二、经济问题:高压直流输电主要是两头换流站贵,线路便宜。
所以相较于交流输电,距离越远越经济。
•架空线路等价距离约在640~960km•地下电缆线路的等价距离为56~90km•海底电缆线路的等价距离为24~48km*交流输电时电缆线路会与周边介质(海水、土壤)形成一个较大的电容,影响电网的经济稳定,直流输电不存在这个问题。
三、电能质量:直流输电系统的主要缺点是存在谐波,特别是低次谐波(主要是LCC-HVDC,而VSC-HVDC最低次谐波频率较高,滤波器可以有效消除这种高次谐波)。
另一个不太突出的缺点是地电流。
•谐波的危害:1.对铁磁设备的影响。
谐波造成额外的铁耗导致发热、振动和噪声,降低了设备出力、效率及寿命;2.对旋转电机的影响:谐波造成转矩脉动,转速不稳;3.对电力电容器的影响:谐波可能引起谐振过电压;4.对电力系统测控的影响:谐波使测量误差增加,可能导致控制失灵,保护误动;5.三次谐波电流过大可能使中性线过流;6.谐波叠加在基波上,使电气应力增加,对各种电气设备尤其是电容器的绝缘造成威胁;7.谐波对通信线路造成干扰。
•HVDC引起的变压器直流偏磁(地电流):现象:直流输电系统接地极流过较大电流时(如单极大地运行)会导致中性点接地变压器产生直流偏磁现象。
后果:导致铁芯饱和,产生谐波,引起振动和噪声,引起发热,严重时损坏变压器,引起保护误动等。
四、电网安全:•直流输电对电网稳定的贡献:1.紧急功率支援:如交流电网出现大幅度功率缺额(联络线跳开、某些大电厂跳开等),HVDC 可以快速增加输送功率或者快速潮流反转。
HVDC快速有效的潮流控制能力对于所连交流系统的稳定控制,交流系统正常运行过程中应对负荷随机波动的频率控制及故障状态下的频率变动控制都能发挥重要作用。
•直流输电对电网的不利影响:1.LCC-HVDC换相失败:概念:当逆变器两个阀进行换相时,因换相过程未能进行完毕,或者预计关断的阀关断后,在反向电压期间未能恢复阻断能力,当加在该阀上的电压为正时,立即重新导通,则发生了倒换相,使预计开通的阀重新关断,这种现象称之为换相失败。
危害:a) 换相失败引起输送功率中断威胁系统安全稳定;b) 交流系统短路时,电压跌落可能引起多个换流站同时发生换相失败,导致多回直流线路功率中断,引起系统潮流大范围转移和重新分布;c) 影响故障切除后受端系统电压恢复,进而影响故障切除后直流功率快速恢复,可能会威胁交流系统暂态稳定性。
2.谐波不稳定性:概念:HVDC 引起的谐波不稳定是指在换流站附近有扰动时,谐波振荡不易衰减甚至放大的现象,表现为交流母线电压严重畸变。
危害:电流谐波放大几倍甚至几十倍;电压严重畸变会导致换相失败并使系统运行困难。