实验六-数字信号处理在双音多频拨号系统中的应用
数字信号处理技术在音频双声道输出中的应用研究

数字信号处理技术在音频双声道输出中的应用研究随着数字化时代的到来,数字信号处理技术越来越受到广泛关注和应用。
它在音频技术领域中也有着广泛的应用,比如在音频双声道输出技术中的应用。
本文将探讨数字信号处理技术在音频双声道输出中的应用研究。
一、数字信号处理技术简介数字信号处理技术指的是将连续的模拟信号转换为数字信号,并对数字信号进行处理和分析的技术。
它广泛应用于音频、图像、视频等各个领域。
数字信号处理技术通过对信号进行数字化处理和分析,使得信号的波形、频谱和时域特性能够被更精细地描述和分析。
二、音频双声道输出技术音频双声道输出技术是指将一个声道的声音分成两个声道输出的技术,即左声道和右声道。
双声道技术在录音、广播、影视制作等领域都有着广泛的应用。
在音频双声道输出中,数字信号处理技术发挥着重要的作用。
三、数字信号处理技术在音频双声道输出中的应用研究1.数字滤波器数字滤波器是数字信号处理技术中的重要组成部分。
数字滤波器能够对信号进行去噪、滤波等操作,使得信号的质量得到提高。
在音频双声道输出技术中,数字滤波器可以对声音进行滤波,使得声音的质量更加清晰,音质更加优秀。
2.声场重建技术声场重建技术是数字信号处理技术在音频双声道输出中的重要应用之一。
声场重建技术可以将单声道信号转换为双声道信号,进而实现左声道和右声道的分离输出。
同时,声场重建技术还能够实现音频信号的空间环绕效果,使得听众感觉到真实的立体声效果。
3.立体声扩展技术立体声扩展技术是数字信号处理技术在音频双声道输出中的重要应用之一。
立体声扩展技术能够对双声道信号进行扩充,提高声音的宽度和深度,使得听众感觉到更加丰富的音效体验。
立体声扩展技术可以通过合成、交叉谱分析、相位调节等技术实现。
4.动态压缩技术动态压缩技术是数字信号处理技术在音频双声道输出中的重要应用之一。
动态压缩技术可以对声音进行动态压缩处理,提高声音的可听性和清晰度。
同时,动态压缩技术还能够对过高或过低的音频信号进行压缩,使得音质更加均衡。
数字信号处理(第二版)上机实验

上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
双音多频拨号系统DTMF的课程设计报告

设计目的 1. 巩固所学的数字信号处理理论知识,了解电话中双音多频信号的产生与检测原理;2. 了解数字信号处理在实际中的使用方法和重要性;3. 学习资料的收集与整理,学会撰写课程设计报告。
实验环境 1. 微型电子计算机(PC);2. 安装Windows 2000以上操作系统,MATLAB等开发工具。
任务要求 1. 研究双音多频拨号(DTMF)系统,研究电话中双音多频信号的产生与检测原理;任意送入6位和8位电话号码,打印出相应的幅度谱。
观察程序运行结果,判断程序谱分析的正确性。
2. 利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集与整理;3. 在第15周末之前完成预设计,并请指导教师审查,通过后方可进行下一步工作;4. 结束后,及时提交设计报告(含纸质稿、电子稿),要求格式规范、内容完整、结论正确,正文字数不少于3000字(不含代码)。
工作进度计划序号起止日期工作内容1 2009.12.14~2009.12.14 在预设计的基础上,进一步查阅资料,完善设计方案。
2 2009.12.14~2009.12.17 设计总体方案,构建、绘制流程框图,编写代码,上机调试。
3 2009.12.17~2009.12.18 测试程序,完善功能,撰写设计报告。
4 2009.12.18 参加答辩,根据教师反馈意见,修改、完善设计报告。
摘要所谓双音多频(DTMF),就是用两个频率——行频和列频来表示电话机键盘上的一个数字。
DTMF 电话的指令正在迅速的取代脉冲指令。
除了在电话呼叫信号中使用外,DTMF 还广泛的使用在交互式控制应用,例如电话银行、电子邮件甚至家电远程控制等,用户可以从电话机发送DTMF 信号来做菜单选择。
本文基于MATLAB的双音多频拨号系统的仿真实现。
主要涉及到电话拨号音合成的基本原理及识别的主要方法,利用MATLAB 软件以及DFT 算法实现对电话通信系统中拨号音的合成与识别。
数字信号处理技术在音频系统中的应用

数字信号处理技术在音频系统中的应用第一章:引言随着科技的不断发展和进步,数字信号处理技术在各个领域得到了广泛的应用。
其中,音频系统是数字信号处理技术的一个重要领域。
数字信号处理技术在音频系统中的应用,不仅可以提高音频信号的质量和效果,还可以实现音频信号的处理和控制。
本文将重点介绍数字信号处理技术在音频系统中的几个主要应用。
第二章:音频数据的数字化音频系统中采用数字信号处理技术的第一个步骤是将模拟音频信号转换为数字音频信号。
这一步骤是通过模拟-数字转换器(ADC)完成的。
模拟-数字转换器将模拟音频信号进行采样和量化处理,得到对应的数字音频信号。
采样率和量化位数是决定数字音频信号质量的重要参数。
较高的采样率和量化位数可以提高数字音频信号的准确性和保真度,从而增强音频系统的性能。
第三章:音频信号的处理数字信号处理技术在音频系统中的另一个重要应用是音频信号的处理。
通过对数字音频信号进行滤波、均衡、混响等处理,可以改变音频信号的频率特性、时域特性和空间特性,从而调整音频信号的声音效果和音质。
滤波处理可以去除音频信号中的杂音和干扰,增强音频信号的清晰度;均衡处理可以通过调整音频信号的频率响应,改变音频信号的音色和声场效果;混响处理可以模拟不同的房间和场景,增加音频信号的立体感和深度感。
第四章:音频信号的编码和压缩在音频系统中,数字信号处理技术还可以应用于音频信号的编码和压缩。
通过对音频信号进行编码和压缩,可以将音频信号的数据量减小到较小的尺寸,从而方便存储和传输。
常用的音频编码和压缩算法有MP3、AAC等。
这些算法通过对音频信号进行频域分析、量化和编码处理,将音频信号的冗余信息去除,从而实现音频信号的高效编码和压缩。
第五章:音频信号的恢复和重建数字信号处理技术还可以应用于音频信号的恢复和重建。
在音频传输和存储过程中,由于信号传播和储存介质的限制,音频信号通常会受到损坏和失真。
通过使用数字信号处理技术,可以对受损的音频信号进行恢复和重建,使其恢复原来的音质和效果。
《数字信号处理》课程实验题目(电子121)

广西大学计电学院《数字信号处理》课程实验适用专业:电信和通信工程专业;实验学时:9 学时一、实验的性质、任务和基本要求(一)本实验课的性质、任务数字信号处理课程实验是数字信号处理课程的有效的补充部分,通过实验,使学生巩固和加深数字信号处理的理论知识的理解和掌握,在实验过程中了解简单但是完整的数字信号处理的工程实现方法和流程。
通过实践进一步加强学生独立分析问题和解决问题的能力、实际动手能力、综合设计及创新能力的培养。
(二)基本要求掌握数字信号处理基本理论知识和滤波器设计及应用。
(三)实验选项二、实验教学内容实验1 数字信号处理在音乐信号延时和混响处理中的应用(时域处理)-p2781、实验目的和内容掌握数字信号处理方法在音乐信号混响处理中的应用(在时域处理)。
2、实验内容按照p278的内容要求,采用MATLAB设计相应滤波器及小型应用软件APP,实现对一段音乐信号进行延时和混响处理和输出,能实现混响程度的调节。
3、实验要求1)提供MATLAB程序;2)写实验报告,对设计的思路和步骤结果进行分析和说明。
实验2 数字信号处理在音乐信号均衡处理中的应用(频域处理)-p2811、实验目的掌握数字信号处理方法在音乐信号均衡处理中的应用(在频域处理)。
2、实验内容按照p281的内容要求,采用MATLAB设计相应滤波器,及小型应用软件APP,实现对一段音乐信号进行均衡处理和输出,更高要求是能实现均衡程度的调节。
3、实验要求1)提供MATLAB程序;2)写实验报告,对设计的思路和步骤结果进行分析和说明。
实验3 双音多频(DTMF)通信设计的MATLAB仿真1、实验目的理解和掌握第十章双音多频(DTMF)拨号原理。
2、实验内容根据双音多频(DTMF)拨号原理,采用MATLAB进行DTMF信号系统拨号、检测和接收仿真设计。
采用MATLAB设计出电话机(或手机)的拨号界面和检测接收界面。
要求能显示发送(无噪声和含不同信噪比)的数字字母(串)、检测和接收到的数字(串)。
第13章_数字信号处理应用举例分解

的DTMF信号用 sin(2 f1t ) sin(2 f2t ) 表示,其中
f1 697 Hz, f 2 1209Hz
5
13.1.1电话系统中的双音多频信号
8个频率形成16种不同的DTMF信号,具体DTMF拨号 的频率分配见下表
高 低频 率 频 率
1209Hz 1 4 7
1336Hz 2 5 8
1447Hz 3 6 9
633Hz A B C
697Hz 770Hz 852Hz
942Hz
*
0
#
D
表 13.1.1 DTMF拨号的频率分配
6
13.1.1电话系统中的双音多频信号
电话中的双音多频信号的作用
用拨号信号去控制交换机接通被叫的用户电
12
13.1.3戈泽尔算法
戈泽尔算法的计算公式和实现结构
假设长度为N的序列 x(n) 的N点DFT用X(k) 表示,因为 WNkN 1 ,因此
X (k ) W
kN N
X (k ) W
kN N
k ( N m ) x(m)WN m0
N 1
m 0
km x ( m ) W N
戈泽尔算法的原理方框图如图13.1.1(c)所 示
N 1
(13.1.1)
k 0,1, 2,
, N 1
定义序列
yk (n)
m0 k ( nm) x ( m ) W N N 1
(13.1.2)
kn x(n)*WN
13
13.1.3戈泽尔算法
令 则
实验一(系统响应及系统稳定性)

第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
实验五 数字信号处理在双音多频拨号系统中的应用

实验五程序代码及实验结果图:(1)运行仿真程序exp6.m,任意送入 6 位电话号码,打印出相应的幅度谱。
观察程序运行结果,判断程序谱分析的正确性。
实验程序代码及结果如下:% DTMF 双频拨号信号的生成和检测程序tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16 个数N=205;K=[18,20,22,24,31,34,38,42]; %采样点数f1=[697,770,852,941]; %行频率向量f2=[1209,1336,1477,1633]; %列频率向量TN=input('键入6 位电话号码= '); %输入6位数字TNr=0; %接收端电话号码初值为零for l=1:6;d=fix(TN/10^(6-l)); %通过整除依次得到六位数字TN=TN-d*10^(6-l); %得到1位数字之后,得到新的序列TNfor p=1:4; %通过查表法得到数字的行号p和列号q for q=1:4;if tm(p,q)==abs(d); break,end %检测码相符的列号qendif tm(p,q)==abs(d); break,end %检测码相符的行号pend%得到每一位数值之后,然后跳出循环,对该位进行信号调制n=0:1023; %延长序列,为了发出声音x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);sound(x,8000); %发出声音pause(0.1) %声音持续时间% 接收检测端的程序X=goertzel(x(1:205),K+1); %用Goertzel算法计算8点DFT样本val = abs(X); %列出8点DFT向量subplot(3,2,l);stem(K,val,'.');grid on; %绘制幅度谱xlabel('k');ylabel('|X(k)|'); %横纵坐标名称axis([10 50 0 120]); %确定坐标轴范围limit = 80; %设定门限值for s=5:8;if val(s) > limit, break, end %查找列号,找到列号大于门限的幅度谱值endfor r=1:4;if val(r) > limit, break, end %查找行号,找到行号大于门限的幅度谱值endTNr=TNr+tm(r,s-4)*10^(6-l); %合成6位电话号码enddisp('接收端检测到的号码为:'); %显示接收到的字符disp(TNr);(2)分析该仿真程序,将产生、检测和识别 6 位电话号码的程序改为能产生、检测和识别8 位电话号码的程序,并运行一次,打印出相应的幅度谱和8 位电话号码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for q=1:4;
if tm(p,q)==abs(d); break,end % 检测码相符的列号q end
if tm(p,q)==abs(d); break,end % 检测码相符的行号p
end
n=0:1023; % 为了发声,加长序列
x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号
sound(x,8000); % 发出声音
pause(0.1)
% 接收检测端的程序
X=goertzel(x(1:205),K+1); % 用Goertzel算法计算八点DFT样本val = abs(X); % 列出八点DFT向量
subplot(3,2,l);
stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|') % 画出DFT(k)幅度
axis([10 50 0 120])
limit = 80; %
for s=5:8;
if val(s) > limit, break, end % 查找列号
end
for r=1:4;
if val(r) > limit, break, end % 查找行号
end
TNr=TNr+tm(r,s-4)*10^(6-l);
end
disp('接收端检测到的号码为:') % 显示接收到的字符
disp(TNr)
分析:运行程序,根据提示键入6位电话号码678012,回车后可以听见6位电话号码对应的DTMF 信号的声音,并输出相应的6幅频谱图如图1所示,左上角的第一个图在k=20和k=38两点出现峰值,所以对应第一位号码数字6。
最后显示检测到的电话号码678012。
(2)分析该仿真程序,将产生、检测和识别6位电话号码的程序改为能产生、检测和识别8位电话号码的程序,并运行一次,打印出相应的幅度谱和8位电话号码。
实验代码:
8位号码
% DTMF双频拨号信号的生成和检测程序
%clear all;clc;
tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF信号代表的16个数
N=205;K=[18,20,22,24,31,34,38,42];
f1=[697,770,852,941]; % 行频率向量
f2=[1209,1336,1477,1633]; % 列频率向量
TN=input('键入8位电话号码= '); % 输入8位数字
TNr=0; %接收端电话号码初值为零
for l=1:8;
d=fix(TN/10^(8-l));
TN=TN-d*10^(8-l);
分析:运行程序,根据提示键入8位电话号码,回车后可以听见8位电话号码对应的DTMF信号的声音,并输出相应的8幅频谱图如图所示,左上角的第一个图在k=20和k=31两点出现峰值,所以对应第一位号码数字4。
最后显示检测到的电话号码。
五、思考题
简述DTMF信号的参数:采样频率、DFT的变换点数以及观测时间的确定原则。
答:
1.观测时间的确定:观察要检测的8个频率,相邻间隔最小的是第一和第二个频率,间隔是73Hz,
要求DFT最少能够分辨相隔73Hz的两个频率,即要求HzF73min=。
DFT的分辨率和对信号的观察时间Tp有关,Tpmin=1/F=1/73=13.7ms。
考虑到可靠性,留有富裕量,要求按键的时间大于40ms。
2.采样频率的确定:频谱分析的频率范围为697~3266Hz。
按照采样定理,最高频率不能超过
折叠频率,即HzFs36225.0≥,由此要求最小的采样频率应为7.24KHz。
因为数字电话总系统已经规定sF=8KHz,因此对频谱分析范围的要求是一定满足的。
3.DFT的变换点数的确定:DFT的频率采样点频率为Nkk/2πω=(k=0,1,2,---,N-1),相应的模拟
域采样点频率为NkFfsk/=(k=0,1,2,---,N-1),希望选择一个合适的N,使用该公式算出的kf能接近要检测的频率,或者用8个频率中的任一个频率'kf代入公式'/ksfFkN=中时,得到的k值最接近整数值,这样虽然用幅度最大点检测的频率有误差,但可以准确判断所对应的DTMF 频率,即可以准确判断所对应的数字或符号。
经过分析研究认为N=205是最好的。