复杂网络基础理论共32页文档
复杂网络基础理论

无标度网络
定义:无标度网络是指节点的度分布遵循幂律分布的网络即少数节点拥有大量连接大部分节点 只有少数连接。
特性:无标度网络具有高度的异质性其结构可以抵抗随机攻击但容易受到定向攻击。
构建方法:无标度网络的构建通常采用优先连接机制即新节点更倾向于与已经具有大量连接的 节点相连。
应用场景:无标度网络在现实世界中广泛存在如社交网络、互联网、蛋白质相互作用网络等。
07
复杂网络的未来研究方向和挑战
跨领域交叉研究
复杂网络与计算机 科学的交叉:研究 网络算法、网络安 全和网络流量控制 等。
复杂网络与生物学 的交叉:研究生物 系统的网络结构和 功能如蛋白质相互 作用网络和基因调 控网络等。
复杂网络与物理学 的交叉:研究网络 的拓扑结构和动力 学行为如复杂系统 、自组织系统和非 线性系统等。
复杂网络的演化过程中节点和边 的动态变化会导致网络的拓扑结 构和性质发生改变。
添加标题
添加标题
添加标题
添加标题
复杂网络具有非线性和自组织的 特性能够涌现出复杂的结构和行 为。
复杂网络在现实世界中广泛存在 如社交网络、生物网络、交通网 络等。
复杂网络的特征
节点数量巨大且具有自组织、 自相似、小世界等特性
03
复杂网络的基本理论
网络拓扑结构
节点:复杂网络中的基本单元
连通性:网络中节点之间是否存 在路径
添加标题
添加标题
添加标题
添加标题
边:连接节点的线段表示节点之 间的关系
聚类系数:衡量网络中节点聚类 的程度
网络演化模型
节点增长模型:节点按照一定概 率在网络中加入形成无标度网络
节点属性演化模型:节点属性随 时间发生变化影响网络的演化
复杂网络与社会研究中的基础理论与方法研究

复杂网络与社会研究中的基础理论与方法研究在现代社会中,人们日常的行为与交往都离不开各种网络。
从互联网、社交媒体,到社会关系网络、物流网络等等,人们已经生活在一个高度信息化的社交网络中。
其中,复杂网络在其中起到了重要的作用。
复杂网络是一种由大量节点和连接构成的网络,节点之间的相互作用具有复杂性和不确定性。
复杂网络具有较高的可塑性、自组织、适应性和鲁棒性等特点,为社会学、心理学、经济学等领域的研究提供了新的工具和方法。
1. 复杂网络的基本概念复杂网络是现代科学研究中的一种新的重要研究对象,它充分利用了网络科学、统计学、物理学、计算机科学等学科的方法和理论。
复杂网络具有以下几个基本概念:(1)节点:网络中的基本单元,可以是人、公司、网站等等。
(2)边:节点之间的连接,表示节点之间的某种关系。
(3)度:节点的度是指与该节点相连的边的数量。
(4)聚类系数:表示节点之间的相互连接程度。
(5)网络直径:网络中最短的路径长度。
2. 复杂网络在社会研究中的应用在社会研究领域中,复杂网络的应用越来越广泛。
复杂网络可以用来研究社会结构、社会行为、文化传播等问题。
例如,社会网络分析(SNA)就是一种基于复杂网络的社会研究方法。
社会网络分析可以分析社会网络结构及其特征,揭示社会网络中节点之间的联系,研究社会网络中信息传递、合作和竞争等问题。
复杂网络也可以应用于文化传播研究中,揭示文化产品传播的规律和机制。
例如,可以通过分析社交媒体上用户之间传播信息的网络结构,研究信息传播的路径和方式,以及不同信息在社交媒体上的传播效果。
3. 复杂网络的研究方法在复杂网络研究中,通常采用以下几种方法:(1)基于统计物理学的方法。
这种方法通过复杂网络的统计特征来研究网络的性质和行为。
(2)基于图论的方法。
这种方法把网络看作一个图,通过分析节点之间的连通性、聚类系数、网络直径等图论性质来研究网络的性质和行为。
(3)基于机器学习的方法。
这种方法借助计算机和数据挖掘技术,从大规模网络数据中提取规律和特征。
复杂网络的基础知识

第二章复杂网络的基础知识2.1 网络的概念所谓“网络”(networks),实际上就是节点(node)和连边(edge)的集合。
如果节点对(i,j)与(j,i)对应为同一条边,那么该网络为无向网络(undirected networks),否则为有向网络(directed networks)。
如果给每条边都赋予相应的权值,那么该网络就为加权网络(weighted networks),否则为无权网络(unweighted networks),如图2-1所示。
图2-1 网络类型示例(a) 无权无向网络(b) 加权网络(c) 无权有向网络如果节点按照确定的规则连边,所得到的网络就称为“规则网络”(regular networks),如图2-2所示。
如果节点按照完全随机的方式连边,所得到的网络就称为“随机网络”(random networks)。
如果节点按照某种(自)组织原则的方式连边,将演化成各种不同的网络,称为“复杂网络”(complex networks)。
图2-2 规则网络示例(a) 一维有限规则网络(b) 二维无限规则网络2.2 复杂网络的基本特征量描述复杂网络的基本特征量主要有:平均路径长度(average path length )、簇系数(clustering efficient )、度分布(degree distribution )、介数(betweenness )等,下面介绍它们的定义。
2.2.1 平均路径长度(average path length )定义网络中任何两个节点i 和j 之间的距离l ij 为从其中一个节点出发到达另一个节点所要经过的连边的最少数目。
定义网络的直径(diameter )为网络中任意两个节点之间距离的最大值。
即}{max ,ij ji l D = (2-1) 定义网络的平均路径长度L 为网络中所有节点对之间距离的平均值。
即∑∑-=+=-=111)1(2N i N i j ij lN N L (2-2)其中N 为网络节点数,不考虑节点自身的距离。
复杂网络基础理论 第二章

对于无权简单图来说,当l=1时, 。容易证明无 权简单图邻接矩阵A的l次幂Al的元素 表示节点vi和vj 之间通过l条边连接的路径数。当l=2时,容易推出 式中,U表示单位指示函数,即当x>0,U(x)=1; 否则U(x)=0。当i=j时,δ ij=1;否则δ ij=0。
24
2.3.1 联合度分布和度-度相关性
式中,ki,kj分别表示边eij的两个节点vi,vj的度,M表 示网络的总边数。 容易证明度-度相关系数r的范围为:0≤|r|≤1。 当r<0时,网络是负相关的;当r>0时,网络是正相关 的;当r=0时,网络是不相关的。
25
2.3.2 集聚系数分布和聚-度相关性
1.集聚系数分布 集聚系数分布函数P(C)表示从网络中任选一节 点,其集聚系数值为C的概率
式中,δ (x)为单位冲激函数。 2.聚-度相关性 局部集聚系数C(k)定义为度为k的节点的邻居之 间存在的平均边数<Mnn(k)>与这些邻居之间存在 的最大可能的边数的比值,即
26
2.3.2 集聚系数分布和聚-度相关性
全局集聚系数C则定义为
式中,<k2>为度的二阶矩。 显然,局部集聚系数C(k)与k的关系刻画了网络 的聚-度相关性。许多真实网络如好莱坞电影演员合 作网络、语义网络中节点的聚-度相关性存在近似的 倒数关系C(k)∝k−1 。把这种倒数关系的聚-度相关 性称为层次性,把具有层次性的网络称为层次网络。
27
1.联合度分布 度分布满足 平均度与度分布具有关系式 联合度分布定义为从无向网络中随机选择一条边 ,该边的两个节点的度值分别为k1和k2的概率,即 式中,M(k1,k2)为度值为k1的节点和度值为k2的节 点相连的总边数,M为网络总边数。 从联合度分布可以得出度分布
复杂网络

• 哈佛大学美国社会心理学家斯坦利•米尔格 伦(Stanley Milgram)在1967年实验后得出 结论:中间的联系人平均只需要5个,他把 这个结论称为“六度分离”(Six Degrees of Separation); • 六度分离:平均只要通过5个人,你就能与 世界任何一个角落的任何一个人发生联系。 这个结论定量地说明了我们世界的”大 小”,或者说人与人关系的紧密程度; • 六度分离理论一直被作为社会心理学的经 典范例之一。
例:神经网络中的突触有强有弱,可抑制也可兴奋
网络复杂性:即系统内部和系统之间的相互作用可以
看成由节点、边(连接)构成的体系,出现网络复杂 性、小世界特征与无标度特征等。
Hale Waihona Puke 12网络系统的复杂性
(1)结构复杂性
网络连接结构错综复杂、极其混乱,同时又蕴含着丰
富的结构:社区、基序、聚集性、生成规律性等等, 而且网络连接结构可能是随时间变化的。 包括:静态结构的复杂性和结构动态演化的复杂性。 例如:互联网上每天都不停地有页面和链接的产生和 删除。
26
小世界实验 — Erdos数
Fields奖得主的Erdos数都不超过5(只有Cohen和 Grothendieck的Erdos数是5); Nevanlinna奖得主的Erdos数不超过3(只有Valiant的 Erdos数是3); Wolf数学奖得主的Erdos数不超过6(只有V.I.Arnold是6, 且只有Kolmogorov是5); Steele奖的终身成就奖得主的Erdos数不超过4; 其他领域的专家:
比尔盖兹(Bill Gates), 他的Erdos数是4,通过如下途径实现: Erdos--Pavol Hell--Xiao Tie Deng--Christos H. Papadimitriou-William H. (Bill) Gates; 爱因斯坦的Erdos数是2。
复杂网络基础理论 1剖析

定在欧氏平面上,就称为欧几里德旅行商问题,但是
它也是NP难的。因此,通常用来解决TSP问题的解法都
是近似算法。第一个欧几里德旅行商问题的多项式近
似算法是由Arora于1998年使用随机平面分割和动态规
划方法给出的。
11
1.2.2 随机网络理论阶段
1959年,两个匈牙利著名的数学家Erdös和Rényi建
在由N个节点构成的图中,可以存在N(N-1)/2条边,
从中随机连接M条边所构成的网络就叫随机网络。如果
选择M=pN(N-1)/2,则这两种构造随机网络模型的
方法就可以联系起来。
12
1.2.2 随机网络理论阶段
随机图和经典图之间最大的区别在于引入了随机的
方法,使得图的空间变得更大,其数学性质也发生了 巨大的变化。Erdös和Rényi系统研究了当N→∞时随机图 性质与概率p的关系,他们发现:随机网络的许多重要 的性质都是随着网络规模的扩大而突然出现的,也就 是说对于给定概率p,随着网络规模的扩大,要么几乎 所有的随机图具有某种性质,要么几乎每一个图都不 具有该性质。
4
1.1 引言
随着生命科学的发展、网络时代的到来以及人们交 流和经济活动的全球化,人们早就开始观察和思考生 命网络、技术网络、交通网络、社会网络等呈现的一 些普遍现象或问题。所有这些问题看上去互不相关, 实际上这些都是复杂网络所反映的普遍规律和复杂网 络领域学者们所要研究的课题。
近10年来,复杂网络的研究正渗透到众多不同的学 科。推进复杂性科学的交叉研究,深入探索和科学理 解复杂网络的定性特征与定量规律,使它获得广泛的 应用,对全球科学和社会的发展具有十分重大的长远 意义。
3.四色猜想
1852年,毕业于伦敦大学的格思里来到一家科研单 位做地图着色工作时,发现了一个有趣的现象:每幅 地图都可以用四种颜色着色,使得有共同边界的国家
复杂网络-文档资料

j
k
j
幂律分布函数的无标度性质 :考虑一个概率分布 函数f(x),如果对任意给定常数a,存在常数 b 使得函数 f(x) 满足如下“无标度条件”: f(ax)=bf(x) f' (1) 0) 那么必有(假定 f(1)
f x f ( 1 ) , f ( 1 ) f ( 1 ) x
复杂网络及其应用研究新进展 学生: 学号:
复杂网络
复杂网络的含义: 我国著名科学家钱学森给出了复杂网络一个较严格的定义:具有自 组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络 称为复杂网络。 复杂网络的研究历史: 哥尼斯堡七桥——>随机图论——>小世界和无标度网络
v
自组织:如果一个系统靠外部指令而形成组织,就是他组 织;如果不存在外部指令,系统按照相互默契的某种规则, 各尽其责而又协调地自动地形成有序结构,就是自组织。
自相似:一种形状的每一部分在几何上相似于整体,一般对分形而言。
吸引子:相空间(可以表示出一个系统所有可能状态的空间)中稳 定的不动点集。 小世界:
无标度:
小世界则网络: 规则网络具有很强规则性,例如全连接网络, 环形,链形,星形网络以及格点和分形图等 随机网络:随机网络是指按照某种明确的统计规律生成 的网络,与规则网络相对应,主要是经典的随机图模型 及其派生出来的相关模型 小世界网络: 主要有WS改边小世界网络和NW加边小世 界网络 无标度网络:BA无标度网络是第一个无标度网络。我 们将主要讨论此类网络上的同步与传播问题 可导航网络
规则网络
系统中节点及其与边的关系是固定的。
(a)全局耦合网络; (b)最近邻耦合网络;
(c)星形网络
全局耦合网络具有最小的平均路径长度Lgc =1和最大的聚类系数 Cgc =1;
复杂网络理论及应用研究

复杂网络理论及应用研究网络是现代社会中不可或缺的一部分。
复杂网络理论和应用研究的发展是近年来网络领域中的热点之一。
本文将探讨复杂网络理论的基础知识、应用研究与发展趋势。
一、复杂网络理论的基础知识复杂网络是指由大量节点和连接线交织在一起的网络。
这些网络可以是社交媒体、电力网、生物网络、物流系统等。
复杂网络的结构复杂多样,但通常具有以下特点:1.小世界性:即网络上的任意两个节点间的距离较短,也就是任意两个人之间可能存在一个较短的路径。
2.无标度性:即网络中大部分节点的度数很低,但少数几个节点的度数极高,这些节点被称为“超级节点”。
例如,Facebook和Twitter中的明星用户。
3.聚集性:即节点之间往往呈现出一定的集群现象,即同一社群内的节点之间联系紧密。
例如,朋友之间形成的社交圈子。
复杂网络理论主要研究网络的结构、特征,以及节点之间的相互作用规律。
其中,最常用的方法是网络拓扑结构研究。
这种方法可以显示节点之间的关联方式,例如,节点的度数、聚集系数等。
二、复杂网络的应用研究复杂网络理论在众多领域中都有着广泛的应用。
下面列举一些具体的应用研究。
1.社交网络中的信息传播社交网络是复杂网络应用的重要领域之一。
在社交网络中,如果一个节点发布了某种内容,那么它可以通过与之相连的其他节点将信息传递给更广泛的人群。
因此,社交网络可以被用来研究信息传播的速度、路径和影响力。
2.网络犯罪的预测和预防网络犯罪是一个与日俱增的全球问题。
复杂网络理论可以分析网络犯罪的结构和特点,以及预测犯罪所需要的技术和资源。
例如,可以使用聚类算法对不同的犯罪事件进行聚类,以便了解不同犯罪之间的关系,或者预测未来的犯罪趋势。
3.交通系统的优化在城市交通系统中,复杂网络理论可以应用于分析城市交通网络的结构和稳定性,以及优化交通流和减少拥堵。
例如,可以通过分析不同交通节点的连接方式,以便预测交通拥堵的范围和程度。
三、复杂网络理论的发展趋势随着大数据技术的不断发展,复杂网络理论已经成为了一个蓬勃发展的领域。