苏科版八年级数学 第2章_轴对称单元测试题
2023年苏科版八上数学第2章轴对称图形测试题

2022-2023学年苏科版八年级数学上册《第2章轴对称图形》单元综合达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列各图形均是由边长为1的小正方形组成,其中不是轴对称图形的是()A.B.C.D.2.已知一个等腰三角形的两边长分别为3cm、7cm,则该三角形的周长是()A.13cm B.13cm或17cm C.17cm D.16cm3.如图,在△ABC中,∠C=90°,∠A=15°,点D是AC上一点,连接BD,∠DBC=60°,BC=4,则AD长是()A.4B.6C.8D.104.如图,△ABC中,AB的垂直平分线交AC与点M.若AC=9cm,BC=5cm,则△MBC 的周长是()cm.A.23B.19C.14D.125.已知线段AB垂直平分线上有两点C、D,若∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.60°或100°D.40°或90°6.如图①是一个直角三角形纸片,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,如果C′为AB的中点,△BCD的面积为1,则△ABC的面积为()A.2B.3C.4D.57.如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有()A.0个B.1个C.2个D.3个8.如图,在△ABC中,BD平分∠ABC,点E在BC的垂直平分线上,若∠A=60°,∠ABD =24°,则∠ACE的度数为()A.48°B.50°C.55°D.60°二.填空题(共8小题,满分40分)9.如果一个等腰三角形的一角为80°,那么它的顶角是.10.如图,已知∠A=13°,AB=BC=CD,那么∠BCD=度.11.如图,P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,垂足分别为D,E,若PD=3,则PE的长是.12.若等腰三角形一腰上的中线将它的周长分成了15cm和18cm两部分,则它的腰长为cm.13.如图,在Rt△ABC中,∠C=90°,直线DE是边AB的垂直平分线,连接BE.(1)若∠A=35°,则∠CBE=°;(2)若AE=3,EC=1,则△ABC的面积为.14.如图,已知ABC为等边三角形,若沿图中虚线剪去∠A,则∠1+∠2=.15.如图,线段AC,AB的垂直平分线交于点O,连接OA、OB、OC,已知OC=2cm,则OB等于cm.16.如图,在△ABC中,∠ABC=50°,∠C=23°,∠ABC的角平分线交AC于点D,过点D作DF∥AB交BC于点F,点E是BA延长线上一点,且BE=FC,连接EF交AC 于点O,则∠EOC=.三.解答题(共6小题,满分40分)17.如图,△ABC中,已知AB=AC,BC平分∠ABD.(1)求证:AC∥BD;(2)若∠A=100°,求∠1的度数.18.如图,在△ABC中,AD为∠BAC的角平分线,FE垂直平分AD,垂足为E,EF交BC 的延长线于点F,若∠CAF=50°,求∠B的度数.19.在△ABC中,∠ABC=∠ACB,点D在BC边所在的直线上,点E在射线AC上,且始终保持∠ADE=∠AED.(1)如图1,若∠B=∠C=30°,∠BAD=80°,求∠CDE的度数;(2)如图2,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)如图3,当点D在BC边的延长线上时,猜想∠BAD与∠CDE的数量关系,并说明理由.20.如图,已知△ABC,AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若AB+AC=10,DE=3,求△ABC的面积.21.如图,在单位长度为1的正方形网格中,已知△ABC的三个顶点都在格点上.(1)画出△ABC关于直线DE的轴对称图形△A1B1C1;(2)求△A1B1C1的面积.22.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.请你用三种不同的方法分别在每个网格中再选一个白色小方格涂成黑色,使涂成黑色部分的图形成为轴对称图形.参考答案一.选择题(共8小题,满分40分)1.解:A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.2.解:当3cm是腰时,3+3<7,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17(cm).故它的周长为17cm.故选:C.3.解:∵∠C=90°,∠DBC=60°,∴∠BDC=90°﹣60°=30°,又∵∠A=15°,∴∠ABD=30°﹣15°=15°=∠A,∴AD=BD,在Rt△BDC中,BC=4,∠BDC=30°,∴BD=2BC=8=AD,故选:C.4.解:∵MD是AB的垂直平分线,∴AM=BM,∴△MBC的周长为BM+MC+BC=AM+CM+BC=AC+BC=14(cm).故选:C.5.解:如图,DE垂直平分AB,垂足为E,∴DA=DB,∴∠DAB=∠DBA=(180°﹣∠ADB)=×(180°﹣80°)=50°,当C点在线段DE上,∠CAD=10°时,则∠CAB=50°﹣10°=40°,∵CA=CB,∴∠CAB=∠CBA=40°,∴∠ACB=180°﹣40°﹣40°=100°;当C′点在ED的延长线上,∠C′AD=10°时,则∠C′AB=50°+10°=60°,∵CA=CB,∴∠C′AB=60°,综上所述,∠ACB的度数为60°或100°.故选:C.6.解:∵△ABC为直角三角形,∴∠C=∠BC′D=∠AC′D=90°,由折叠的性质得:△BCD≌△BC′D,∴S△BCD=S△BC′D=1,∵C′为AB的中点,∴AC′=BC′,∵∠BC′D=∠AC′D=90°,DC′=DC′,∴△ADC′≌△BDC′(SAS),∴S△ADC′=S△BCD=S△BC′D=1,∴△ABC的面积=S△ADC′+S△BDC′+S△BCD=3,故选:B.7.解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.8.解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠CBD=∠ABD=24°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,∵点E在BC的垂直平分线上,∴EB=EC,∴∠ECB=∠CBD=24°,∴∠ACE=∠ACB﹣∠ECB=72°﹣24°=48°,故选:A.二.填空题(共8小题,满分40分)9.解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故答案为:80°或20°.10.解:∵AB=BC,∴∠BCA=∠A=13°,∴∠CBD=∠A+∠BCD=26°,又∵BC=CD,∴∠CBD=∠D=26°,∴∠BCD=180°﹣∠CBD﹣∠D=128°.故答案为:128.11.解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.12.解:根据题意画出图形,如图,设等腰三角形的腰长AB=AC=2x,BC=y,∵BD是腰上的中线,∴AD=DC=x,若AB+AD的长为15,则2x+x=15,解得x=5,则x+y=18,解得y=13,所以2x=10;若AB+AD的长为18,则2x+x=18,解得x=6,则x+y=15,即6+y=15,解得y=9,所以2x=12,10、10、13和12、12、9均能构成三角形,所以等腰三角形的腰长为10或12.故答案为:10或12.13.解:(1)在Rt△ABC中,∠C=90°,∠A=35°,∴∠ABC=90°﹣∠A=90°﹣35°=55°,∵DE是边AB的垂直平分线,∴EA=EB∴∠ABE=∠A=35°,∴∠CBE=55°﹣35°=20°,故答案为:20;(2)∵AE=3,EC=1,∴AC=EC+EA=3+1=4,BE=AE=3,∴BC==2,∴S△ABC=×4×2=4,故答案为:4.14.解:∵△ABC为等边三角形,∴∠A=60°,∵∠1=∠A+∠ADE,∠2=∠A+∠AED,∴∠1+∠2=∠A+∠ADE+∠A+∠AED,∵∠A+∠AED+∠ADE=180°,∴∠1+∠2=60°+180°=240°,故答案为:240°.15.解:∵线段AC,AB的垂直平分线交于点O,∴OA=OC,OA=OB,∴OB=OC,∵OC=2cm,∴OB=2cm,故答案为:2.16.解:∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠FBD=25°,∵AB∥DF,∴∠DFC=∠ABC=50°,∠BDF=∠ABD=25°,∴∠BDF=∠FBD,∴BF=FD,∵BE=FC,∴△BEF≌△FCD(SAS),∴∠E=∠C=23°,∵AB∥DF,∴∠EFD=∠E=23°,∴∠OFC=∠EFD+∠DFC=73°,∴∠EOC=∠OFC+∠C=96°.故答案为:96°.三.解答题(共6小题,满分40分)17.(1)证明:∵AB=AC,∴∠ABC=∠C,∵BC平分∠ABD,∴∠ABC=∠1,∴∠C=∠1,∴AC∥BD;(2)解:∵AC∥BD,∠A=100°,∴∠ABD=180°﹣∠A=80°,∴∠1=40°.18.解:∵EF垂直平分AD,∴AF=DF,∴∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠B=∠CAF=50°,故∠B的度数是50°.19.解:(1)在△ABD中,∠B=∠C=30°,∠BAD=70°,∴∠ADB=180°﹣(∠B+∠BAD)=180°﹣100°=80°,∠BAC=180°﹣(∠B+∠C)=180°﹣60°=120°,∴∠DAE=∠BAC﹣∠BAD=120°﹣70°=50°,∵∠ADE=∠AED,∴∠ADE=×(180°﹣50°)=65°,∴∠EDC=65°﹣30°=35°;(2)∵∠ACB为△DCE的外角,∴∠ACB=∠AED+∠CDE,∵∠ABC=∠ACB=70°,∠CDE=15°,∴∠ADE=∠AED=55°,∴∠ADC=∠ADE﹣∠CDE=40°,∵∠ABC为△ABD的外角,∴∠ABC=∠ADC+∠BAD,∴∠BAD=30°;(3)∠CDE和∠BAD的数量关系是∠BAD=2∠CDE,理由如下:当点D在BC的延长线上时,设∠ABC=∠ACB=x,∠ADE=∠AED=y,∠CDE=α,∠BAD=β,则有∠ADC=x﹣α,根据题意得:,②﹣①得:2α﹣β=0,即2α=β,故∠BAD=2∠CDE.20.(1)证明:∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=90°,∵AD是∠BAC的角平分线,∴∠EAD=∠F AD,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,∵AD是∠BAC的角平分线,∴AG⊥EF,EG=FG,∴AD垂直平分EF;(2)解:∵AD是∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵DE=3,∴DF=3,∵AB+AC=10,∴△ABC的面积===15.21.解:(1)如图,△A1B1C1即为所求.(2)=3×3﹣﹣﹣=.∴△A1B1C1的面积为.22.解:图形如图所示:。
苏科版八年级数学上册 第二章 轴对称图形 单元测试(含答案)

第二章轴对称图形单元测试一、选择题1.今年实施的新交规让人们的出行更具安全性,以下交通标志中不是是轴对称图形的是()A. B. C. D.2.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A. 6B. 8C. 10D. 123.下列语句中,正确的有( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.⑤角平分线上任意一点到角的两边的线段长相等.A. 1个B. 2个C. 3个D. 4个4.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为( )A. 1B. 2C. 3D. 45.下列图形中对称轴只有两条的是()A. 圆B. 等边三角形C. 矩形D. 等腰梯形6.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A. B. C. D.7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是( )A. B. C. D.8.下列图形不是轴对称图形的是( )第2页,共7页A. B. C. D.9.若∠AOB=45∘,P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是( )A. OP1⊥OP2B. OP1=OP2C. OP1≠OP2D. OP1⊥OP2且OP1=OP210.四边形ABCD中,∠BAD=130∘,∠B=∠D=90∘,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为( )A. 80∘B. 90∘C. 100∘D. 130∘二、填空题11.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.则sin∠BAG=______ .12.轴对称是指______ 个图形的位置关系,轴对称图形是指______ 个具有特殊形状的图形.13.黑体汉字中的“中”,“田”,“日”等都是轴对称图形,请至少再写出两个具有这种特征的汉字:______ .14.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长______ cm.15.如图,在五边形ABCDE中,∠BAE=120∘,∠B=∠E=90∘,AB=BC=1,AE=DE=2,在BC,DE上分别找一点M,N,使△AMN的周长最小,则△AMN的最小周长为______ .三、解答题16.操作题:如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)17.如图,是由三个阴影的小正方形组成的图形,请你在三个网格图中,各补画出一个有阴影的小正方形,使补画后的图形为轴对称图形.18.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.第4页,共7页19.已知:如图,∠AOB内有一点P,作点P关于直线OA的对称点P1,再作点P关于直线OB的对称点P2.试探索∠POP2与∠AOB的大小关系并说明理由.20.如图,草原上,一牧童在A处放马,牧童家在B处,A、B处距河岸的距离AC,BD的长分别为500m和700m,且CD=500m,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,牧童将马牵到河边什么地方饮水,才能使走过的路程最短?牧童最少要走多少m?参考答案1. D2. A3. B4. D5. C6. D7. A8. D9. D10. C11. √101012. 两;一13. “木”,“古”14. 515. 2√716. 解:如图所示:17. 解:所补画的图形如下所示:18. 解:如下图所示:(答案不唯一).19. 解:∵点P关于直线OA的对称点P1,点P关于直线OB的对称点P2,∴∠1=∠2,∠3=∠4,第6页,共7页∴∠P1OP2=∠1+∠2+∠3+∠4=2(∠2+∠3)=2∠AOB.20. 解:作A点关于河岸的对称点A′,连接BA′交河岸与P,则PB+PA=PB+PA′=BA′最短,故牧童应将马赶到河边的P地点.作DB′=CA′,且DB′⊥CD,∵DB′=CA′,DB′⊥CD,BB′//A′A,∴四边形A′B′BA是矩形,,在Rt△BB′A′中,连接A′B′,则BB′=BD+DB′=1200,BA′=√12002+5002=1300(m).故牧童至少要走1300米.。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试(含答案)

苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。
苏科版八年级数学上《第2章轴对称图形》单元测试卷含答案解析初二数学试题试卷

《第2章轴对称图形》一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= °;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= ,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.《第2章轴对称图形》参考答案与试题解析一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;线段垂直平分线的性质.【专题】几何图形问题;综合题.【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.5【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】根据等腰三角形的性质,可分2种情况对本题讨论解答:①当腰长为3时,②当底为3时;结合题意,把不符合题意的去掉即可.【解答】解:设等腰三角形的腰长为l,底长为a,根据等腰三角形的性质得,S=2l+a;①、当l=3时,可得,a=7;则3+3<7,即2l<a,不符合题意,舍去;②、当a=3时,可得,l=5;则3+3>5,符合题意;所以这个等腰三角形的底边长为3.故选B.【点评】本题主要考查了等腰三角形的性质和三角形三边性质定理,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个【考点】等腰三角形的判定.【分析】由已知条件,根据三角形内角和等于180°、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:AB=AC,∠ABC=36°,∴∠BAC=108,∴∠BAD=∠DAE=∠EAC=36°.∴等腰三角形△ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.故选D.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°【考点】角平分线的性质;三角形内角和定理.【分析】由角平分线的性质可得MA=MB,再求解出∠MAB的大小,在△ABM中,则可求解∠MAB 的值.【解答】解:∵∠AOB=40°,且OM为其平分线,∴∠AOM=∠BOM=20°,又MA⊥OA,MB⊥OB,∴MA=MB,∠AMO=∠BMO=70°,∴∠AMB=140°,∴∠MAB=(180°﹣∠AMB)=×(180°﹣140°)=20°,故选D.【点评】本题考查了角平分线的性质;熟练掌握角平分线的性质,能够求解一些简单的计算问题.6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.7.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】根据∠COP=∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.【解答】解:∵∠COP=∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD.在△APO和△COD中,,∴△APO≌△COD(AAS),∴AP=CO,∵CO=AC﹣AO=6,∴AP=6.故选C.【点评】本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.二、耐心填一填9.请写出4个是轴对称图形的汉字:如中、日、土、甲等.【考点】轴对称图形.【分析】根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:答案不唯一,如中、日、土、甲等.【点评】解答此题的关键是掌握轴对称图形的概念,以及汉字的特征.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.若等腰三角形的一个外角为130°,则它的底角为65°或50°度.【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题;分类讨论.【分析】根据已知可求得与这个外角相邻的内角,因为没有指明这个内角是顶角还是底角,所以分两情况进行分析,从而不难求得其底角的度数.【解答】解:∵等腰三角形的一个外角为130°,∴与这个外角相邻的角的度数为50°,∴当50°角是顶角时,其底角为65°;当50°角是底角时,底角为50°;故答案为:65°或50°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为40cm .【考点】等腰梯形的性质.【专题】探究型.【分析】作DE∥AB交BC与点E.则四边形ABED是平行四边形,△DEC是等边三角形,即可求得CD,BE的长度,从而求解.【解答】解:作DE∥AB交BC与点E.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=AD=CD=DE=BE=8cm,∵∠C=60°,∴△DEC是等边三角形.∴EC=DC=AB=8cm.∴梯形ABCD的周长=AD+AB+BC+CD=AB+AD+BE+EC+CD=8×5=40cm.故答案为:40cm.【点评】本题考查等腰梯形的性质,正确作出辅助线,把等腰梯形转化成平行四边形与等边三角形是解答此题的关键.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= 15 °;(2)若BC=21cm,则△BCE的周长是53cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB交AC于E,可得AE=BE,然后由等腰三角形的性质,可求得∠ABE的度数,又由AB=AC,∠ABC的度数,继而求得答案;(2)由AB=AC=32cm,BC=21cm,△BCE的周长=AC+BC,即可求得答案.【解答】解:(1)∵DE垂直平分AB交AC于E,∴AE=BE,∵∠A=50°,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C==65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵AB=AC=32cm,BC=21cm,∴△BCE的周长是:BC+BE+EC=BC+_AE+EC=BC+AC=21+32=53(cm).故答案为:(1)15,(2)53cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是 3 cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD 即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= 5 ,理由是:直角三角形斜边上的中线等于斜边的一半.【考点】直角三角形斜边上的中线.【专题】网格型.【分析】先根据网格结构求出AB的长,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由图可知,AB=10,∵∠ACB=90°,M是AB的中点,∴CM=AB=×10=5(直角三角形斜边上的中线等于斜边的一半).故答案为:5,直角三角形斜边上的中线等于斜边的一半.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,读懂题目信息并熟练掌握性质是解题的关键.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长 5 cm.【考点】轴对称的性质.【分析】由O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,根据轴对称的性质,可得OE=ME,OF=NF,继而可得△OEF的周长=MN,则可求得答案.【解答】解:∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5.【点评】此题考查了轴对称的性质.此题比较简单,注意掌握转化思想的应用.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数45°或135°.【考点】等腰三角形的性质.【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135°.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故答案为45°或135°.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有8 个.【考点】等腰三角形的判定;勾股定理.【专题】网格型.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.【解答】解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.【点评】此题主要考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解,数形结合的思想是数学解题中很重要的解题思想.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【专题】压轴题;开放型.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.【点评】解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.【考点】全等三角形的判定与性质.【专题】证明题;压轴题.【分析】利用SAS证得△ACD≌△ABD,从而证得BD=CD,利用等边对等角证得结论即可.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ACD和△ABD中,∴△ACD≌△ABD,∴BD=CD,∴∠DBC=∠DCB.【点评】本题考查了全等三角形的判定与性质,特别是在应用SAS进行判定三角形全等时,主要A为两边的夹角.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC .猜想:EF与BE、CF之间的关系是EF=BE+CF .理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC .在第(1)问中EF与BE、CF 间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【考点】等腰三角形的判定.【专题】探究型.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE﹣FC.【解答】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.【点评】此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.。
苏科版数学八年级上第2章轴对称图形单元测试含答案解析

第2章轴对称图形一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.下列图形中,不是轴对称图形的是()A. B.C.D.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.4.下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.5.下列四个艺术字中,不是轴对称的是()A.B.C.D.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.7.下列图形中,是轴对称图形的是()A.B.C.D.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条9.下列图形中,不是轴对称图形的是()A.B.C.D.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条11.下列图形中,不是轴对称图形的是()A.B.C.D.12.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形13.下列交通标志图案是轴对称图形的是()A.B.C.D.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.15.下列图案中,不是轴对称图形的是()A.B.C.D.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形17.下列图形是轴对称图形的是()A.B.C.D.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.422.下列四个图形中,不是轴对称图形的是()A.B. C.D.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.824.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个26.下列图形中,是轴对称图形的是()A.B.C.D.27.在下列图形中,是轴对称图形的是()A.B.C.D.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个29.下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.第2章轴对称图形参考答案与试题解析一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,找到各选项中的对称轴即可.【解答】解:A、有一条对称轴,故本选项正确;B、没有对称轴,故本选项错误;C、有两条对称轴,故本选项错误;D、有两条对称轴,故本选项错误;故选:A.【点评】本题考查了轴对称图形,解答本题的关键是掌握轴对称图及对称轴的定义,属于基础题.5.(•台州)下列四个艺术字中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.【点评】本题考查了轴对称图形的知识,判断是轴对称图形的关键是寻找对称轴.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.【点评】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.7.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:所给图形有4条对称轴.故选C.【点评】本题考查了轴对称图形的知识,解答本题的关键掌握轴对称及对称轴的定义.9.(2014•成都)下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条【考点】轴对称图形.【专题】常规题型.【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【解答】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.【点评】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.11.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(2014•甘孜州)下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2014•黑龙江)下列交通标志图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.15.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.17.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;22.下列四个图形中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.24.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义即可得出结论.【解答】解:由轴对称图形的性质可知,四个字中的轴对称图形有:美、赤.故选B.【点评】本题考查的是轴对称图形,熟知轴对称图形的定义是解答此题的关键.26.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.27.在下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】计算题.【分析】利用轴对称图形的性质判断即可得到结果.【解答】解:是轴对称图形,故选:D.【点评】此题考查了轴对称图形,轴对称图形即为在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选:C.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.29.(2014•湘西州)下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.第21页共21页。
八年级上册数学单元测试卷-第二章 轴对称图形-苏科版(含答案)

八年级上册数学单元测试卷-第二章轴对称图形-苏科版(含答案)一、单选题(共15题,共计45分)1、下列图形中是轴对称图形的是()A. B. C. D.2、如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O的半径为5,AB=AC=8,DE=3,则EC长为()A.4B.C.D.3、有下列说法:①线段的对称轴有两条;②角是轴对称图形,它的平分线就是它的对称轴;③到直线a的距离相等的两个点关于直线a对称;④全等的两个图形成轴对称.其中正确的有()A.1个B.2个C.3个D.4个4、如图,等腰△ABC的顶角∠A=36°,若将其绕点C顺时针旋转36°,得到△A′B′C,点B′在AB边上,A′B′交AC于E,连接AA′.有下列结论:①△ABC≌△A′B′C;②四边形A′ABC是平行四边形;③图中所有的三角形都是等腰三角形;其中正确的结论是()A.①②B.①③C.②③D.①②③5、下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等6、如图,正方形内接于,线段在对角线上运动,若的面积为,,则周长的最小值是()A.3B.4C.5D.67、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若与成轴对称,则一定与全等;④有一个角是度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A. B. C. D.8、如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.10C.8D.129、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.10、如图图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.11、如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 ,AD=2,将△ABC绕点C 顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B=2,则A =()A. B.2 C. D.12、如图,在△ABC中,AD是∠BAC的平分线,为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°13、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.14、如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且EF=AB;②∠BAF=∠CAF;③S四边形ADFE=AF•DE;④∠BDF+∠FEC=2∠BAC,正确的个数是()A.1B.2C.3D.415、始于唐代的青花瓷给人以古朴、典雅之美.关于如图所示的青花瓷图案,下列说法正确的是()A.它是中心对称图形,但不是轴对称图形B.它是轴对称图形,但不是中心对称图形C.它既是中心对称图形,又是轴对称图形D.它既不是中心对称图形,又不是轴对称图形二、填空题(共10题,共计30分)16、如图,一张扇形纸片OAB中,半径OA为2,点C是的中点,现将这张扇形纸片沿着弦AB折叠,点C恰好与圆心O重合,则图中阴影部分的面积为________.17、如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .若AB=5cm ,AC=6cm , BC=7cm,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′,再连结A′C、A′B,即可得△A′BC .18、如图,在中,点分别在边、上,,将沿直线翻折后与重合,、分别与边交于点、,如果,,那么的长是 ________ .19、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC 的面积为12cm2,则图中阴影部分的面积是________ cm2.20、设计一个商标图形(如图8所示),在△ABC中,AB=AC=2cm,∠B=30°,以A为圆心,AB为半径作,以BC为直径作半圆,则商标图案(阴影)面积等于________ cm2.21、如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是________.22、如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=5cm,BD=3cm,则点D到AB的距离是________cm.23、下列图形中轴对称图形的个数是________.24、如图,在△ABC中,∠ACB=75°,∠ABC=45°,分别以点B、C为圆心,大于BC的长为半径作弧,两弧相交于点M、N。
【苏科版】八年级数学上册第二章 轴对称图形单元测试(含答案) (1)

第二章轴对称图形单元测试一.选择题1.下列图形(含阴影部分)中,属于轴对称图形的有 ( )A.1个B.2个C.3个D.4个2.小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8:00的是 ( )3.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有 ( )A.2个B.3个C.4个D.5个4.如图,AC=AD,BC=BD,则有 ( )A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB5.如图,OP平分∠AOB,PAOA,PBOB,垂足分别为A.B.下列结论中,不一定成立的是 ( )A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP6.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为 ( )A.7B.10C.7或10D.7或117.在梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为 ( )A.2B.3C.4D.58.如图,在等腰梯形ABCD中,AD∥BC,AC.BD相交于点O,有下列五个结论:①△AOB≌△DOC;②∠DAC=∠DCA;③梯形ABCD是轴对称图形;④∠DAB+∠DCB=180°;⑤AC=BD.其中,正确的个数是 ( )A.2B.3C.4D.59.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB.下列确定点P的方法正确的是 ( )A.P为∠BAC.∠ABC的平分线的交点B.P为∠BAC的平分线与AB的垂直平分线的交点C.P为AC.AB两边上的高的交点D.P为AC.AB两边的垂直平分线的交点10.如图,在△ABC中,AD平分∠BAC,DEAB,DFAC,E.F为垂足,则下列五个结论:①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF 垂直平分AD;⑤△ABD与△ACD的面积相等.其中,正确的个数是 ( )A.4B.3C.2D.1二.填空题11.请同学们写出两个具有轴对称性的汉字:__________.12.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2 cm,AC=3.7 cm,则点D到AB边的距离是__________cm.(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为__________.13.如图,在△ABC中,AB.AC的垂直平分线分别交BC于点E.F.(1)若△AEF的周长为10 cm,则BC的长为__________cm.(2)若∠EAF=100°,则∠BAC__________.14.(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.(2)如图②,∠ACB=90°,E.F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.15.(1)若直角三角形斜边上的高和中线分别为10 cm.12 cm,则它的面积为__________cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.16.(1)如图①,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周长是__________.(2)如图②,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE∥AC,DE交AB于点E,M为BE的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形共有__________个.17. 如图,在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM.如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是__________.18.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE相等,则最多能添加这样的钢管__________根.三.解答题19.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形;(3)请你先在图③的BC上找一点P,使点P到AB.AC的距离相等,再在射线AP上找一点Q,使QB=QC.20.如图,在△ABC中,BD.CE是高,G.F分别是BC.DE的中点,连接GF,试判断GF与DE有何特殊的位置关系?请说明理由.21.如图,在△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数.22.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=AC,求该梯形中各内角的度数.23.如图,在等腰△ABC中,顶角的平分线BD交AC于点D,AD=3,作△ABC的高AE交CB的延长线于点E,且AE与BC的长是方程组55101,10552x y m x y m +=-⎧⎨-=-⎩的解.已知()1205ABC m m S =≠,求△ABC 的周长.24.如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,点P 为BC 边上一点,PE ⊥AB 于点E ,PF ⊥DC 于点F ,BG ⊥CD 于点G ,试说明PE +PF =BG .25.在梯形ABCD 中, B =90°,AB 14cm ,AD =18cm ,BC =21cm ,点P 从点A 开始沿边AD 向点D 以1 cm /s 的速度移动,点Q 从点C 开始沿边CB 向点B 以2 cm /s 的速度移动,如果点P .Q 分别从两点同时出发,多少秒后,梯形PBQD 是等腰梯形?参考答案一.1.B 2. D 3.C 4.A 5.D 6.D 7.B 8.C 9.B 10.B二.11.答案不唯一,如目.田12.(1)1.5 (2)70°或20°13.(1)10 (2)140° 14.(1)20°(2)45° 15.(1)120 (2)80°或20°16.(1)17 (2)3 17.2 18.8三.19.略20.GFDE理由:连接GE.GD.因为BD是△ABC的高,所以∠BDC=90°.因为G是BC的中点,所以DG=BC.同理,EG=BC.所以DG=EG.又因为F是DE的中点,所以在△EGD中,GFDE.21.设∠A=x.因为AE=ED,所以∠ADE=∠A=x.又∠BED为△AED的外角,所以∠BED=∠ADE+∠A=2x.因为BD=ED,所以∠DBE=∠DEB=2x.因为∠BDC为△ABD的外角,所以∠BDC=∠EBD+∠A=3x.因为BD=BC,所以∠BDC=∠C=3x.因为AB=AC,所以∠ABC=∠C=3x.又因为△ABC 的内角和为180°,所以22+3x+3x=180°.解得x=() °,即∠A=() °22.如图,设∠1=x.因为AB=AD,所以∠1=∠2=x.因为AD∥BC,所以∠2=∠3=x.所以∠ABC=∠1+∠3=2x.因为AD∥BC,AB=DC,所以∠ABC=∠DCB=2x,AC=BD.又因为BC=AC,所以BC=BD.所以∠4=∠BCD=2x.因ABCD的内角和为180°.所以x+2x+2x=180°,解得x=36°.所以∠ABC=∠DCB=72°.因为AD∥BC,所以∠ABC+∠BAD=180°,∠DCB+∠ADC=180°,所以∠BAD=∠ADC=108°23.55101,10552,x y m x y m +=-⎧⎨-=-⎩①②由①+②得,15x =15m 3.所以x =m . ①×2②得15y =15m ,所以y =m .由125ABC m S =,得xy =m ,即 ·(m )m =m .因为m ≠0,所以1112 (m- )=255,解得m =5. 此时x=4.8,y=5.⎧⎨⎩由于AB =BC >AE ,所以BC =5,AE =4.8.又因为AB =BC ,BD 平分∠ABC ,所以AD =DC =3,即AC =6.所以△ABC 的周长为6+5 x 2=16。
(考试真题)第二章 轴对称图形数学八年级上册-单元测试卷-苏科版(含答案)

(考试真题)第二章轴对称图形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm,那么AC长为()A.4 cmB.5 cmC.8 cmD. cm2、如图,AB∥CD,BC平分∠ABE, ∠C=34°,则∠BED的度数等于()A. B. C. D.3、下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1B.2C.3D.44、如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=10,则ED的长为()A.3B.4C.5D.65、下列图形中,不是轴对称图形的是()A. B. C. D.6、等腰三角形的两边长是8cm和4cm,那么它的周长是()A.20cmB.16 cmC.20 cm或16cmD.12 cm7、下列图案中不是轴对称图形的是()A. B. C. D.8、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9、矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm 2B.4cm 2C.12cm2 D.4cm 2或12cm 210、下列几何图形中,一定是轴对称图形的是()A.三角形B.四边形C.平行四边形D.圆11、如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3 cm,那么AE等于()A.3 cmB. cmC.6 cmD. cm12、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.13、如图,△ABC中,AB=AC,∠B=40°.把△ABC的边AC对折,使顶点C和点A重合,折痕交BC于D,连接AD,则∠BAD的度数为()A.50°B.55°C.60°D.65°14、如图,在△ABC中,AB=AC,∠B=30°,则∠C的大小为()A.15°B.25°C.30°D.60°15、如图,在直角坐标系中,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D 的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)二、填空题(共10题,共计30分)16、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________.17、如图,在矩形纸片ABCD中,已知AB=6,BC=8,E是边AD上的点,以CE为折痕折叠纸片,使点D落在点F处,连接FC,当△AEF为直角三角形时,DE的长为________.18、如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是________.19、如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=________;20、如图,点O是半圆圆心,是半圆的直径,点A,D在半圆上,且,过点D作于点C,则阴影部分的面积是________.21、AB是半圆O的直径,AB=8,点C为半圈上的一点将此半圆沿BC所在的直线折叠,若配给好过圆心O,则图中阴影部分的面积是________.22、如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为________.23、在等边△ABC所在平面内有点P,且使得△ABP,△ACP,△BCP均为等腰三角形,则符合条件的点P共有________个.24、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC =________.25、已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图,AD平分∠BAC,BD⊥AD,DE∥AC,求证:△BDE是等腰三角形.28、如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.试判断△OEF 的形状,并说明理由.29、已知一个等腰三角形的周长是18cm,其中一边长是4cm,求这个三角形的边长.30、在的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使整个阴影部分组成的图形成轴对称图形,请画出三种情形.参考答案一、单选题(共15题,共计45分)1、D3、B4、C5、C6、A7、B8、D9、D10、D11、C12、D13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 轴对称单元测试题
班级:_________ 姓名:____________ 得分:____________
一、选择题(每小题3分,共30分)
1.下列图形中,轴对称图形的个数是( )
A.1 B.2 C.3 D.4
2.下列说法中错误的是( )
A 成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴
B 关于某条直线对称的两个图形全等
C 全等的三角形一定关于某条直线对称
D 若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称 3.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 4.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 5.等腰三角形的一个角是80°,则其底角是( )
A .60°
B .50°
C .80°或60°
D .80°或50°
6.已知:在△ABC 中,AB=AC ,O 为不同于A 的一点,且OB=OC ,则直线AO 与底边BC 的关系为( )
A .平行 B.AO 垂直且平分BC C.斜交 D.AO 垂直但不平分BC
7.△ABC 中,AB=AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC=75°,则∠A 的度数是( )
A.35°
B.40°
C.70 °
D.110° 8.下列叙述正确的语句是( )
A.等腰三角形两腰上的高相等
B.等腰三角形的高、中线、角平分线互相重合
C.顶角相等的两个等腰三角形全等
D.两腰相等的两个等腰三角形全等 9、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,
则△EBC 的周长为( )厘米.
A .16
B .18
C .26
D .28
第9题 第10题
E D
C
B
A
l
O
D
C
B
A
10、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:
①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个 二、填空题(每空3分,共30分)
11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= .
13.在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,CD=6cm ,则点D 到AC 的距离为______cm 14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2
交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
15、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122
cm ,则图中阴影部分的面积为 2
cm .
第14题 第15题 第16题 16、如图所示,两个三角形关于某条直线对称,则 = .
17、如图,在△ABC 中BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角的平分线,且PD
∥AB ,PE ∥AC ,则△PDE 的周长是_______cm
18、如图,在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使
得△PAB 为等腰三角形,则符合条件的点P 共有_________个
19、若等腰三角形一腰上的高与另一腰的夹角是40°,则这个等腰三角形的底角是 __________.
F
E
D C
B
A
P 2
P 1N M
O P
B
A
α
35°
115°
B A
P C D E 第17题 A B C 第18题
D
E
C
B
A
O
三、解答题
20.(4分)如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等(不要写做法,保留尺规作图痕迹).
21.(6分)如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.
22.(6分)已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.
D C B
A
A
D
E
F
B
C
A
B
C
D
E
23.(6分)已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于
点E ,交AC 于点F .求证:BE+CF=EF .
24.(6分)如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .
25. (6分)如图,已知D 、E 两点在线段BC 上,AB =AC ,BD=CE ,求证:AD =AE. (请不要用全等的方法加以证明)
26. (6分)已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=1
2
AB . (方法提示:构造等边三角形利用“三线合一”进行证明)
.
A C
E
_C
_A _B。